Explicit computation of Satake parameters of automorphic representations

Thomas MEGARBANE

January, 15th 2019

Thomas MEGARBANE

Computation of Satake parameters

January, 15th 2019 1/18

2 Lattices and automorphic forms for SO_n

A ►

Automorphic representations

- **Notations:** *G* semi-simple Lie group, \widehat{G} Langlands dual, $\widehat{\mathfrak{g}}$ complex Lie algebra of \widehat{G} .
- Denote by \widehat{G}_{ss} and $\widehat{\mathfrak{g}}_{ss}$ the sets of semi-simple class of elements in \widehat{G} and $\widehat{\mathfrak{g}}$.
- An *automorphic representation* π is :
 - a unitary representation of $G(\mathbb{R})$...
 - ... with a structure related to the Hecke algebra H(G).

An automorphic representation π is determined by:

- its infinitesimal character: $c_{\infty}(\pi) \in \widehat{\mathfrak{g}}_{ss}$ (following Harish-Chandra);
- for every (unramified) prime p, its Satake parameter in p: $c_p(\pi) \in \widehat{G}_{ss}$ (following Satake and Langlands).

Automorphic representation as a generalisation of the classical modular forms for $\mathrm{SL}_2(\mathbb{Z})$:

- infinitesimal character is an analogous to the weight;
- Satake parameter in p is analogous to the p^{th} term in the q-expansion.

Examples from modular forms

Let $f = \sum a_n q^n$ be a modular eigenform of weight *k*. The associated automorphic representation π for PGL₂ is such that:

$$c_{\infty}(\pi) = \begin{pmatrix} \frac{k-1}{2} & 0\\ 0 & -\frac{k-1}{2} \end{pmatrix}$$
 and $\chi(c_{\rho}(\pi))(X) = X^2 - \rho^{-\frac{k-1}{2}}a_{\rho}X + 1$

< 回 > < 三 > < 三 >

Idea of the theory: given an automorphic representation π , there is a set of automorphic representations for the linear groups, whose Satake parameters give us the Satake parameters of π . This is part of Langlands functoriality.

Consequence: the Satake parameters of automorphic representations **for the linear groups** appear to be the **key elements** to understanding the automorphic representations for the classical groups.

3 + 4 = +

Image: A mathematical states in the second states in the second

Endoscopic representations

Idea: does a representation π for G comes from representation for smaller groups? Arthur's theory associates to π a collection π_1, \ldots, π_r of representations for $PGL_{n_1}, \ldots, PGL_{n_r}$. The representation π is said to be **endoscopic** if one of the n_i is smaller than the dimension of \widehat{G} . **Remarks:**

- with the previous notations, if r > 1, then π is endoscopic;
- if π is a non-endosopic representations of SO_n, and π_1 the unique representation associated tu π by Arthur, then: $n_1 = n$ if n is even, and $n_1 = n 1$ otherwise.

Some euclidean lattices

V dimension n euclidean space

$$\mathcal{L}_n := \{ L \subset V, \ L \text{ even lattice, } \det(L) = 1 \ ou \ 2 \}$$

Key point: the quadratic form induced from V is non-degenerate on L

$$X_n := O(V) \setminus \mathcal{L}_n$$

Proposition

We have $\mathcal{L}_n \neq \emptyset \Leftrightarrow n \equiv 0, \pm 1 \mod 8$. More precisely, for such an n, if $L \in \mathcal{L}_n$:

 $det(L) = 1 \Leftrightarrow n \equiv 0 \mod 8$ and $det(L) = 2 \Leftrightarrow n \equiv \pm 1 \mod 8$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Some euclidean lattices

Definition

Given *A* an abelian group, two lattices $L_1, L_2 \in \mathcal{L}_n$ are said to be *A*-neighbours if they satisfy one of the following (equivalent) properties:

•
$$L_1/(L_1 \cap L_2) \simeq A$$
;
• $L_2/(L_1 \cap L_2) \simeq A$.

Definition

Given A as before, let T_A defined as:

$$T_A(L) = \sum_{L' A-neighbour de L} L'.$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

d-neighbours

Particular case: when $A = \mathbb{Z}/d\mathbb{Z}$, we refer to "*d*-neighbours".

Proposition (Parametrisation of *d*-neighbours)

Let $d \in \mathbb{N}^*$. The d-eighbours of a lattice $L \in \mathcal{L}_n$ are in a one-to-one correspondance with the isotropic simple $\mathbb{Z}/d\mathbb{Z}$ -modules of L/dL of rank 1. If X is such a module, generated by $x \in L$ satisfying $x \cdot x \equiv 0 \mod 2d^2$, the d-neighbour of L corresponding to X is:

$$L' = X^{\perp} + \mathbb{Z} \frac{x}{d}$$

where $X^{\perp} = \{y \in L \mid x \cdot y \equiv 0 \mod d\}.$

Automorphic forms

We are interested in **cuspidal automorphic representations**. In general: among the fonctions on $G(\mathbb{Q}) \setminus G(\mathbb{A})$, invariant by right translation of $G(\widehat{Z})$:

 $\{\text{cuspidal}\} \subset \{\text{discrete}\} \subset \{\text{square integrable}\}.$

When $G = SO_n$: everything that is automorphic is cuspidal. And we have the simple following definition:

Definition

Let (W, ρ) a finite dimension complex representation of $SO_n(\mathbb{R}) \simeq SO(V)$. The space of (cuspidal) automorphic representations for SO_n with weight *W* is the finite dimensional vector space:

$$\mathcal{M}_{W}(\mathrm{SO}_{n}) := \{ f : \mathcal{L}_{n} \to W \mid \forall \gamma \in \mathrm{SO}_{n}(\mathbb{R}), f(\gamma \cdot L) = \rho(\gamma) \cdot f(L) \}.$$

4)90

Hecke operators on automorphic forms

Definition

The Hecke operators T_A , acting on the elements of \mathcal{L}_n , have a right-action on the space of automorphic forms:

$$T_{\mathcal{A}}(f)(L) = \sum_{L' \ \mathcal{A}-voisin \ de \ L} f(L').$$

Theorem

Given n and W, there is an basis of $\mathcal{M}_W(SO_n)$ of eigenvectors for all the operators T_A .

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Automorphic forms and automorphic representations

Given $f \in \mathcal{M}_W(SO_n)$, eigenform for all the operators T_A , there is a cuspidal automorphic representation π for SO_n , unramified at every place, associated to f. Moreover, π is related to f as follows:

- $c_{\infty}(\pi)$ only depends on W;
- for every prime *p*, *c*_{*p*}(*π*) is determined by the eigenvalues of *f* for the T_A, where A is a group of order a power of *p*.

Theorem (Arthur, Taïbi)

The Langlands functoriality is satisfied when $G = SO_n$. Moreover, the representations associated through Arthur's theory are cuspidal, algebraic, regular, autodual, unramified.

Some automorphic representations for the linear groups

The automorphic representations for PGL_n that we consider are:

- cuspidal, algebraic, regular;
- autodual;
- unramified.
- "Well" known for $n \le 5$:
 - trivial for n = 1;
 - classical modular forms for SL_2 for n = 2, 3;
 - Siegel modular forms for Sp_4 for n = 4, 5.

Example: a representation of SO_7 comes from a representation of PGL_6 if, and only if, it is not endoscopic.

A (10) A (10)

Trace of Hecke operators

Theorem (M.)

We have an explicit formula for the quantity $Trace(T_A | M_W(SO_n))$, for any choice of A, W and n.

The complexity of this formula comes from:

- the size of X_n ;
- the number of orbits of A-neighbours of a lattice L under the action of SO(L);
- the size of the groups SO(L), for $L \in \mathcal{L}_n$.

More precisely: fixing A, for every class $\overline{L} \in X_n$, we have a collection $\sigma_1, \ldots, \sigma_r \in SO_n(\mathbb{Q})$, and we want to compute the multiset

$$\{\{\chi(\gamma \cdot \sigma_i) \mid \gamma \in \mathrm{SO}(L), i \in \{1, \ldots, r\}\}\}.$$

∃ ► < ∃ ►</p>

Explicit computations for only for n = 7, 8, 9 and A small.

Theorem (M.)

We know explicitly the quantities $Trace(T_A|\mathcal{M}_W(SO_7))$ for any W, and A of one of the following forms:

- $(\mathbb{Z}/2\mathbb{Z})^i$, i = 1, 2, 3;
- Z/4Z;
- $\mathbb{Z}/q\mathbb{Z}$, $q \leq 67$ power of a prime.

< ロ > < 同 > < 回 > < 回 >

If dim $(\mathcal{M}_W(SO_n)) = 1$, then the trace computed is the eigenvalue we want.

Example for n = 7: when *W* is the representation of SO₇ of highest weight (9, 5, 2) (following Chenevier–Renard), if π is associated to the unique element of $\mathcal{M}_W(SO_n)$, then π is non-endoscopic and:

Theorem (M.)

The quantities $\tau(p) = p^{\frac{23}{2}} \cdot \operatorname{Trace}(c_p(\pi) \mid V_{St})$ for $p \leq 67$ are given by:

p	2	3	5	7	
$ au(\mathbf{p})$	0	-304668	874314	452588136	

(B) (A) (B) (A)

The good situation

If there is only one non-endoscopic eigenform in $\mathcal{M}_W(SO_n)$, we can substract the "endoscopic contribution" to the trace computed to get the eigenvalue.

Example for n = 7: when W is the representation of SO₇ of highest weight (9, 6, 3), dim ($\mathcal{M}_W(SO_n)$) = 2 (following Chenevier–Renard), and if π_1, π_2 are the associated representation (with π_1 non endoscopic), then the Satake parameters for π_2 can be expressed by the unique parabolic modular form of weight 16 for SL₂, and the unique Siegel modular form of weight Sym⁶ $\mathbb{C}^2 \otimes det^{10}$ of genus 2 for Sp₄.

Theorem (M.)

The quantities $\tau(p) = p^{\frac{23}{2}} \cdot \operatorname{Trace}(c_p(\pi_1) \mid V_{St})$ for $p \leq 67$ are given by:

р	2	3	5	7	
$ au(\mathbf{p})$	-720	425412	-124558326	-3040958424	