expm1(1.E-10) powers(x,3) fromdigits([1,2,3]) qfbredsl2(Qfb(1,7,19)) nfcompositum(nfinit(a^2+1),x^2+a,x^2+a+1) ellissupersingular(ellinit([1,0],19)) ellisdivisible(ellinit([1,1]),[72,611],3) ellxn(ellinit([1,1]),3) fun(x,y,z=0,t=1)= { my(a,b,c); ...; a; } addhelp(fun,"computes the ... of x and y..."); default(strictargs,0); fun(a,b=1)=[a,b]; fun(2) fun() default(strictargs,1); fun(a,b=1)=[a,b]; fun(2) fun() my(s); forprime(p=3,, if(p%4==1,s++, s--); if(s==1, return(p)) ); trans(P)=subst(P,x,x+1) trans1(P)=subst(P,'x,'x+1) trans2(P)=my(v=variable(P));subst(P,v,v+1) trans3(P,x=variable(P))=subst(P,x,x+1) nome(x)=exp(2*I*Pi*x) nome1(x)=localprec(precision(x));exp(2*I*Pi*x) nome2(x,prec=precision(x))=localprec(prec);\ exp(2*I*Pi*x) iferr(tan(Pi/2),E,Vec(E)) mytan(x)=iferr(tan(x),E,oo) mytan(x)=iferr(tan(x),E,oo, #Vec(E)==5 && Vec(E)[1..4]== ["e_DOMAIN","tan","argument","=","Pi/2 + kPi"]) rho(n)= { my(x,z); x=2; y=5; while(gcd(y-x,n)==1, x=(x^2+1)%n; y=(y^2+1)%n; y=(y^2+1)%n ); gcd(n,y-x) }