Algebraic number theory with GP

A. Page

IMB
INRIA/Université de Bordeaux
16/04/2018

Documentation

- refcard-nf.pdf: list of functions with a short description.
- users.pdf Section 3.13: introduction and detailed descriptions of the functions.
- dans gp, ?10: list of functions.
- dans gp, ? functionname: short description of the function.
- dans gp, ??functionname: long description of the function.

To record the commands we will type during the tutorial:
? \I TAN.log

Irreducibility

In GP, we describe a number field K as

$$
K=\mathbb{Q}[x] / f(x)
$$

where $f \in \mathbb{Z}[x]$ is a monic irreducible polynomial.
? $f=x^{\wedge} 4-2 * x^{\wedge} 3+x^{\wedge} 2-5$;
? polisirreducible(f)
$\% 2=1$
GP knows cyclotomic polynomials:
? $\mathrm{g}=\mathrm{polcyclo(30)}$
$\% 3=x^{\wedge} 8+x^{\wedge} 7-x^{\wedge} 5-x^{\wedge} 4-x^{\wedge} 3+x+1$

Polmod

To perform simple operations in $K=\mathbb{Q}[x] / f(x)=\mathbb{Q}(\alpha)$ where $f(\alpha)=0$, we can use Mod:
? $\operatorname{Mod}(x, f)^{\wedge} 5$
$\% 4=\operatorname{Mod}\left(3 * x^{\wedge} 3-2 * x^{\wedge} 2+5 * x+10, x^{\wedge} 4-2 * x^{\wedge} 3+x^{\wedge} 2-5\right)$
Interpretation: $\alpha^{5}=3 \alpha^{3}-2 \alpha^{2}+5 \alpha+10$.
We check that the roots of g are 30th roots of unity:

$$
\begin{aligned}
& ? \operatorname{lift}\left(\operatorname{Mod}(x, g)^{\wedge} 15\right) \\
& \% 5=-1
\end{aligned}
$$

We used lift to make the output more readable.

polredbest

Sometimes we can find a simpler defining polynomial for the same number field by using polredbest:

```
? {h = x^5 + 7*x^4 + 22550*x^3 - 281686*x^2
    - 85911*x + 3821551};
? polredbest(h)
%7 = x^5 - x^3 - 2* *^2 + 1
```

Interpretation: $\mathbb{Q}[x] / h(x) \cong \mathbb{Q}[x] /\left(x^{5}-x^{3}-2 x^{2}+1\right)$.

nfinit

Most operations on number fields require a precomputation, which is performed by the initialisation function nfinit.
? $\mathrm{K}=\mathrm{nfinit}(\mathrm{f})$;
K contains the precomputation of the number field $K=\mathbb{Q}[x] / f(x)$.
? K.pol
$\% 9=x^{\wedge} 4-2 * x^{\wedge} 3+x^{\wedge} 2-5$
? K.sign
$\% 10=[2,1]$
K has signature $(2,1)$: it has two real embeddings and one pair of conjugate complex embeddings.

Precomputed information

```
? K.disc
\%11 = -1975
? K.zk
\(\% 12=\left[1,1 / 2 * x^{\wedge} 2-1 / 2 * x-1 / 2, x, 1 / 2 * x^{\wedge} 3-1 / 2 * x^{\wedge} 2-1 / 2 * x\right]\)
? w = K.zk[2];
```

K has discriminant -1975 , and its ring of integers is

$$
\mathbb{Z}_{K}=\mathbb{Z}+\mathbb{Z} \frac{\alpha^{2}-\alpha-1}{2}+\mathbb{Z} \alpha+\mathbb{Z} \frac{\alpha^{3}-\alpha^{2}-\alpha}{2}=\mathbb{Z}+\mathbb{Z} w+\mathbb{Z} \alpha+\mathbb{Z} w \alpha
$$

Elements of a number field

We saw that we could represent elements of a number field as polynomials in α. We can also use linear combinations of the integral basis. We can switch between the two representations with nfalgtobasis and nfbasistoalg.
? nfalgtobasis(K, $\left.x^{\wedge} 2\right)$ \%14 = [1, 2, 1, 0]~ Interpretation: $\alpha^{2}=1 \cdot 1+2 \cdot w+1 \cdot \alpha+0 \cdot w \alpha=1+2 w+\alpha$.
? nfbasistoalg(K, [1,1,1,1]~) $\% 15=\operatorname{Mod}\left(1 / 2 * x^{\wedge} 3+1 / 2, x^{\wedge} 4-2 * x^{\wedge} 3+x^{\wedge} 2-5\right)$ Interpretation: $1+w+\alpha+w \alpha=\frac{\alpha^{3}+1}{2}$.

Elements of a number field: operations

We perform operations on elements with the functions nfeltxxxx, which accept both representations as input.

```
? nfeltmul(K, [1,-1,0,0]~, x^2)
%16 = [-1, 3, 1, -1]~
```

Interpretation: $(1-w) \cdot \alpha^{2}=-1+3 w+\alpha-w \alpha$.
? nfeltnorm(K, x-2)
$\% 17=-1$
? nfelttrace (K, [0, 1, 2, 0]~)
$\% 18=2$

Interpretation: $N_{K / \mathbb{Q}}(\alpha-2)=-1, \operatorname{Tr}_{K / \mathbb{Q}}(w+2 \alpha)=2$.

Decomposition of primes

We can decompose primes with idealprimedec:
? dec = idealprimedec $(\mathrm{K}, 5)$;
? \#dec
$\div 20=2$
? [pr1,pr2] = dec;
Interpretation: \mathbb{Z}_{K} has two prime ideals above 5 , which we call \mathfrak{p}_{1} and \mathfrak{p}_{2}.
? pr1.f
$\% 22=1$
? pr1.e
$\div 23=2$
\mathfrak{p}_{1} has residue degree 1 and ramification index 2.

Decomposition of primes

```
? pr1.gen
%24 = [5, [-1, 0, 1, 0]~]
```

\mathfrak{p}_{1} is generated by 5 and $-1+0 \cdot w+\alpha+0 \cdot w \alpha$, i.e. we have $\mathfrak{p}_{1}=5 \mathbb{Z}_{K}+(\alpha-1) \mathbb{Z}_{K}$.
? pr2.f
$\% 25=1$
? pr2.e
$\div 26=2$
\mathfrak{p}_{2} also has residue degree 1 and ramification index 2.

Ideals

An arbitrary ideal is represented by its Hermite normal form (HNF) with respect to the integral basis. We can obtain this form with idealhnf.

```
? idealhnf(K,pr1)
%27 =
[5 3 4 3 3]
[0 1 0 0
[0 0 1 0]
[0 0 0 1]
```

Interpretation: \mathfrak{p}_{1} can be described as

$$
\mathfrak{p}_{1}=\mathbb{Z} \cdot 5+\mathbb{Z} \cdot(w+3)+\mathbb{Z} \cdot(\alpha+4)+\mathbb{Z} \cdot(w \alpha+3) .
$$

Ideals

We obtain the HNF of the ideal $\mathfrak{a}=(23+10 w-5 \alpha+w \alpha)$.
? idealnorm(K, a)
$\% 29=67600$
We have $N(\mathfrak{a})=67600$.

Ideals: operations

We perform operations on ideals with the functions idealxxxx, which accept HNF forms, prime ideal structures (output of idealprimedec), and elements.

```
? idealpow(K,pr2,3)
%30 =
[25 15 21 7]
[ [ 0 5 2 4]
[ 0
[ 0 0 0 1]
? idealnorm(K,idealadd(K,a,pr2))
%31 = 1
```

We have $\mathfrak{a}+\mathfrak{p}_{2}=\mathbb{Z}_{K}$: the ideals \mathfrak{a} and \mathfrak{p}_{2} are coprime.

Ideals: factorisation

We factor an ideal into a product of prime ideals
with idealfactor. The result is a two-column matrix: the first column contains the prime ideals, and the second one contains the exponents.

```
? fa \(=\) idealfactor \((K, a)\);
? \#fa[,1]
\(\div 33=3\)
```

The ideal \mathfrak{a} is divisible by three prime ideals.

```
? [fa[1,1].p, fa[1,1].f, fa[1,1].e, fa[1,2]]
%34 = [2, 2, 1, 2]
```

The first one is a prime ideal above 2, is unramified with residue degree 2, and appears with exponent 2.

Ideals: factorisation

```
? [fa[2,1].p, fa[2,1].f, fa[2,1].e, fa[2,2]]
\(\% 35=[5,1,2,2]\)
? fa[2,1]==pr1
\(\div 36=1\)
```

The second one is \mathfrak{p}_{1}, and it appears with exponent 2.
? [fa[3,1].p, fa[3,1].f, fa[3,1].e, fa[3,2]]
$\% 37=[13,2,1,1]$
The third one is a prime ideal above 13, is unramified with residue degree 2, and appears with exponent 2.

Chinese remainders

We can use the Chinese remainder theorem with
idealchinese:
? $\mathrm{b}=$ idealchinese (K, [pr1,2;pr2,1], [1,-1]);
We are looking for an element $b \in \mathbb{Z}_{K}$ such that $b=1 \bmod \mathfrak{p}_{1}^{2}$ and $b=-1 \bmod \mathfrak{p}_{2}$.
? nfeltval (K,b-1,pr1)
$\div 39=2$
? nfeltval(K,b+1,pr2)
$\% 40=1$
We check the output by computing valuations: $v_{\mathfrak{p}_{1}}(b-1)=2$ and $v_{\mathfrak{p}_{2}}(b+1)=1$.

Chinese remainders with signs

We can compute the sign of real embeddings of b :
? nfeltsign (K, b)
$\% 41=[-1,1]$
We have $\sigma_{1}(b)<0$ and $\sigma_{2}(b)>0$, where σ_{1}, σ_{2} are the two real embeddings of K.
We can ask idealchinese to compute an element that, in addition to the congruences, is totally positive:
? c = idealchinese(K, [$\mathrm{pr} 1,2 ; \mathrm{pr} 2,1],[1,1]],[1,-1])$;
? nfeltsign (K, c)
$\% 43=[1,1]$
Indeed we have $\sigma_{1}(c)>0$ and $\sigma_{2}(c)>0$.

Dedekind zeta function

We can evaluated the Dedekind zeta function with lfun.
? $L=$ nfinit ($x^{\wedge} 3-3 * x-1$);
? L.sign
$\div 45=[3,0]$
L is totally real.
? lfun(L, 2)
$\% 46=1.1722471496117109428809260096356285918$
? $q=$ bestappr(lfun $(L, 2) / P i \wedge 6)$
$\% 47=8 / 6561$
? lfun (L, 2) /(Pi^6*q)
$\% 48=1.0000000000000000000000000000000000000$
$\zeta_{L}(2)$ is a rational multiple of π^{6} (Siegel's theorem).

bnfinit

To perform computations of class groups and unit groups in a number field, we need a more expensive precomputation than the one from nfinit. We can perform this extra precomputation with bnfinit ($b=$ Buchmann).

```
? K2 = bnfinit(K);
? K2.nf == K
%50 = 1
? K2.no
%51 = 1
```

K has a trivial group (no = class number).
? K2.reg
$\% 52=1.7763300299706546701307646106399605586$
We obtain an approximation of the regulator of K.

bnfcertify

The output of bnfisprincipal is a priori only correct under GRH (Generalised Riemann Hypothesis). We can unconditionally certify it with bnfcertify.
? bnfcertify(K2)
$\div 52=1$
The computation is now certified! If bnfcertify outputs 0 , it means we have found a counter-example to GRH (or more likely a bug in PARI/GP)!

bnfinit: units

```
? lift(K2.tu)
%54 = [2, -1]
? K2.tu[1]==nfrootsof1(K)[1]
%55=1
```

K has two roots of unity (tu = torsion units), ± 1. We can also compute them with nfrootsof1.
? lift (K2.fu)
$\div 56=\left[1 / 2 * x^{\wedge} 2-1 / 2 * x-1 / 2,1 / 2 * x^{\wedge} 3-3 / 2 * x^{\wedge} 2+3 / 2 * x-1\right]$
The free part of \mathbb{Z}_{K}^{\times}is generated by $\frac{\alpha^{2}-\alpha-1}{2}$ and $\frac{\alpha^{3}-3 \alpha^{2}+3 \alpha-2}{2}$ (fu = fundamental units).

bnfinit: analytic class number formula

```
? lfun(K,1+x+O (x^2))
%57 = 0.502284726052801113866176365679645651**^-1
    + O(x^0)
? res = polcoeff(lfun(K,1+x+O(x^2)),-1)
%58=0.50228472605280111386617636567964565169
```

We compute an approximation of the residue of $\zeta_{K}(s)$ at $s=1$.

```
? {2^K2.r1*(2*Pi)^K2.r2*K2.no*K2.reg/
    (K2.tu[1]*sqrt(abs(K2.disc))*res)}
%59 = 0.99999999999999999999999999999999999999
```

We numerically check the analytic class number formula.

Class group

$$
\begin{aligned}
& ? L=\text { bnfinit }\left(x^{\wedge} 3-x^{\wedge} 2-54 * x+169\right) ; \\
& ? L \cdot C y c \\
& \div 61=[2,2] \\
& \mathcal{C} \ell(L) \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \\
& ? L . \operatorname{gen} \\
& \div 62=[[5,3,2 ; 0,1,0 ; 0,0,1],[5,4,3 ; 0,1,0 ; 0,0,1]]
\end{aligned}
$$

Generators of the class group, given as ideals in HNF form.

Testing whether an ideal is principal

We can test whether an ideal is principal with

```
bnfisprincipal:
? pr = idealprimedec(L,13) [1]
? [dl,g] = bnfisprincipal(L,pr);
? dl
%65 = [1, 0] ~
```

bnfisprincipal expresses the class of the ideal in terms of the generators of the class group (discrete logarithm). Here, the ideal pr is in the same class as the first generator. In particular, the ideal is not principal, but its square is.

Testing whether an ideal is principal

```
? g
%66=[0, 1/5, 2/5]~
? {idealhnf(L,pr) == idealmul(L,g,
    idealfactorback(L,L.gen,dl))}
%67=1
```

The second component of the output of bnfisprincipal is an element $g \in L$ that generates the remaining principal ideal. (idealfactorback $=$ inverse of idealfactor $=\prod_{i}$ L. gen [i] ${ }^{\text {dl }[i]}$)

Computing a generator of principal ideal

We know that pr is a 2-torsion element; let's compute a generator of its square:
? [dl2, g2] = bnfisprincipal(L, idealpow(L, pr, 2));
? dl2
$\% 69=[0,0] \sim$
The ideal is indeed principal (trivial in the class group).
? 92
$\div 70=[1,-1,-1] \sim$
? idealhnf(L, g2) == idealpow(L, pr, 2)
$\% 71=1$
g 2 is a generator of pr^{2}.

Application: bnfisintnorm

We can use these functionalities to find solutions in \mathbb{Z}_{K} of norm equations with bnfisintnorm:
? bnfisintnorm(L, 5)
$\% 72=[]$
There is no element of norm 5 in \mathbb{Z}_{L}.
? bnfisintnorm(L, 65)
$\% 73=\left[x^{\wedge} 2+4 * x-36,-x^{\wedge} 2-3 * x+39,-x+2\right]$
There are three elements of \mathbb{Z}_{L} of norm 65 , up to multiplication by elements of \mathbb{Z}_{L}^{\times}with positive norm.

Expressing a unit in terms of the generators

```
? u = [0,2,1]~;
? nfeltnorm(L,u)
%75 = 1
```

We have found a unit $u \in \mathbb{Z}_{L}^{\times}$.
? bnfisunit (L, u)
$\div 76=[1,2, \operatorname{Mod}(0,2)] \sim$
? lift (L.fu)
$\% 77=\left[x^{\wedge} 2+4 * x-34, x-4\right]$
? lift (L.tu)
$\% 78=[2,-1]$
We express it in terms of the generators with bnfisunit:
$u=\left(\alpha^{2}+4 \alpha-34\right) \cdot(\alpha-4)^{2} \cdot(-1)^{0}$.

Large fundamental units

By default, bnfinit only computes fundamental units if they are not too large.

```
? M = bnfinit(x^2-3019);
? M.fu
    *** at top-level: M.fu
    *** ^_-
    *** _.fu: missing units in bnf.
```

We can force the computation of fundamental units with bnfinit(, 1).

```
? M = bnfinit(x^2-3019,1);
```

? lift (M.fu)
$\% 81=$ [213895188053752098546071055592725565706690
$871236169789 * x-117525625416599410184425264152$
$37539460392094825860314330]$

Questions?

Have fun with GP!

