Supersingular Isogeny Graphs (in PARI/GP)

James Rickards

Saint Mary's University

james.rickards@smu.ca

26 June 2025

- E is an elliptic curve over a field K
- $\operatorname{End}_{\overline{K}}(E) \cong$
 - An order in an imaginary quadratic field
 - or, a maximal order in $B_{p,\infty}$ (p = char(K) necessarily).
- The second case is *supersingular* (ssl).

Supersingular elliptic curves

- Over $\overline{\mathbb{F}}_p$, all ssl EC's are defined over \mathbb{F}_{p^2}
- Isomorphism classes are parametrized by their j-invariant, in \mathbb{F}_{p^2}
- $\approx \frac{p}{12}$ supersingular isomorphism classes.

Fix prime p and (prime) ℓ , and make a graph:

- Vertices: isomorphsim classes of ssl EC's, labelled by their j-invariant
- $\bullet\,$ Edges: draw an edge if there exists a degree ℓ isogeny between the two curves.
- Often directed: fix representatives, an isogeny is defined up to post-composition by an automorphism (only affects j = 0, 1728).

Properties of ℓ -isogeny graph

- $\ell + 1 \text{regular}$ if ℓ prime
- Connected
- Ramanujan graph
- Leads to cryptography systems via random walks

One approach: modular polynomials

- Let $\phi_N(x, y)$ be the N^{th} modular polynomial
- Let $j \in \mathbb{F}_{p^2}$ be supersingular
- For $y \in \mathbb{F}_{p^2}$, $\phi_N(j, y) = 0$ iff y is a ssl j-invariant that is N-isogenous to j

- Load the N^{th} modular polynomial, reduce modulo p
- Compute one ssl j-invariant
- Plug it into ϕ_N , factor over \mathbb{F}_{p^2} , repeat!

- In PARI/GP for prime level with polmodular (computed on the fly)
- Also available from Drew Sutherland's website, $N \leq 400$ and prime $N \leq 1000$
- Save to file, small amount of processing to make it gp-readable with readvec

One ssl j-invariant

- Find a prime q with $q \equiv 3 \pmod{4}$ and $\left(\frac{-q}{p}\right) = -1$ (forprime)
- Find Hilbert class polynomial for -q (polclass)
- Find a root in \mathbb{F}_{p^2} (FFX_roots)

- Depth first search
- Store found *j*-invariants in a vector, edges in vecsmalls
- Track the *j*-invariants with a hashtable (hash_init_GEN, etc.)
- Find the new *j*-invariants with finite field methods (FFX_factor, etc.)

Comparison to Sage

- Same general algorithm is implemented in SageMath
- \bullet Restricts to ℓ prime and is very slow, but also handles the non-supersingular case
- I also provide code to easily call the method from Sage

l	Approximate speedup from E.isogeny_ell_graph
2	67
3	107
5	211
7	217

Table 1: Timings from PARI/GP 2.16.1 and SageMath 10.2. Average factor of improvement for 20 primes between 100 and 3000.

- Sage integration: gen_to_sage is VERY slow
- pari(code) is significantly faster
- Sage integration relies on ffgen(p²) always outputting the same generator

https://github.com/JamesRickards-Canada/Isogeny