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Number fields

Irreducibility

In GP, a number field K is described as

K = Q[x ]/f (x)

where f ∈ Z[x ] is a monic irreducible polynomial.

? f = xˆ4 - 2*xˆ3 + xˆ2 - 5;
? polisirreducible(f)
% = 1

GP knows cyclotomic polynomials :

? g = polcyclo(30)
% = xˆ8 + xˆ7 - xˆ5 - xˆ4 - xˆ3 + x + 1
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Number fields

Polmod

To perform simple operations in K = Q[x ]/f (x) = Q(α) where
f (α) = 0, we can use Mod:

? Mod(x,f)ˆ5
% = Mod(3*xˆ3-2*xˆ2+5*x+10, xˆ4-2*xˆ3+xˆ2-5)

Interpretation : α5 = 3α3 − 2α2 + 5α+ 10.

? lift(Mod(x,g)ˆ15)
% = -1

The roots of g are indeed 30th roots of unity.
We used lift for readability.
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Number fields

Compositum
If we want to represent a field such as

Q(
√

2,
√

3),

we need to construct it as a compositum.

? polcompositum(xˆ2-2,xˆ2-3)
% = [xˆ4 - 10*xˆ2 + 1]

The output is a vector of polynomials since in general there
might be several compositums.

? polcompositum(xˆ4-2, xˆ4-2*xˆ2-1)
% = [xˆ8 - 4*xˆ6 - 26*xˆ4 - 4*xˆ2 + 1,

xˆ8 - 4*xˆ6 + 22*xˆ4 - 36*xˆ2 + 49]
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Number fields

Compositum

We may even adjoin several roots of the same polynomial !

? L = polcompositum(xˆ3-2, xˆ3-2)
% = [xˆ3 + 2, xˆ6 + 40*xˆ3 + 1372]

The first polynomial corresponds to the field obtained by
adjoining one root, the second one by adjoining two roots.

? nfrootsof1(L[2])
% = [6, -1/36*xˆ3 - 1/18]

Consistency check: the second field contains a nontrivial 3rd
root of unity!
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Number fields

Isomorphism and inclusion

We can ask whether two number fields are isomorphic:

? nfisisom(xˆ2-5, xˆ2-2)
% = 0
? nfisisom(xˆ2-5, xˆ2-x-1)
% = [-2*x + 1, 2*x - 1]

The function returns the set of all isomorphisms.
We can also ask whether a field can be included in another:

? nfisincl(xˆ2-5,polcyclo(5))
% = [-2*xˆ3 - 2*xˆ2 - 1, 2*xˆ3 + 2*xˆ2 + 1]
? nfisincl(xˆ2+5,polcyclo(5))
% = 0
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Number fields

Subfields
We can compute the subfields of a given field:

? nfsubfields(xˆ6 + 40*xˆ3 + 1372,,1)
% = [x, xˆ2 + 120*x + 12348, xˆ3 - 128, xˆ3 + 250,

xˆ3 - 2, xˆ6 + 40*xˆ3 + 1372]

The option ”(...,,1)” suppresses the inclusion data.
We can ask for a specific degree:

? nfsubfields(xˆ8 + 3*xˆ4 + 9, 2)
% = [[xˆ2 + 36, 2/3*xˆ6 + 4*xˆ2],

[xˆ2 - 12, -2/3*xˆ6],
[xˆ2 + 12*x + 144, 4*xˆ4]]

For each subfield, the second polynomial returned represents a
root of the quadratic polynomial in the top field.
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Number fields

Subfields

We can ask for the maximal subfields:

? nfsubfieldsmax(xˆ8-4*xˆ5+7*xˆ4-xˆ2+x+1, 1)
% = [xˆ2 + 197*x - 199, xˆ4 - 10*xˆ2 - 37*x + 121]

They do not necessarily have all the same degree.
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Number fields

polredbest

Sometimes, we can find a simpler defining polynomial for the
same number field, by using polredbest:

? {h = xˆ5 + 7*xˆ4 + 22550*xˆ3 - 281686*xˆ2
- 85911*x + 3821551};

? polredbest(h)
% = xˆ5 - xˆ3 - 2*xˆ2 + 1

Interpretation : Q[x ]/h(x) ∼= Q[x ]/(x5 − x3 − 2x2 + 1).
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Number fields

nfinit
Most operations on number fields require having computed the
ring of integers, which is done by the initialisation
function nfinit (nf = number field).

? K = nfinit(f);

K contains the structure representing the number field
K = Q[x ]/f (x).

? K.pol
% = xˆ4 - 2*xˆ3 + xˆ2 - 5
? K.sign
% = [2, 1]

K has signature (2,1) : it has two real embeddings and a pair
of conjugate complex embeddings.
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Number fields

Computed information

? K.disc
% = -1975
? K.zk
% = [1,1/2*xˆ2-1/2*x-1/2,x,1/2*xˆ3-1/2*xˆ2-1/2*x]
? w = K.zk[2];

K has discriminant −1975, and its ring of integers is

ZK = Z+Z
α2 − α− 1

2
+Zα+Z

α3 − α2 − α
2

= Z+Zw+Zα+Zwα.
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Number fields

Factorisation of polynomials over a number field

We can factor polynomials with coefficients in a number fields.
For this, we must be careful that the variable of the polynomial
has higher priority than the one used for the number field.

? z = varhigher("z");
? nffactor(K, subst(K.pol,x,z))
% =
[ z + Mod(-x, xˆ4 - 2*xˆ3 + xˆ2 - 5) 1]
[ z + Mod(x - 1, xˆ4 - 2*xˆ3 + xˆ2 - 5) 1]
[zˆ2 - z + Mod(xˆ2 - x, xˆ4 - 2*xˆ3 + xˆ2 - 5) 1]

The result is a two-column matrix; the first contains the
irreducible divisors, and the second contains the exponents.
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Number fields

Roots of polynomials over a number field

We can also simply ask for the roots.

? lift(nfroots(K, subst(K.pol,x,z)))
% = [-x + 1, x]

We see that K has an automorphism given by α 7→ 1− α.
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Elements and ideals

Elements of a number field

As we saw, we can represent the elements of a number field as
polynomials in α. We can also use linear combinations of the
integral basis. We switch between the representations with
nfalgtobasis and nfbasistoalg.

? nfalgtobasis(K,xˆ2)
% = [1, 2, 1, 0]˜

Interpretation : α2 = 1 · 1 + 2 · w + 1 · α+ 0 · wα = 1 + 2w + α.

? nfbasistoalg(K,[1,1,1,1]˜)
% = Mod(1/2*xˆ3 + 1/2, xˆ4 - 2*xˆ3 + xˆ2 - 5)

Interpretation : 1 + w + α+ wα = α3+1
2 .
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Elements and ideals

Element operations

The operations on elements are the functions nfeltxxxx, and
they accept both representations as input.

? nfeltmul(K,[1,-1,0,0]˜,xˆ2)
% = [-1, 3, 1, -1]˜

Interpretation : (1− w) · α2 = −1 + 3w + α− wα.

? nfeltnorm(K,x-2)
% = -1
? nfelttrace(K,[0,1,2,0]˜)
% = 2

Interpretation : NK/Q(α− 2) = −1, TrK/Q(w + 2α) = 2.
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Elements and ideals

Characteristic and minimal polynomials

We compute the characteristic and minimal polynomial in
algebraic form.

? charpoly(nfbasistoalg(K,[1,2,0,0]˜))
% = xˆ4 - 10*xˆ2 + 25
? minpoly(nfbasistoalg(K,[1,2,0,0]˜))
% = xˆ2 - 5

The minimal and characteristic polynomials will be the same
unless the element lies in a proper subfield.
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Elements and ideals

Embeddings

We can compute the real and complex embeddings of an
element with nfeltembed.

? nfeltembed(K,xˆ3+x)
% = [-2.3250207137883080622303986499385818825,

11.033224646287677151457919656132410589,
-2.3541019662496845446137605030969143532
- 0.33268570002014959478470322160341519810*I]
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Elements and ideals

Decomposition of primes
We decompose a prime number with idealprimedec:

? dec = idealprimedec(K,5);
? #dec
% = 2
? [pr1,pr2] = dec;

Interpretation : ZK has two primes above 5, which we call p1
and p2.

? pr1.f
% = 1
? pr1.e
% = 2

p1 has residue degree 1 and ramification index 2.
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Elements and ideals

Decomposition of primes

? pr1.gen
% = [5, [-1, 0, 1, 0]˜]

p1 is generated by 5 and −1 + 0 · w + α+ 0 · wα, that
is p1 = 5ZK + (α− 1)ZK .

? pr2.f
% = 1
? pr2.e
% = 2

p2 also has residue degree 1 and ramification index 2.
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Elements and ideals

Reducing modulo a prime
We reduce elements modulo prime ideals with nfmodpr.

? p11 = idealprimedec(K,11)[1]; p11.f
% = 2
? modpr = nfmodprinit(K,p11,v);
? a = nfmodpr(K,xˆ2+x+1,modpr)
% = 2*v + 5
? aˆ11
% = 9*v + 7
? aˆ121
% = 2*v + 5

Conversely we can compute lifts with nfmodprlift.

? nfmodprlift(K,a,modpr)
% = 2*x + 5
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Elements and ideals

Ideals
We represent an arbitrary ideal by its Hermite normal form
(HNF) with respect to the integral basis. We can obtain this
form with idealhnf.

? idealhnf(K,pr1)
% =
[5 3 4 3]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]

Interpretation : p1 equals

p1 = Z · 5 + Z · (w + 3) + Z · (α+ 4) + Z · (wα+ 3).
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Elements and ideals

Ideals

? a = idealhnf(K,[23, 10, -5, 1]˜)
% =
[260 0 228 123]
[ 0 260 123 105]
[ 0 0 1 0]
[ 0 0 0 1]

We obtain the HNF of the ideal a = (23 + 10w − 5α+ wα).

? idealnorm(K,a)
% = 67600

We have N(a) = 67600.
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Elements and ideals

Ideals: operations

Operations on ideals are the functions idealxxxx and accept
HNF forms, prime ideal structures (output of idealprimedec),
and elements (representing principal ideals).

? idealpow(K,pr2,3)
% =
[25 15 21 7]
[ 0 5 2 4]
[ 0 0 1 0]
[ 0 0 0 1]
? idealnorm(K,idealadd(K,a,pr2))
% = 1

We have a+ p2 = ZK : the ideals a and p2 are coprime.
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Elements and ideals

Two generators representation

Every ideal can be generated by two elements. We compute
this representation with idealtwoelt.

? [n,b] = idealtwoelt(K,a)
% = [260, [-32, 123, 1, 0]˜]
? idealadd(K,n,b) == a

We check that we do get a correct representation.
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Elements and ideals

Operations related to prime ideals
We compute the valuation of an ideal at a prime
with idealval.

? idealval(K,a,pr2)
% = 0

The ideal a is not divisible by p2.
We can test whether an ideal is prime with idealismaximal.

? idealismaximal(K,a)
% = 0
? idealismaximal(K,idealhnf(K,pr1)) != 0
% = 1

If the ideal is prime, the function returns a prime ideal structure,
like idealprimedec.
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Elements and ideals

Ideals: factorisation

We factor an ideal into primes with idealfactor. The result
is a two-column matrix, the first containing the prime ideals and
the second containing the exponents.

? fa = idealfactor(K,a);
? #fa[,1]
% = 3

The ideal a is divisible by three prime ideals.

? [fa[1,1].p, fa[1,1].f, fa[1,1].e, fa[1,2]]
% = [2, 2, 1, 2]

The first one is a prime ideal above 2, of residue degree 2,
unramified, and appears with exponent 2.



Algebraic number theory with GP

Elements and ideals

Ideals: factorisation

? [fa[2,1].p, fa[2,1].f, fa[2,1].e, fa[2,2]]
% = [5, 1, 2, 2]
? fa[2,1]==pr1
% = 1

The second one is p1, and it appears with exponent 2.

? [fa[3,1].p, fa[3,1].f, fa[3,1].e, fa[3,2]]
% = [13, 2, 1, 1]

The third one is a prime ideal above 13, of residue degree 2
and unramified, and appears with exponent 1.
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Elements and ideals

Chinese remainder theorem
We may apply the Chinese remainder theorem with
idealchinese:

? b = idealchinese(K,[pr1,2;pr2,1],[1,-1]);

We are asking for an element b ∈ ZK such that b = 1 mod p2
1

and b = −1 mod p2.

? nfeltval(K,b-1,pr1)
% = 2
? nfeltval(K,b+1,pr2)
% = 1

We check the result by computing valuations: vp1(b − 1) = 2
and vp2(b + 1) = 1.
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Elements and ideals

Chinese remainders with signs
We can compute the sign of the real embeddings of b:

? nfeltsign(K,b)
% = [-1, 1]

We have σ1(b) < 0 and σ2(b) > 0, where σ1, σ2 are the two real
embeddings of K .
We can ask to idealchinese an element that, in addition to
the congruences, is totally positive:

? c = idealchinese(K,[[pr1,2;pr2,1],[1,1]],[1,-1]);
? nfeltsign(K,c)
% = [1, 1]

We indeed have σ1(c) > 0 and σ2(c) > 0.
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Class groups and units

bnfinit
To compute the class group and units of a number field, we
need a more expensive computation than nfinit. This
computation is done by bnfinit (b = Buchmann).

? K2 = bnfinit(K);
? K2.nf == K
% = 1
? K2.no
% = 1

K is a PID (no = class number).

? K2.reg
% = 1.7763300299706546701307646106399605586

We obtain an approximation of the regulator of K .
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Class groups and units

bnfinit : units

? lift(K2.tu)
% = [2, -1]
? K2.tu[1]==nfrootsof1(K)[1]
% = 1

K has two roots of unity (tu = torsion units), ±1.

? lift(K2.fu)
% = [1/2*xˆ2-1/2*x-1/2, 1/2*xˆ3-3/2*xˆ2+3/2*x-1]

The free part of Z×
K is generated by α2−α−1

2 and α3−3α2+3α−2
2 (fu

= fundamental units).
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Class groups and units

Class group

? L = bnfinit(xˆ3 - xˆ2 - 54*x + 169);
? L.cyc
% = [2, 2]

C`(L) ∼= Z/2Z× Z/2Z

? L.gen
% = [[5,0,0;0,5,3;0,0,1],[5,0,3;0,5,2;0,0,1]]

Generators of the class group, given as ideals in HNF form.
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Class groups and units

Testing whether an ideal is principal

We can test whether an ideal is principal
with bnfisprincipal:

? pr = idealprimedec(L,13)[1]
? [dl,g] = bnfisprincipal(L,pr);
? dl
% = [1, 0]˜

bnfisprincipal expresses the class of the ideal in terms of
the generators of the class group (discrete logarithm). Here the
ideal pr is in the same class as the first generator. In particular,
it is not principal, but its square is.
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Class groups and units

Testing whether an ideal is principal

? g
% = [-2/5, 1/5, 0]˜
? {idealhnf(L,pr) == idealmul(L,g,

idealfactorback(L,L.gen,dl))}
% = 1

The second component of the output of bnfisprincipal is
an element g ∈ L that generates the remaining principal ideal.
(idealfactorback = inverse of idealfactor =

∏
i L.gen[i]

dl[i])
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Class groups and units

Computing a generator of a principal ideal

We know that the class of pr is 2-torsion; let’s compute a
generator of its square:

? [dl2,g2] = bnfisprincipal(L,idealpow(L,pr,2));
? dl2
% = [0, 0]˜

The ideal is indeed principal (trivial in the class group).

? g2
% = [1, -1, -1]˜
? idealhnf(L,g2) == idealpow(L,pr,2)
% = 1

g2 is a generator of pr2.
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Class groups and units

Expressing a unit in terms of the generators

? u = [0,2,1]˜;
? nfeltnorm(L,u)
% = 1

We found a unit u ∈ Z×
L .

? bnfisunit(L,u)
% = [1, 2, 1]˜
? lift(L.fu)
% = [-xˆ2 - 4*x + 34, x - 4]
? lift(L.tu)
% = [2, -1]

We express it in terms of the generators with bnfisunit:
u = (−α2 − 4α+ 34) · (α− 4)2 · (−1)1.
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Class groups and units

Large fundamental units

By default, bnfinit only computes fundamental units if they
are small.

? M = bnfinit(xˆ2-3019);
? M.fu
% = 0 \\sentinel value: not computed

We can force the computation of units with bnfinit(,1).

? M = bnfinit(xˆ2-3019,1);
? lift(M.fu)
% = [213895188053752098546071055592725565706690
871236169789*x - 117525625416599410184425264152
37539460392094825860314330]
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Class groups and units

Very large fundamental units

Sometimes, the fundamental units are so large that it’s not a
good idea to write them in terms of the basis. Instead we
should keep them as a product of small elements.

? D = 10ˆ9 + 1273;
? N = bnfinit(xˆ2-D,1);
? bnfunits(N)
% = [[[37, -723420; 43, 1884873; 53, -7850; ...
? N.fu
% = ... \\very large
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Class groups and units

Very large ideal generators

Similarly, the generators of principal ideals can be very large.
We can also ask for a compact representation.

? bnfisprincipal(N,P)

*** bnfisprincipal: Warning: precision too low
for generators, not given.

% = [[]˜, []˜]
? bnfisprincipal(N,P,4)
% = [[]˜, [37, 249358; 43, -581068; ... ]]
? bnfisprincipal(N,P,3)
% = [[]˜, [... very large generator ...]˜]

Multiplicative functions also accept elements in factored form.
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Class groups and units

S-units
We can add an argument to bnfunits to compute S-units
instead.

? P = idealprimedec(N,2)[1];
? S = idealprimedec(N,2);
? U = bnfunits(N,S);
? #U[1]
% = 4

Like for the units, we can write an arbitrary S-unit in terms of
the generators with bnfisunit.

? bnfisunit(N,2)
% = []˜
? bnfisunit(N,2,U)
% = [1, 1, 0, 1]˜
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Class groups and units

Questions ?

Have fun with GP !
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