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Question

Let C be the plane curve over Q defined by F(x, y) = 0, where

F(x,y) = 27y® + (16x?° — 96x™* — 384x13 + 3232x12 — 5424x11 + 960x'° + 960x°® + 5424x7 + 3232x° + 384x° — 96x* — 16x%)y°®
+(—288x28 + 3456x%7 — 14400x%° + 14976x%° + 56160x>* — 142848x%® — 52992x?2 + 400896x>! — 55872x%° — 624384x"°
+134784x8 - 624384x"7 — 55872x'% — 400896x"° — 52992x™* + 142848x*3 + 56160x'2 — 14976x! — 14400x'° — 3456x° — 288x°%)y*
—256x5° 4 6144x55 — 62464x>* + 333824x°3 — 850648x°% — 120832x°! + 7252992x°° — 16046080x*° — 9891072x*® + 90136576x*"
—73076736x"® — 237805568x® + 420485120x** + 341843968x*3 — 1165840384x*? — 192667648x*! -+ 2178936320x*" — 238563328x%°
—3063240704x% + 639488000x%7 + 3412593664x° — 639488000x° — 3063240704x3* + 238563328x> + 217893632032
+192667648x31 — 1165840384x°0 — 341843968x%° + 420485120x28 + 237805568x%7 — 73076736x%° — 90136576x2° — 9891072x%*

+16046080x%3 + 7252992x%2 - 120832x>! — 859648x%° — 333824x% — 62464x'® — 6144x17 — 256x°.

What is the genus of C?
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Goals

Fix a field K (think K = Q).

Consider a curve
C:F(x,y)=0

where F(x,y) € K|x, y] irreducible over K.

We would like to
@ Determine the genus of C,
@ Compute Riemann-Roch spaces on C,
@ Construct the Jacobian of C,
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Goals

@ Determine the genus of C,

@ Compute Riemann-Roch spaces on C,
@ Construct the Jacobian of C,

° ...

All this actually refers to the desingularisation C— Cof C.

A — X

C C
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Goals

@ Determine the genus of C,

@ Compute Riemann-Roch spaces on C,
@ Construct the Jacobian of C,

°

All this actually refers to the desingularisation C— Cof C.

A — X

C C

Main idea: represent “difficult” points of c by formal
parametrisations x(t), y(t) € K((t)).

These series can be found by a desingularisation process based
on Puiseux series (factorisation of F(x,y) in K((x))[y])-
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Handling field extensions

KcLcM

Suppose we have a field extension L = K[a]/A(a) of the
ground field K, and let P(x) € L[x].
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Handling field extensions

KcLcM
Suppose we have a field extension L = K[a]/A(a) of the

ground field K, and let P(x) € L[x].

Want to factor P(x) = [[; Pi(x) over L. Furthermore, for
each /i, want to represent

M; = L[x]/Pi(x)

as M; = K[b]/B;(b) along with an expression a = a(b) € K[b]
so as to understand L C M,.
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Handling field extensions

KcLcM

Suppose we have a field extension L = K[a]/A(a) of the
ground field K, and let P(x) € L[x].

Want to factor P(x) = [[; Pi(x) over L. Furthermore, for
each /i, want to represent

M; = L[x]/Pi(x)

as M; = K[b]/B;(b) along with an expression a = a(b) € K[b]
so as to understand L C M,.

Implemented for K = Q and Q(«) (with polred), F,, F;
should also work for general K of characteristic 0, as long as
factor accepts inputs in K|[x].

Nicolas Mascot Curves and Jacobians



Computing the genus

For (i, j) strictly in the convex hull of the support of F(x, y),

XJlI

the differential w;; = =3¢ ooy " dx s regular everywhere on

F(x,y) = 0, except maybe at singular points.
Any regular differential is a linear combination of these.
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Computing the genus

For (i, j) strictly in the convex hull of the support of F(x, y),

le

the differential w;; = 8,_—/3

F(x,y) = 0, except maybe at singular points.
Any regular differential is a linear combination of these.

" dx is regular everywhere on

= deg,

I = deg,
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Computing the genus

For (i, j) strictly in the convex hull of the support of F(x, y),

XJ1

the differential w;; = 8F/8

F(x,y) = 0, except maybe at singular points.
Any regular differential is a linear combination of these.

" dx is regular everywhere on

~ Strategy: Compute local parametrisations at all the singular
points . Plug them into the w;j, and use linear algebra over K
to find the combinations whose polar parts vanish.

~ Get K-basis of the space Q(C) of holomorphic differentials.
The genus of the curve is its dimension.
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Application: Hyperelliptic curves

Suppose we find C has genus 2 ~» has Weierstrass model

H:w? = f(u).
QY (H) = (du, uduy ., our basis of Q(C) is (2etb)dy - (crtd)du
~+ Their quotient is "”“IZ
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Application: Hyperelliptic curves

Suppose we find C has genus 2 ~» has Weierstrass model
H:w? = f(u).
QN(H) = (9, uduy ., our basis of Q1(C) is (2e4D)dv - (cutd)du

w? autb w
au
~» Their quotient is 2-=7.

Theorem (van Hoeij)

More generally, let Q(C) = (wq, - -
dimension of the span of the wjwj.

,wg), and let d be the

o If C is hyperelliptic, then there exist u,w € K(C) such
that [K(C) : K(u)] =2 and
u'du
QC)=(—
(€= ("
sod =2g —1.
e If C is not hyperelliptic, then d > 2g — 1.

v
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Application: Canonical projections

Let Q(C) = (w1, ,wg). The canonical embedding is

c_wriivs) pg1

e If C is not hyperelliptic, this is really an embedding.

o If C is hyperelliptic, then this is 2 : 1 with image a conic.

When C is not hyperelliptic, we can project onto a plane
~> nicer equations for C.

By this method, we find a much nicer model for our horrible
curve of genus 7:

(3y® — 6y + 3y)x* + (2y® — 8y” + 4y® + 12y° + 12y® — 4y? — 8y — 2)x?
+(9y° — 36y® — 36y7 + 36y° + 18y5 — 36y* — 36y3 + 36y2 + 9y) = 0.
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Let D =" nﬁl5 formal Z-linear combination of points of C.
The attached Riemann-Roch space is

L(D) = {f € K(C) | ordsh > —nj for all P € C}.

This is a finite-dimensional K-vector space. We want a basis.

Represent points P € C either as nonsingular points P € C, or
as local parametrisations.

Strategy:

@ Precompute the integral closure O¢ of K[x] in the
function field K(C) = K(x)[y]/F(x,y) of C.

@ Find common denominator d(x) € K|[x] such that
f(x,y) € L(D) = d(x)h(x,y) € Oc.

@ Use local parametrisations to find combinations vanishing
at appropriate order at relevant points.
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Example: Creation, divisors, Riemann-Roch

C=crvinit(x~11+y~7-2*x*y~5,t,a);
crvprint (C)

P=[1,1]
D=[P,-3;1,2;2,-1]
crvdivprint(C,D);

L=crvRR(C,D)

crvfndiv(C,L[1],1);
crvfndiv(C,L[2],1);
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Example: Rational curves

f=x"5+y"7+Mod (b,b"2-2) *x" 3%y~ 3;
C=crvinit(f,t,a);

crvprint (C)
[T,param]=crvrat(C,1,3)

lift(param)
substvec(f, [x,y],param)

1ift(T)
crvfndiv(C,T,1);

crvrat(C)
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Example: Hyperelliptic / elliptic curves

C=crvinit(x~5+y~6+x"3*y,t,a);
crvprint (C)

crvishyperell(C)
crvhyperell (C)

Cl=crvinit(x"5+y~7+x"3*y~4,t,a);
crvprint (C1)
crvell(C1,[1,-1,0])
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Application 1: Jacobians and
mod ¢ Galois representations




The Jacobian; Makdisi's algorithms

The Jacobian of C is an Abelian variety J = Pic®(C).
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The Jacobian; Makdisi's algorithms

The Jacobian of C is an Abelian variety J = Pic®(C).

Fix an effective divisor Dy on C of degree dy > g, and
compute V = L(2Dy).

Also fix sufficiently many points Py, P,,--- € C to faithfully
represent v € V as (v(Py),v(P2),---).

Each x € J = Pic°(C) is of the form x = [D — Dy] for some
effective D of degree dy. Represent it by the matrix

Vl(Pl) V2(P1)
V1(P2) V2(P2)

where vy, vp, -+ is a basis of L(2Dy — D) C L(2Dy).
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The Jacobian; Makdisi's algorithms

Fix an effective divisor Dy on C of degree dy > g, and
compute V = L(2Dy).

Each x € J = Pic(C) is of the form x = [D — Dy] for some
effective D of degree dy. Represent it by £(2Dy — D) C V.

Algorithm (Group law in J)
Given x; = [D; — Do] and x; = [Dy — Do] € J, let's compute
x3=[D3 — Do] € J: x1+ x2+ x5 =0.

© L(4Dy — Dy — D) = £(2Do — D1) - £(2Dy — D),

@ L(3D, — D; — D,) =

{s € L(3Dy)|s - L(Do) C L(4Dy — D1 — D5)},
@ Pick 0 # f € L(3Dy — Dy — D5); then
(f) = —=3Dy + D1 + Dy + D3 ~ x3 = [D3 — Dy,
Q L(2Do — D5) =
{s € L(2Dy) |s - L(3Dy — Dy — D,) C fL(2Dy)}.
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Division polynomials, Galois representations

Suppose K = Q. Let ¢ € N prime, suppose we want to
understand the Galois action on J[/].

© Fix p # ¢ of good reduction. Find g = p? such that J[/{]
defined over [F,.

Generate F,-points of J[{] until we get an [F,-basis.
Hensel-lift these points from J(F,) to J(Z,/p¢), e > 1.

Use Makdisi to recover all of J(Z,/p®)[¢].

Pick v € Q(J). Evaluate ¢y(x) = [T, (x — a(t)).

© 06 ©6 o0 ©

Identify 1,(x) € Q[x].



And now, surfacesl!

So we can compute H,(Curve, Z /(7).
What about H,(Surface, Z/(Z)?
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And now, surfacesl!

So we can compute H,(Curve, Z /(7).
What about H,(Surface, Z/(Z)?

Solution: dévissage by Leray's spectral sequence
“HP(HY) = HPF9",
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And now, surfacesl!

So we can compute H,(Curve, Z /(7).
What about H,(Surface, Z/(Z)?

Solution: dévissage by Leray's spectral sequence
“HP(HY) = HPF9",

Theorem (M., 2019))

Let S/Q be a regular surface. For every {, one can construct a
curve C/Q such that H*(S,Z/¢Z) C Jac(C)[/] (as
Galois-modules, up to twist by the cyclotomic character and
uninteresting bits).
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And now, surfacesl!

Theorem (M., 2019))

Let S/Q be a regular surface. For every {, one can construct a
curve C/Q such that H*(S,Z/¢Z) C Jac(C)[].
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And now, surfacesl!

Theorem (M., 2019))

Let S/Q be a regular surface. For every {, one can construct a
curve C/Q such that H*(S,Z/¢Z) C Jac(C)[].

lm

—_— B
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And now, surfacesl!

Theorem (M., 2019))

Let S/Q be a regular surface. For every {, one can construct a
curve C/Q such that H*(S,Z/¢Z) C Jac(C)[].
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And now, surfacesl!

Theorem (M., 2019))

Let S/Q be a regular surface. For every {, one can construct a
curve C/Q such that H*(S,Z/¢Z) C Jac(C)[].

D
\

m
—_— B
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Application 2: Integration of
algebraic functions




Integrating algebraic functions

Let f(x,y) be an algebraic function.
This means f lies in the function field
K(C) = K(x)ly]/(F(x,y)) of a curve C: F(x,y) = 0.

Is /f(x7y) dx elementary?
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Integrating algebraic functions

Let f(x,y) be an algebraic function.
This means f lies in the function field
K(C) = K(x)ly]/(F(x,y)) of a curve C: F(x,y) = 0.

Is /f(x7y) dx elementary?

Usually not!

/ x dx
Vx*+10x2 — 96x — m
is not elementary for most values of m € Q... but

/ x dx
Vx4 4+ 10x2 — 96x — 71

is elementary!

V.
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Integrating algebraic functions

/ x dx
Vx4 4+ 10x2 — 96x — m
is not elementary for most values of m € Q... but

/ x dx
Vx* +10x2 — 96x — 71

is elementary!

Liouville's criterion shows that [ f(x,y)dx elementary “iff.”
some divisors are torsion in Pic’(C).

On G, : y?> = x* +10x> — 96x — m, w = xdx/y has simple
poles at 0o and oo_ with Res,,, w = %1, and [co; —co_] is
8-torsion for m = 71, but non-torsion for most m.
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Testing for torsion

@ Let C curve over a number field K, and T = PicO(C)to,S.
If p is a prime of K above p € N such that C has good
reduction at p, then
‘Reduction mod p is injective on the prime-to-p part of T.‘
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Testing for torsion

@ Let C curve over a number field K, and T = PicO(C)to,S.
If p is a prime of K above p € N such that C has good
reduction at p, then
‘Reduction mod p is injective on the prime-to-p part of T.‘

o Let C/F, have genus g.lts Zeta function is

_ < #E Fge) 4 L
Z(C/Fq,t) = exp; %t T (- t)((tl)— qt)

where L(t) € Z[t] determined by #C(F«) for d < g.

Furthermore, | # Pic®(C) = L(t = 1).
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Testing for torsion

@ Let C curve over a number field K, and T = PicO(C)to,S.
If p is a prime of K above p € N such that C has good
reduction at p, then
‘Reduction mod p is injective on the prime-to-p part of T.‘

o Let C/F, have genus g.lts Zeta function is

_ < #E Fge) 4 L
Z(C/Fq,t) = exp; %t T (- t)((tl)— qt)

where L(t) € Z[t] determined by #C(F«) for d < g.

Furthermore, | # Pic®(C) = L(t = 1).

~» With ps, p> such that p; # pp, can find me N: #T | m.
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Testing for torsion

~» With ps, p> such that p; # pp, can find me N: #T | m.
Let D € DivV’(C). If m is small, we compute £(dD) for d | m.

If m is large, we check the order of D in Pic’(C,,) by using
Makdisi's algorithms.
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Testing for torsion

~» With ps, p> such that p; # pp, can find me N: #T | m.

C=crvinit(x~9-y~5+2*x"4*y~2,t,b); crvprint(C);

L=crvzeta(C,11)
factor(subst(L,x,1))

crvboundtorsion(C)

D1=[[-1,1],1;1,-1]; crvdivprint(C,D1);
crvdivistorsion(C,D1)

D2=[2,1;3,-1]; crvdivprint(C,D2);
crvdivistorsion(C,D2)
crvfndiv(C,%[2],1);
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An example with 91-torsion

Let f(x) = x® — 2x7 + 7x® — 6x° — x* + 10x® — 6x2 + 1.

3 2 .
Then 2x° + 22x° 4+ 47x — 91 dx

x4/ f(x)
=log ( A(x)\/f(x) + B(x)) — 91log (x), where A(x) =

2541597392873x%7 — 50843222146612x% + 503225277935158x%° — 3200657096642275x -+ 14214462728604033x% — 44579238719215767x%+
90673772383763063x°! — 66130213758033706x%° — 273013062842426459x™ + 1133193576266076957x™® — 1828008617851129838x"7 — 132504020527990792x™+
7070565814431437671x7> — 13820814098546580816x"* + 30575014165900971447x7* + 35452028969548856825x"2 — 62530951562265159025x " —
2362196896005727208x"° + 149015656444634579168x" — 167038416607981325445x° — 122604173188447754583x7 + 429854211757535766713x% —
169097783352406328449x% — 555714282810473603258x** + 674362321557037184728x + 312058060938121586273x°2 — 1092460331914324201172x% +
270596774739557247583x% + 1120954182135661195118x*° — 880939983432258469781x° — 730812820491441338716x" + 1190924815315016075703x+-
170419784195319443610x°° — 1106709092024065627293x>* + 266886129712577113986x5* + 775632662462383198827x°2 — 447168828060446122800x°" —
414122686014061544643x° + 415264647807791401896x*° + 156832329655217616311x*¢ — 289726675815819589903x*7 — 26171689103841804545x*+
164791091923265170230x*° — 17516989634058353270x* — 79259644357109747485x** + 20976219234985836422x*? + 32932548858101510407x* —
13416187404910977913x*° — 12006472749426198850x*° + 6554509942630071562x + 3896330393014647662x>" — 2667133429777231104x* —
1144094547215340652x + 936921199572723790x>* + 310346663095096540x — 289283382597149122x°2 — 79724891819739155x°" + 79204013977345574x%+
19845813628882518x%° — 19273182417066081x°¢ — 4834954816358415x2" + 4150468193299659x% + 1140609211647771x> — 781155386478148x> —
253519603406578x% + 125209807355899x% + 51311674993204x%! — 16187503455853x%0 — 9131100534854x'% + 1456557718427x"® + 1374884510502x 17—
30584589801x'6 — 166171016046x° — 18181479207x** + 14582435700x*3 + 3910302361x'2 — 670862648x' — 432933295x' — 277948987 + 241992475+
6635500x7 + 89529x® — 311768x> — 83944x* — 11733x® — 982x? — 47x — 1

and B(x) ~ A(x).

horror

This is related to a rational 91-torsion point in Pic’(y? — f(x)).
(Curve found by Steffen Miiller and Berno Reitsma)
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Final examples

Let —x° + yx + y* = 0 (genus 5).

This involves spotting that some divisor is 11-torsion.
Our implementation takes 1 second; FriCAS takes 18 hours!

Same thing with

X2+ 4y3 16y 1 —x15 4 3yx10 — 3y2x5 + 3
dx = +— log
x3 13x2 13 x4l

where —x’ + yx? + y* = 0 (genus 6, 13-torsion).
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Conclusion

DIFFERENTIATION INTEGRATION
TRY APPLYING

CHAIN POWER
RULE RULE

PRODUCT
QUOTIENT RUE

PHONE CALLS '|73
MATHEMATICIANS
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Thank you!




