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Question

Let C be the plane curve over Q defined by F (x , y) = 0, where

F (x , y) = 27y 8 + (16x15 − 96x14 − 384x13 + 3232x12 − 5424x11 + 960x10 + 960x8 + 5424x7 + 3232x6 + 384x5 − 96x4 − 16x3)y 6

+(−288x28 + 3456x27 − 14400x26 + 14976x25 + 56160x24 − 142848x23 − 52992x22 + 400896x21 − 55872x20 − 624384x19

+134784x18 + 624384x17 − 55872x16 − 400896x15 − 52992x14 + 142848x13 + 56160x12 − 14976x11 − 14400x10 − 3456x9 − 288x8)y 4

−256x56 + 6144x55 − 62464x54 + 333824x53 − 859648x52 − 120832x51 + 7252992x50 − 16046080x49 − 9891072x48 + 90136576x47

−73076736x46 − 237805568x45 + 420485120x44 + 341843968x43 − 1165840384x42 − 192667648x41 + 2178936320x40 − 238563328x39

−3063240704x38 + 639488000x37 + 3412593664x36 − 639488000x35 − 3063240704x34 + 238563328x33 + 2178936320x32

+192667648x31 − 1165840384x30 − 341843968x29 + 420485120x28 + 237805568x27 − 73076736x26 − 90136576x25 − 9891072x24

+16046080x23 + 7252992x22 + 120832x21 − 859648x20 − 333824x19 − 62464x18 − 6144x17 − 256x16.

What is the genus of C?
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Goals

Fix a field K (think K = Q).

Consider a curve
C : F (x , y) = 0

where F (x , y) ∈ K [x , y ] irreducible over K .

We would like to

Determine the genus of C ,

Compute Riemann-Roch spaces on C ,

Construct the Jacobian of C ,

. . .
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Goals

Determine the genus of C ,

Compute Riemann-Roch spaces on C ,

Construct the Jacobian of C ,

. . .

All this actually refers to the desingularisation C̃ → C of C .

CC̃

Main idea: represent “difficult” points of C̃ by formal
parametrisations x(t), y(t) ∈ K ((t)).
These series can be found by a desingularisation process based
on Puiseux series (factorisation of F (x , y) in K ((x))[y ]).
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Handling field extensions

K ⊂ L ⊂ M

Suppose we have a field extension L = K [a]/A(a) of the
ground field K , and let P(x) ∈ L[x ].

Want to factor P(x) =
∏

i Pi(x) over L. Furthermore, for
each i , want to represent

Mi = L[x ]/Pi(x)

as Mi = K [b]/Bi(b) along with an expression a = a(b) ∈ K [b]
so as to understand L ⊂ Mi .

Implemented for K = Q and Q(α) (with polred), Fp, Fq;
should also work for general K of characteristic 0, as long as
factor accepts inputs in K [x ].
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Computing the genus

Theorem

For (i , j) strictly in the convex hull of the support of F (x , y),

the differential ωi ,j =
x j−1y i−1

∂F/∂y
dx is regular everywhere on

F (x , y) = 0, except maybe at singular points.
Any regular differential is a linear combination of these.
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Computing the genus

Theorem

For (i , j) strictly in the convex hull of the support of F (x , y),

the differential ωi ,j =
x j−1y i−1

∂F/∂y
dx is regular everywhere on

F (x , y) = 0, except maybe at singular points.
Any regular differential is a linear combination of these.

⇝ Strategy: Compute local parametrisations at all the singular
points . Plug them into the ωi ,j , and use linear algebra over K
to find the combinations whose polar parts vanish.

⇝ Get K -basis of the space Ω(C ) of holomorphic differentials.
The genus of the curve is its dimension.
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Application: Hyperelliptic curves

Suppose we find C has genus 2 ⇝ has Weierstrass model

H : w 2 = f (u).

Ω1(H) = ⟨du
w
, u du

w
⟩ ⇝ our basis of Ω1(C ) is (au+b) du

w
, (cu+d) du

w

⇝ Their quotient is au+b
cu+d

.

Theorem (van Hoeij)

More generally, let Ω(C ) = ⟨ω1, · · · , ωg⟩, and let d be the
dimension of the span of the ωiωj .

If C is hyperelliptic, then there exist u,w ∈ K (C ) such
that [K (C ) : K (u)] = 2 and

Ω(C ) =

〈
uidu

w

∣∣∣∣ 0 ⩽ i ⩽ g − 1

〉
,

so d = 2g − 1.

If C is not hyperelliptic, then d > 2g − 1.
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Application: Canonical projections

Let Ω(C ) = ⟨ω1, · · · , ωg⟩. The canonical embedding is

C
(ω1 : ··· :ωg ) // Pg−1.

If C is not hyperelliptic, this is really an embedding.

If C is hyperelliptic, then this is 2 : 1 with image a conic.

When C is not hyperelliptic, we can project onto a plane
⇝ nicer equations for C .

Example

By this method, we find a much nicer model for our horrible
curve of genus 7:
(3y 5 − 6y 3 + 3y)x4 + (2y 8 − 8y 7 + 4y 6 + 12y 5 + 12y 3 − 4y 2 − 8y − 2)x2

+(9y 9 − 36y 8 − 36y 7 + 36y 6 + 18y 5 − 36y 4 − 36y 3 + 36y 2 + 9y) = 0.
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Riemann-Roch

Let D =
∑

nP̃ P̃ formal Z-linear combination of points of C̃ .
The attached Riemann-Roch space is

L(D) = {f ∈ K (C ) | ordP̃ h ⩾ −nP̃ for all P̃ ∈ C̃}.
This is a finite-dimensional K -vector space. We want a basis.

Represent points P̃ ∈ C̃ either as nonsingular points P ∈ C , or
as local parametrisations.

Strategy:

Precompute the integral closure OC of K [x ] in the
function field K (C ) = K (x)[y ]/F (x , y) of C .

Find common denominator d(x) ∈ K [x ] such that
f (x , y) ∈ L(D) =⇒ d(x)h(x , y) ∈ OC .

Use local parametrisations to find combinations vanishing
at appropriate order at relevant points.
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Example: Creation, divisors, Riemann-Roch

C=crvinit(x^11+y^7-2*x*y^5,t,a);

crvprint(C)

P=[1,1]

D=[P,-3;1,2;2,-1]

crvdivprint(C,D);

L=crvRR(C,D)

crvfndiv(C,L[1],1);

crvfndiv(C,L[2],1);
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Example: Rational curves

f=x^5+y^7+Mod(b,b^2-2)*x^3*y^3;

C=crvinit(f,t,a);

crvprint(C)

[T,param]=crvrat(C,1,3)

lift(param)

substvec(f,[x,y],param)

lift(T)

crvfndiv(C,T,1);

crvrat(C)
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Example: Hyperelliptic / elliptic curves

C=crvinit(x^5+y^6+x^3*y,t,a);

crvprint(C)

crvishyperell(C)

crvhyperell(C)

C1=crvinit(x^5+y^7+x^3*y^4,t,a);

crvprint(C1)

crvell(C1,[1,-1,0])
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Application 1: Jacobians and
mod ℓ Galois representations
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The Jacobian; Makdisi’s algorithms

The Jacobian of C̃ is an Abelian variety J = Pic0(C̃ ).

Fix an effective divisor D0 on C̃ of degree d0 ≫ g , and
compute V = L(2D0).

Each x ∈ J = Pic0(C̃ ) is of the form x = [D − D0] for some
effective D of degree d0.

Algorithm (Group law in J)

Given x1 = [D1 − D0] and x2 = [D2 − D0] ∈ J , let’s compute
x3 = [D3 − D0] ∈ J : x1 + x2 + x3 = 0.

1 L(4D0 − D1 − D2) = L(2D0 − D1) · L(2D0 − D2),

2 L(3D0 − D1 − D2) =
{s ∈ L(3D0) | s · L(D0) ⊂ L(4D0 − D1 − D2)},

3 Pick 0 ̸= f ∈ L(3D0 − D1 − D2); then
(f ) = −3D0 + D1 + D2 + D3 ⇝ x3 = [D3 − D0],

4 L(2D0 − D3) =
{s ∈ L(2D0) | s · L(3D0 − D1 − D2) ⊂ f L(2D0)}.
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. . .


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Division polynomials, Galois representations

Suppose K = Q. Let ℓ ∈ N prime, suppose we want to
understand the Galois action on J [ℓ].

1 Fix p ̸= ℓ of good reduction. Find q = pa such that J[ℓ]
defined over Fq.

2 Generate Fq-points of J[ℓ] until we get an Fℓ-basis.

3 Hensel-lift these points from J(Fq) to J(Zq/p
e), e ≫ 1.

4 Use Makdisi to recover all of J(Zq/p
e)[ℓ].

5 Pick α ∈ Q(J). Evaluate ψℓ(x) =
∏

t∈T
(
x − α(t)

)
.

6 Identify ψℓ(x) ∈ Q[x ].
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And now, surfaces!

So we can compute H1
ét(Curve,Z/ℓZ).

What about H2
ét(Surface,Z/ℓZ)?

Solution: dévissage by Leray’s spectral sequence

“Hp(Hq) ⇒ Hp+q ”.

Theorem (M., 2019))

Let S/Q be a regular surface. For every ℓ, one can construct a
curve C/Q such that H2(S ,Z/ℓZ) ⊂ Jac(C )[ℓ].

S

B
π

C
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So we can compute H1
ét(Curve,Z/ℓZ).

What about H2
ét(Surface,Z/ℓZ)?

Solution: dévissage by Leray’s spectral sequence

“Hp(Hq) ⇒ Hp+q ”.

Theorem (M., 2019))

Let S/Q be a regular surface. For every ℓ, one can construct a
curve C/Q such that H2(S ,Z/ℓZ) ⊂ Jac(C )[ℓ] (as
Galois-modules, up to twist by the cyclotomic character and
uninteresting bits).
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Application 2: Integration of
algebraic functions
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Integrating algebraic functions

Let f (x , y) be an algebraic function.
This means f lies in the function field
K (C ) = K (x)[y ]/

(
F (x , y)

)
of a curve C : F (x , y) = 0.

Is

∫
f (x , y) dx elementary?

Example ∫
x dx√

x4 + 10x2 − 96x −m

is not elementary for most values of m ∈ Q... but∫
x dx√

x4 + 10x2 − 96x − 71
is elementary!

Liouville’s criterion shows that
∫
f (x , y) dx elementary “iff.”

some divisors are torsion in Pic0(C ).

Example

On Cm : y 2 = x4 + 10x2 − 96x −m, ω = x dx/y has simple
poles at ∞+ and ∞− with Res∞± ω = ±1, and [∞+ −∞−] is
8-torsion for m = 71, but non-torsion for most m.
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Testing for torsion

Let C curve over a number field K , and T = Pic0(C )tors.
If p is a prime of K above p ∈ N such that C has good
reduction at p, then
Reduction mod p is injective on the prime-to-p part of T .

Let C/Fq have genus g .Its Zeta function is

Z (C/Fq, t) = exp
+∞∑
d=1

#C (Fqd )

d
td =

L(t)

(1− t)(1− qt)

where L(t) ∈ Z[t] determined by #C (Fqd ) for d ⩽ g .

Furthermore, #Pic0(C ) = L(t = 1).

⇝ With p1, p2 such that p1 ̸= p2, can find m ∈ N: #T | m.

Let D ∈ Div0(C ). If m is small, we compute L(dD) for d | m.
If m is large, we check the order of D in Pic0(C pi ) by using
Makdisi’s algorithms.

C=crvinit(x^9-y^5+2*x^4*y^2,t,b); crvprint(C);

L=crvzeta(C,11)

factor(subst(L,x,1))

crvboundtorsion(C)

D1=[[-1,1],1;1,-1]; crvdivprint(C,D1);

crvdivistorsion(C,D1)

D2=[2,1;3,-1]; crvdivprint(C,D2);

crvdivistorsion(C,D2)

crvfndiv(C,%[2],1);
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D1=[[-1,1],1;1,-1]; crvdivprint(C,D1);

crvdivistorsion(C,D1)

D2=[2,1;3,-1]; crvdivprint(C,D2);

crvdivistorsion(C,D2)

crvfndiv(C,%[2],1);
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Testing for torsion
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Let C/Fq have genus g .Its Zeta function is

Z (C/Fq, t) = exp
+∞∑
d=1

#C (Fqd )

d
td =
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(1− t)(1− qt)
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An example with 91-torsion

Let f (x) = x8 − 2x7 + 7x6 − 6x5 − x4 + 10x3 − 6x2 + 1.

Then

∫
2x3 + 22x2 + 47x − 91

x
√
f (x)

dx

= log
(
A(x)

√
f (x) + B(x)

)
− 91 log (x), where A(x) =

2541597392873x87 − 50843222146612x86 + 503225277935158x85 − 3200657096642275x84 + 14214462728604033x83 − 44579238719215767x82+
90673772383763063x81 − 66130213758033706x80 − 273013962842426459x79 + 1133193576266076957x78 − 1828008617851129838x77 − 132504020527990792x76+
7070565814431437671x75 − 13820814098546580816x74 + 3057501416590971447x73 + 35452028969548856825x72 − 62530951562265159025x71−
2362196896005727208x70 + 149015656444634579168x69 − 167038416607981325445x68 − 122694173188447754583x67 + 429854211757535766713x66−
169097783352406328449x65 − 555714282810473603258x64 + 674362321557037184728x63 + 312058060938121586273x62 − 1092460331914324201172x61+
270596774739557247583x60 + 1120954182135661195118x59 − 880939983432258469781x58 − 730812820491441338716x57 + 1190924815315016075703x56+
170419784195319443610x55 − 1106709092024065627293x54 + 266886129712577113986x53 + 775632662462383198827x52 − 447168828060446122800x51−
414122686014061544643x50 + 415264647807791401896x49 + 156832329655217616311x48 − 289726675815819589903x47 − 26171689103841804545x46+
164791091923265170230x45 − 17516989634058353270x44 − 79259644357109747485x43 + 20976219234985836422x42 + 32932548858101510407x41−
13416187404910977913x40 − 12006472749426198850x39 + 6554509942630071562x38 + 3896330393014647662x37 − 2667133429777231104x36−
1144094547215340652x35 + 936921199572723790x34 + 310346663095096540x33 − 289283382597149122x32 − 79724891819739155x31 + 79204013977345574x30+
19845813628882518x29 − 19273182417066081x28 − 4834954816358415x27 + 4150468193299659x26 + 1140609211647771x25 − 781155386478148x24−
253519603406578x23 + 125209807355899x22 + 51311674993204x21 − 16187503455853x20 − 9131100534854x19 + 1456557718427x18 + 1374884510502x17−
30584589801x16 − 166171016046x15 − 18181479207x14 + 14582435700x13 + 3910302361x12 − 670862648x11 − 432933295x10 − 27794898x9 + 24199247x8+
6635509x7 + 89529x6 − 311768x5 − 83944x4 − 11733x3 − 982x2 − 47x − 1

and B(x) ∼
horror

A(x).

This is related to a rational 91-torsion point in Pic0
(
y 2 − f (x)

)
.

(Curve found by Steffen Müller and Berno Reitsma)
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Final examples

Let −x5 + yx + y 4 = 0 (genus 5).

Then

∫
x3

y
dx =

4y 3

11x
+

1

11
log

(
y 3

x

)
.

This involves spotting that some divisor is 11-torsion.

Our implementation takes 1 second; FriCAS takes 18 hours!

Same thing with∫
x2 + 4y 3

x3
dx =

16y 3

13x2
+

1

13
log

(
−x15 + 3yx10 − 3y 2x5 + y 3

x41

)
where −x7 + yx2 + y 4 = 0 (genus 6, 13-torsion).
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Conclusion
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Questions?

Thank you!
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