
Introduction to libpari programming

Introduction to libpari programming
A tutorial

B. Allombert

IMB
CNRS/Université de Bordeaux

23/06/2025

Introduction to libpari programming

libpari C headers
PARI code can be compiled in three ways:

1. as a standalone program
2. as a loadable module
3. directly inside libpari

In the first two cases the headers are included as follow

#include <pari/pari.h>

in the third case

#include "paridecl.h"

after all extra system headers have been included.
In the first case, PARI needs to be initialized with pari_init
before being used.

Introduction to libpari programming

libpari C types

The PARI library API mostly relies on three C types: long,
ulong (short for unsigned long) and GEN.
PARI denotes the number of bits in ulong by BITS_IN_LONG.
A GEN x is a pointer to a data structure representing a PARI
object.
x [0] contains the type and the length of the object, which are
accessed using typ and lg. The other components can be
either codeword or pointers to other GEN (which can contains
pointers to other GEN etc.) GEN can have several components
that point to the same sub-GEN, but cycles are not allowed.

Introduction to libpari programming

The GEN types
typ returns one of the following enum values.
Leaf types (all components are codeword)
t_INT arbitrary precision integers
t_REAL arbitrary precision real numbers
t_VECSMALL vectors of long
t_STR character string
t_INFINITY ±∞

Recursive types (some components are pointers to other GENs)
t_INTMOD Z/nZ
t_FRAC rational numbers
t_FFELT finite field elt.
t_COMPLEX complex numbers
t_PADIC p-adic numbers
t_QUAD quadratic numbers (deprecated)
t_POLMOD K [X]/T

Introduction to libpari programming

The GEN types

t_POL polynomials
t_SER power series
t_RFRAC rational function
t_QFB binary quadratic form
t_VEC row vector
t_COL column vector
t_MAT matrix
t_LIST list
t_CLOSURE GP functions
t_ERROR error context

It is customary to call a GEN of type t_INT a t_INT, etc.

Introduction to libpari programming

Warning about use of long and ulong

▶ According to the C standard, ulong are wrapping, that is
all operations are done modulo 2BITS_IN_LONG, but this
is not the case for long, where overflow are not defined.

▶ % and / in C follow FORTRAN semantic and not PARI
semantic when the operands are negative: −1%3 = −1.
PARI provides smodss and umodsu to avoid such problem.

▶ Immediate constants sometime need to be postfixed with L
or UL to avoid confusion with int (especially in variadic
functions like mkvecsmalln).

▶ C int must generally be avoided.

Introduction to libpari programming

GEN

▶ typ(x): return the type of x .
▶ lg(x): return the length of x .
▶ settyp(x,t): set the type of x to t .
▶ setlg(x,l): set the length of x to l .
▶ cgetg(l,t); allocate a GEN of length l and type t . on the PARI

stack.

Introduction to libpari programming

t_INT object
t_INT are arbitrary precision relative integers.
▶ signe(x) : sign of x , 0 is x == 0
▶ lgefint(x) : actual size in word (can be smaller than

lg(x)).
▶ expi(x) : exponent (logint(x,2)).

Access to the mantissa words of a t_INT is done using the
macro int_W, see the documentation. The sign can be
chnaged with setsigne.
Small integers are available as universal objects.

−2 gen_m2
−1 gen_m1
0 gen_0
1 gen_1
2 gen_2

Introduction to libpari programming

t_INT object
In the API, the operand types are encoded by the letter
▶ s : long (for "small integer")
▶ u : ulong
▶ i : t_INT

For example, for conversion:
▶ stoi: convert a long to a t_INT
▶ utoi: convert a ulong to a t_INT
▶ itos: convert a t_INT to a long
▶ itou: convert a t_INT to a ulong

Comparing:
▶ equality: equalii, equaliu, equalis
▶ equality to 1 or −1: equali1, equalim1
▶ comparison: cmpii, cmpis, cmpiu cmpsi, cmpui,

cmpss, cmpuu : return the sign of x − y as a int.

Introduction to libpari programming

Operations on t_INT
▶ addii, addis, addiu, addss, adduu: return the sum

(return a t_INT).
▶ idem with add replaced by sub, mul, mod.
▶ negi(x) returns −x , absi return |x |.
▶ sqri, sqrs, sqru return the square.
▶ shifti(x,n) shift x of n bits (n can be positive or

negative).
▶ truedvmdii, truedivii, modii euclidean division.
▶ smodis, smodss: return the remainder as a long.
▶ umodiu, umodsu: return the remainder as a ulong.
▶ gc_INT faster version of gc_GEN for t_INT.
▶ gc_stoi faster version of gc_GEN(av,stoi(...))
▶ gc_utoi faster version of gc_GEN(av,utoi(...))

Introduction to libpari programming

t_REAL

t_REAL are arbitrary precision floating points real numbers
▶ signe(x) : sign of x , 0 is x == 0
▶ realprec(x) : precision in bit, always a multiple of

BITS_IN_LONG.
▶ expo(x) : exponent of x
▶ mantissa_real(x,&e) return the mantissa as a t_INT.

The sign can be changed with setsigne, the exponent with
setexpo.

Introduction to libpari programming

The code letter for t_REAL is r. Functions that need to convert
integers to t_REALs need an extra argument called prec
which is the precision wanted.
▶ stor(x, prec): convert a long to a t_REAL

▶ utor(x, prec): convert a ulong to a t_REAL

▶ itor(x, prec): convert a t_INT to a t_REAL

▶ rtor(x, prec): convert a t_REAL to a t_REAL with a
different precision.

Introduction to libpari programming

Operations on t_REAL

▶ equality: equalrr, equalri, equalrs
▶ comparison: cmprr, cmpri, cmprs, cmpir, cmpsr.
▶ addrr, addri, addrs, addir, addsr: return the sum

(return a t_REAL).
▶ idem with add replaced by sub, mul, div
▶ negr(x) returns −x , absr(x) return |x |, sqrr(x)

returns x2. shiftr(x,n) multiply x by 2n (n can be
positive or negative).

▶ divri, truedivii, modii
▶ truncr, floorr, ceilr roundr.

Introduction to libpari programming

Vectors

Vectors are available in two variant t_VEC and t_COL. Since
PARI uses French linear algebra convention, t_COL is often
more natural.
To test if a type t is either t_VEC and t_COL, use
is_vec_t(t). if v is a vector, and l=lg(v), then v has l − 1
components, gel(v,1),...,gel(v,l-1).
To allocate a vector with n undefined components , do
v = cgetg(n+1, t_VEC); or v = cgetg(n+1,
t_COL);.
Note than this is not a valid object until all components have
been set (by using gel(v,i) = ...).

Introduction to libpari programming

Vector example

GEN fun(long n)
{
long i;
GEN v = cgetg(n+1, t_COL);
for (i = 1; i <= n; i++)
gel(v,i) = sqru(i);

return v;
}

Introduction to libpari programming

Vectors

zerovec(n) and zerocol(n) create a vector of gen_0 that
can be filled later. const_vec(n,x) and const_col(n,x)
create vectors of x .
Fixed-length short vectors can be created with mkvec(x1),
mkvec2(x1,x2), mkvec3(x1,x2,x3),
mkvec4(x1,x2,x3,x4), mkvec5(x1,x2,x3,x4,x5),
mkvecn(n,x1,...,xn), mkcol(x1), mkcol2(x1,x2),
mkcol3(x1,x2,x3), mkcol4(x1,x2,x3,x4),
mkcol5(x1,x2,x3,x4,x5). mkcoln(n,x1,...,xn).
For example [0,1,2] can be created with
mkvec3(gen_0,gen_1,gen_2).

Introduction to libpari programming

t_MAT

t_MAT are represented as vector of t_COL of identical length.
if m is a t_MAT, and l = lg(m), then m has l − 1 columns,
gel(m,1),...,gel(m,l-1), which have all the same
length. Thus the number of row of a matrix with zero columns is
not defined. The coefficients of m can be accessed with
gcoeff(m,i,j) which is a short-hand for
gel(gel(m,j),i).
To allocate a t_MAT with n undefined colums, do
m = cgetg(n+1, t_MAT) then set the columns with
gel(v,i) =
zeromatcopy(n,m) create a matrix of gen_0 that can be
filled later.

Introduction to libpari programming

Matrix example

GEN fun(long n, long m)
{
long i, j;
GEN v = cgetg(m+1, t_MAT);
for (i = 1; i <= m; i++)
{
GEN c = cgetg(n+1, t_COL);
for (j = 1; j <= n; j++)
gel(c,j) = mulss(i,j);

gel(v, i) = c;
}
return m;

}

Introduction to libpari programming

t_VECSMALL

t_VECSMALL is a low-level type used for vector of long or
ulong depending on the context. If v is a t_VECSMALL and
l = lg(v), the components are v[1],...,v[l-1] in the long
case and uel(v,1),...,uel(v,l-1).
To allocate a t_VECSMALL with n undefined components , do v
= cgetg(n+1, t_VECSMALL); and then set
v[1],...,v[n] or uel(v,1),...,uel(v,n).

Introduction to libpari programming

t_VECSMALL example

GEN fun(long n)
{
long i;
GEN v = cgetg(n+1, t_VECSMALL);
for (i = 1; i <= n; i++)
uel(v,i) = i;

return v;
}

Introduction to libpari programming

t_VECSMALL

zero_zv(n) creates a vector of 0 that can be filled later.
const_vecsmall(n,x) create vectors of x .
Fixed-length short vectors can be created with
mkvecsmall(x1), mkvecsmall2(x1,x2),
mkvecsmall3(x1,x2,x3), mkvecsmall4(x1,x2,x3,x4),
mkvecsmall5(x1,x2,x3,x4,x5),
mkvecsmalln(n,x1,...,xn).

Introduction to libpari programming

t_POL

t_POL are polynomials.
▶ signe(x): 0 if x = 0, 1 otherwise.
▶ varn(x): variable number of x .
▶ degpol(x): degree of x (−1 if x = 0),

degpol(x)=lg(x)-3.
▶ lgpol(x): 1+degpol(x), lg(x)-2.
▶ leading_coeff(x): leading coefficient.
▶ constant_coeff(x): constant coefficient.
▶ pol_0(v), pol_1(v), pol_x(v): polynomials 0, 1, x

in variable v .

Introduction to libpari programming

�

The leading coefficient must not be an exact zero. However
a polynomial can have signe 0 even if its degree is not −1, if all
its coefficients are inexact zero.
If P is a t_POL of degree d , the coefficients of degree
0 ≤ i ≤ d can be accessed with gel(P,i+2).
The variable number can be set with setvarn. All variables
that appears in components of polynomial must have strictly
lower priorities than varn(x)
Priority are compared using varncmp(v,w).

Introduction to libpari programming

t_POL

Creating a t_POL of degree d and variable number v requires
four steps:

allocation P = cgetg(d+3, t_POL);

settting the variable P[1] = evalvarn(v);

filling the coefs set the coefs gel(P,i+2)
renormalize P = RgX_renormalize_lg(P, d+3);

The last step will take care of setting the sign correctly.

Introduction to libpari programming

t_POL example

GEN fun(long d, long v)
{
long i;
GEN P = cgetg(d+3, t_POL);
P[1] = evalvarn(v);
for (i = 0; i <= n; i++)
gel(P, 2+i) = sqrs(i);

return RgX_renormalize_lg(P, d+3);
}

Introduction to libpari programming

t_STR

t_STR are character string. GSTR(x) return the string pointer.
GEN strtoGENstr(const char *s) convert a C string to
t_STR The number of long to allocate for n characters is
nchar2nlong.

Introduction to libpari programming

t_CLOSURE

t_CLOSURE holds GP functions.
The length can be 6,7 or 8.

6 inline closure
7 function
8 true closure

closure_arity(C): arity of the closure.

Introduction to libpari programming

True closures are GP functions that have a non empty context
of execution:

? my(z=3);trueclosure(x)=x+z
%1 = (x)->my(z=3);x+z

Inline closure is code that appear inside loop:

? for(i=1,100,print(i^2+1))

print(i^2+1) is an inline closure (that depend on i).

Introduction to libpari programming

The PARI stack

Since GEN can be quite complex, PARI uses a dedicated
memory management system: the PARI stack. The PARI stack
is a contiguous chunk of memory used as a scratchpad for
computation. It is made of two consecutive chunks (allocated
with mmap). The first chunk is of length parisize starts from
top down to bot and is allocated as real memory. The second
chunk starts from bot down to vbot and is allocated as virtual
memory. The total length from top to vbot is parisizemax.
The stack pointer is called avma.

Introduction to libpari programming

top
|

avma
|

bot

parisize real memory

|
vbot

}
virtual memory


parisizemax

When avma reaches bot, the bot is lowered (and a Warning:
increasing stack size occurs), When bot reaches
vbot, a PARI stack overflow error occurs. The virtual
memory between the old and new bot is then converted to real
memory.

Introduction to libpari programming

The low-level function for allocating memory is very simple:

INLINE GEN
new_chunk(size_t x) /* x is a number of longs */
{
GEN z;
if (x > (avma-bot) / sizeof(long))
new_chunk_resize(x);

z = ((GEN) avma) - x;
avma = (pari_sp)z;
return z;

}

Introduction to libpari programming

The PARI stack has several advantage.
▶ memory allocation are very fast.
▶ it is fully reentrant.
▶ it prevents memory leak.
▶ it is always obvious who owns a particular address.
▶ it allows object to be serialized.

In principle, GEN can exist anywhere in memory, however all
libpari functions that return new GENs allocate them on the
PARI stack.

Introduction to libpari programming

A function should normally start by recording the stack pointer
avma of type pari_sp and restore the stack at the end. For
that purpose, gc_GEN, gc_long, gc_ulong are available.

<TYPE> fun(...)
{
pari_sp av = avma;
<TYPE> z;
...
z = ...;
return gc_<TYPE>(av, z);

}

where <TYPE> can be any of long, ulong, GEN. If the GEN
is known to be a leaf type, gc_leaf should be used. For void
function, use set_avma(av).

Introduction to libpari programming

gc_GEN and gc_upto

gc_GEN(av, z) works by copying recursively the GEN z
outsize the stack, reseting avma to av and recopying z at
avma. The cost only depend on the size of z
gc_upto(av, z) is a faster version that just move z to avma,
shiftint the pointers as needed. However it has two
requirements.

1. the pointer z must be created before its components.
2. The part of the stack used by z and its components need

to be connected.
GEN produced by gc_GEN always have this property.
If furthermore, there were no temporaries created, return z
is sufficient.

Introduction to libpari programming

Examples
pari_sp av = avma;
GEN a = utoi(3), b = utoi(4);
GEN V = cgetg(3,t_VEC);
gel(V,1) = a;
gen(V,2) = b;
return gc_GEN(av, V);

In this example, the first condition is not respected, gel(V,1)
and gel(V,2) are created before V .

GEN V = cgetg(3,t_VEC);
gel(V,1) = utoi(3);
gen(V,2) = utoi(4);
return V;

In this example, there is no temporaries created, no need for
gc.

Introduction to libpari programming

pari_sp av = avma;
GEN V = cgetg(3,t_VEC);
gel(V,1) = addiu(shifti(gen_1,128),1);
gen(V,2) = utoi(4);
return gc_GEN(av, V);

In this example, the second condition is not respected, the
object shifti(gen_1,128) is a temporary is the middle of V .

pari_sp av = avma;
GEN z = shifti(gen_1,128);
GEN V = cgetg(3,t_VEC);
gel(V,1) = addiu(z,1);
gen(V,2) = utoi(4);
return gc_upto(av, V);

In this example, the temporary is created before V , so now both
condition hold.

Introduction to libpari programming

pari_sp av = avma;
GEN a = addiu(shifti(gen_1,128), 1);
GEN V = cgetg(3,t_VEC);
gel(V,1) = a;
gen(V,2) = utoi(4);
return gc_GEN(av, V);

In this example, gel(V,1) is created before V.

Introduction to libpari programming

mkvec2 and retmkvec2

pari_sp av = avma;
V = mkvec2(utoi(3), utoi(4));
return gc_GEN(av, V);

In this example, the GEN utoi(3) and utoi(4) are created
before V .

retmkvec2(utoi(3), utoi(4));

retmkvec2 is a macro that ensure that cgetg(3,t_VEC) is
called before utoi(3) and utoi(4) are evaluated.

#define retmkvec2(x,y)\
do { GEN _v = cgetg(3, t_VEC);\

gel(_v,1) = (x);\
gel(_v,2) = (y); return _v; } while(0)

