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Introduction

The theory of euclidean lattices and its algorithmic approach are
well-known, but there are few studies of the algorithmic side for
hermitian lattices.

H. Lenstra A. Lenstra L. Lovász

The inventors of the LLL algorithm
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Hermitian lattices over a quadratic euclidean number field

Let K = Q(i
√

d) with d ∈ {1, 2, 3, 7, 11} and ZK be its maximal order.

Definition
A subgroup Λ of Cm is called a ZK -lattice if there exists (e1, . . . , em) a
C-basis of Cm such that Λ = ZK e1 ⊕ · · · ⊕ ZK em.

A ZK -lattice in Cm may be described as a Z-lattice in R2m.

Definition
The minimal norm of Λ is λ1(Λ) = minx∈Λ\{0} ‖x‖2.

How to compute λ1(Λ) and a minimal vector of Λ ?
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LLL-reduction for hermitian lattices

Let E = (e1, . . . , em) be a C-basis of Cm. We denote by e∗i and µi,j its
Gram-Schmidt orthogonalization.

Let 0 < mK < δ < 1, where mK is the euclidean minima of K :

mK = sup
x∈C

inf
y∈ZK

|x − y |2,

Definition
The basis E is said δ-LLL-reduced if:{

|µi,j |2 6 mK for 1 6 j < i 6 m,
‖e∗i ‖2 > (δ − |µi,i−1|2)‖e∗i−1‖2 for 2 6 i 6 m.
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Usefulness for the SVP

Computing a LLL-reduced basis of a ZK -lattice allow to approximate its
minimal norm by giving a quasi-minimal vector.

Theorem
Let E be a δ-LLL-reduced basis of a ZK -lattice Λ in Cm. Then

‖e1‖2 6

(
1

δ −mK

)m−1
λ1(Λ).
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Computing LLL-reduced basis

Idea [Napias, Gan/Ling/Mow]
The original LLL algorithm (over Z) can be generalised for ZK -lattices.

Therefore, one may compute a δ-LLL-reduced basis of a ZK -lattice Λ
from one of its basis E = (e1, . . . , em) using

O
(

m4 logδ
(
λ1(Λ)1/2

‖E‖∞

))
operations in C.
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Probabilistic analysis: average case

The bound ‖e1‖2 6
(

1
δ−mK

)m−1
λ1(Λ) has been proven using

|µi,i−1|2 = mK : this is the worst case, which is unrealistic.

Theorem
Let E = (e1, . . . , em) be a basis of a ZK -lattice Λ in Cm, to which the
δ-LLL algorithm is applied. Assuming that the coefficients |µi,i−1|2 of the
GSOP of E are identically distributed random variables of density p, we
get that:

E(log(‖e1‖2)) 6 log(λ1(Λ))− (m − 1)

∫ mK

0
log(δ − x)p(x)dx .

The density p has been approximated using experimental data.
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Experimental results

Simple implementation in GP (≈ 400 lines). Tested on 500 bases in
various dimension (50 to 150).

D 1 2 3 7 11

mK 0.5 0.75 0.3333333 0.5714286 0.8181818∫ mK
0 log(δ − x)p(x)dx - 0.0765100 - 0.09183234 - 0.0708416 - 0.0796641 - 0.0927955

1/(δ−mk )

exp
(
−
∫ mK

0
log(δ−x)p̃(x)dx

) 1.8904972 3.8010754 1.4186946 2.2061385 6.3860367

p(x) =

{ a
x+b e−x/c if x ∈ [0,mK ],
0 otherwise.
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Distribution and interpolation obtained in Q(i) for
δ = 0.99 (logarithmic scale)
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Similar results for other fields.
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Introduction

Let K be a number field of degree d and ZK be its ring of integers.

Definition
A fractional ideal of K is a ZK -submodule a of K for which one may find
ζ ∈ ZK such that ζa ⊂ ZK . In this case, one may find a Q-basis of K
which is a Z-basis of a.

How to represent ideals in an algorithmic setting?

In PARI/GP:
• HNF representation (idealhnf) → easy to use.
• Two-element representation (idealtwoelt) → memory-friendly.
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Matrix representation

Let a be an integral ideal of K and ω = (ω1, . . . , ωd ) be an integral basis
of K . We consider E = (e1, . . . , ed ) a Z-basis of a.

Matrix representation of a
The ideal a may be represented a by the coordinates matrix of E with
respect to ω.

It gives a representation of a as an element of Md (Z) ∩ GLd (Q).

Uniqueness of such a representation is achieved by choosing a specific
basis of a (i.e HNF).
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Two-element representation: naive algorithm

Let a be an integral ideal of K .

Classical result
Let x be a non-zero element of a. There exists y ∈ a such that
a = (x , y). Moreover, an element y chosen uniformly at random in a/(x)
satisfies (x , y) = a with probability:

P[(x , y) = a] =
∏

p : vp(x)>vp(a)

(
1− 1
N (p)

)
>
∏
p|a

(
1− 1
N (p)

)
.

Problems:
• Maximise the shortness of such a representation.
• Success rate depends on a.
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Strong reduction, variable success rate

Lets add a size-reduction condition to the naive algorithm:

Algorithm 1
1 Choose x ∈ a short (w.r.t the T2 norm), using the LLL-algorithm.
2 Find y ∈ a such that (x , y) = a, using naïve algorithm.
3 Size-reduce y .

It produces a representation (x , y) = a such that:

max{‖x‖, ‖y‖} ∈ O(N (a)1/d ).

→ Strong reduction, but no changes on the success rate.

Implemented in GP(2C) (≈ 100 lines in C).
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Weak reduction, bounded failure rate
Lets add a size-reduction to the algorithm used in the function
idealtwoelt of GP:

Algorithm 2 [Fieker/Sthelé]
1 Find b ⊂ a such that p|b implies N (p) > y , for y a well-chosen
constant.

2 Find a small two-element representation of b, using the previous
algorithm.

3 Recover a two-element representation of a from the one of b.

It produces a representation (x , y) = a such that:

max{‖x‖, ‖y‖} ∈ O(N (a)4/d ).

→ Weaker size-reduction, increase of the overall complexity, but the
failure rate is bounded (depending on a "success parameter" t):

P[failure] 6 0.8t

Implemented in GP(2C) (≈ 500 lines in C).
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Heuristic remarks (WiP)

Ratio time algorithm 1
time algorithm 2 over all integral ideals of norm 6 5 · 104 in a field of

degree 25:

Despite the bounded failure rate, algorithm 2 tends to be way slower
than algorithm 1. It seems that the control of the success rate does not
outweigh the complexity explosion.
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Heuristic remarks (WiP)
Ratio log result algorithm 2

result algorithm 1 over all integral ideals of norm 6 5 · 104 in a
field of degree 25:

As foreseen, algorithm 1 usually produces shorter representations than
algorithm 2.

Thomas Camus Hermitian lattices reduction



Heuristic remarks (WiP)
Ratio log theoretical bound

result algorithm over all integral ideals of norm 6 5 · 104 in a
field of degree 25:

The theoretical bounds on the size of the elements seem to be quite large
for both algorithms.
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Thanks for listening!
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