Explicit small image theorem for residual modular representations

Baptiste Peaucelle

Université Clermont Auvergne Laboratoire de Mathématiques Blaise Pascal

January 22th, 2020

Notations

$$G_{\mathbb{Q}}$$

$$f = \sum_{n=1}^{\infty} a_n(f) q^n \in \mathsf{S}_k^{\mathrm{new}}(N, \varepsilon)$$

$$K_f$$

$$\lambda$$

$$\mathbb{F}_{\lambda}$$

Absolute Galois group of \mathbb{Q} parabolic, normalized, new eigenform of weight k, level N and character ε coefficient field of f

place of K_f above a prime number ℓ

residual field of λ

Notations

$G_{\mathbb{Q}}$ $f = \sum_{n=1}^{\infty} a_n(f) q^n \in S_k^{\mathrm{new}}(N, \varepsilon)$	Absolute Galois group of \mathbb{Q} parabolic, normalized, new eigenform of weight k , level N and character ε
K _f	coefficient field of f
λ	place of K_f above a prime number ℓ
\mathbb{F}_{λ}	residual field of λ

Deligne attached in 1972 to f and $\lambda,$ a semi-simple residual Galois representation

$$\overline{\rho}_{f,\lambda}: G_{\mathbb{Q}} \to \mathrm{GL}_2(\mathbb{F}_{\lambda}),$$

unramified outside $N\ell$ and such that

$$\operatorname{Tr}(\overline{\rho}_{f,\lambda}(\operatorname{Frob}_p)) = a_p(f), \text{ for } p \nmid N\ell$$
$$\det(\overline{\rho}_{f,\lambda}) = \overline{\chi}_{\ell}^{k-1}\varepsilon$$

Theorem (Ribet, 1985)

- For all but finitely many places λ , $\overline{\rho}_{f,\lambda}$ is irreducible;
- If f is not CM, for all but finitely many places λ , ℓ divides $|\overline{\rho}_{f,\lambda}(G_{\mathbb{Q}})|$.

This finite set of places is called exceptional places.

Theorem (Ribet, 1985)

- For all but finitely many places λ , $\overline{\rho}_{f,\lambda}$ is irreducible;
- If f is not CM, for all but finitely many places λ , ℓ divides $|\overline{\rho}_{f,\lambda}(G_{\mathbb{Q}})|$.

This finite set of places is called exceptional places.

 $\Delta \in S_{12}(1)$: $\overline{\rho}_{\Delta,\ell}$ is reducible for $\ell = 2, 3, 5, 7, 691$ and irreducible but of order prime to ℓ for $\ell = 23$.

• Can we find a computable bound for the "exceptional" places?

Gan we find a computable bound for the "exceptional" places?Can we explicitly compute the "exceptional" places?

If ℓ does not divide $|\overline{\rho}_{f,\lambda}(G_{\mathbb{Q}})|$, three cases:

If ℓ does not divide $|\overline{\rho}_{f,\lambda}(G_{\mathbb{Q}})|$, three cases:

• The representation is reducible;

If ℓ does not divide $|\overline{\rho}_{f,\lambda}(\mathcal{G}_{\mathbb{Q}})|$, three cases:

- The representation is reducible;
- The image of $\overline{\rho}_{f,\lambda}(\mathcal{G}_{\mathbb{Q}})$ in $\mathrm{PGL}_2(\mathbb{F}_{\lambda})$ is dihedral;

If ℓ does not divide $|\overline{\rho}_{f,\lambda}(\mathcal{G}_{\mathbb{Q}})|$, three cases:

- The representation is reducible;
- The image of $\overline{\rho}_{f,\lambda}(\mathcal{G}_{\mathbb{Q}})$ in $\mathrm{PGL}_2(\mathbb{F}_{\lambda})$ is dihedral;
- The image of $\overline{\rho}_{f,\lambda}(\mathcal{G}_{\mathbb{Q}})$ in $\mathrm{PGL}_2(\mathbb{F}_{\lambda})$ is \mathfrak{A}_4 , \mathfrak{S}_4 or \mathfrak{A}_5 .

If ℓ does not divide $|\overline{\rho}_{f,\lambda}(\mathcal{G}_{\mathbb{Q}})|$, three cases:

- The representation is reducible;
- The image of $\overline{\rho}_{f,\lambda}(\mathcal{G}_{\mathbb{Q}})$ in $\mathrm{PGL}_2(\mathbb{F}_{\lambda})$ is dihedral;
- The image of $\overline{\rho}_{f,\lambda}(\mathcal{G}_{\mathbb{Q}})$ in $\mathrm{PGL}_2(\mathbb{F}_{\lambda})$ is \mathfrak{A}_4 , \mathfrak{S}_4 or \mathfrak{A}_5 .

Theorem (P., 2019)

• If $\overline{\rho}_{f,\lambda}$ has projective image isomorphic to \mathfrak{A}_4 , \mathfrak{S}_4 or \mathfrak{A}_5 , the $\ell \mid N$ or $\ell \leq 4k - 3$.

If ℓ does not divide $|\overline{\rho}_{f,\lambda}(\mathcal{G}_{\mathbb{Q}})|$, three cases:

- The representation is reducible;
- The image of $\overline{\rho}_{f,\lambda}(\mathcal{G}_{\mathbb{Q}})$ in $\mathrm{PGL}_2(\mathbb{F}_{\lambda})$ is dihedral;
- The image of $\overline{\rho}_{f,\lambda}(\mathcal{G}_{\mathbb{Q}})$ in $\mathrm{PGL}_2(\mathbb{F}_{\lambda})$ is \mathfrak{A}_4 , \mathfrak{S}_4 or \mathfrak{A}_5 .

Theorem (P., 2019)

- If $\overline{\rho}_{f,\lambda}$ has projective image isomorphic to \mathfrak{A}_4 , \mathfrak{S}_4 or \mathfrak{A}_5 , the $\ell \mid N$ or $\ell \leq 4k 3$.
- If $\overline{\rho}_{f,\lambda}$ has dihedral projective image, then $\ell \leq (2(8kN^2(2\log\log(N) + 2.4))^{\frac{k-1}{2}})^{[K_f:\mathbb{Q}]};$

Theorem (P., 2019)

If $\overline{\rho}_{f,\lambda}$ is reducible, then one of the following applies:

• $\ell \mid N\phi(N)$, or $\ell \leq k+1$;

Theorem (P., 2019)

If $\overline{\rho}_{f,\lambda}$ is reducible, then one of the following applies:

•
$$\ell \mid N\phi(N)$$
, or $\ell \leq k+1$;

O There exists two primitive Dirichlet characters ε₁, ε₂ of conductor c₁, c₂ such that ε₁ε₂ = ε, c₁c₂ | N and ℓ divides one of the following:

• The norm of
$$p^k - \varepsilon_1(p)\overline{\varepsilon_2}(p)$$
 for $p \mid N$;

• The norm of
$$p^k - (\varepsilon_1 \overline{\varepsilon_2})_0(p)$$
 for $p \mid N_i$

• The numerator of the norm of $\frac{\mathcal{B}_{k,(\varepsilon_1\overline{\varepsilon_2})_0}}{2k}$,

where $\sum_{k=0}^{\infty} \frac{B_{k,\chi}}{k!} t^k = \sum_{n=1}^{c-1} \chi(n) \frac{te^{nt}}{e^{ct}-1}$, and χ_0 is the primitive character associated to χ .

$$\overline{\rho}_{f,\lambda}^{\rm ss} \cong \overline{\chi}_{\ell}^{a} \nu_1 \oplus \overline{\chi}_{\ell}^{b} \nu_2,$$

with $\nu_i : (\mathbb{Z}/\mathfrak{c}_i\mathbb{Z})^{\times} \to \overline{\mathbb{F}_{\ell}}^{\times}$ primitive, $0 \leq a \leq b \leq \ell - 2$.

7/16

$$\overline{\rho}_{f,\lambda}^{\mathrm{ss}} \cong \overline{\chi}_{\ell}^{a} \nu_{1} \oplus \overline{\chi}_{\ell}^{b} \nu_{2},$$

with $\nu_i : (\mathbb{Z}/\mathfrak{c}_i\mathbb{Z})^{\times} \to \overline{\mathbb{F}_{\ell}}^{\times}$ primitive, $0 \leq a \leq b \leq \ell - 2$.

$$\begin{split} \overline{\chi}_{\ell}^{k-1} \varepsilon &\equiv \overline{\chi}_{\ell}^{a+b} \nu_1 \nu_2 \pmod{\lambda}; \\ a_p(f) &\equiv p^a \nu_1(p) + p^b \nu_2(p) \pmod{\lambda} \text{ for } p \nmid N\ell. \end{split}$$

$$\overline{\rho}_{f,\lambda}^{\mathrm{ss}} \cong \overline{\chi}_{\ell}^{a} \nu_{1} \oplus \overline{\chi}_{\ell}^{b} \nu_{2},$$

with $\nu_i : (\mathbb{Z}/\mathfrak{c}_i\mathbb{Z})^{\times} \to \overline{\mathbb{F}_{\ell}}^{\times}$ primitive, $0 \leq a \leq b \leq \ell - 2$.

 $\begin{aligned} \overline{\chi}_{\ell}^{k-1} \varepsilon &\equiv \overline{\chi}_{\ell}^{a+b} \nu_1 \nu_2 \pmod{\lambda}; \\ a_p(f) &\equiv p^a \nu_1(p) + p^b \nu_2(p) \pmod{\lambda} \text{ for } p \nmid N\ell. \end{aligned}$

Moreover $\mathfrak{c}_1\mathfrak{c}_2 \mid N$.

$$\overline{\rho}_{f,\lambda}^{\mathrm{ss}} \cong \overline{\chi}_{\ell}^{a} \nu_{1} \oplus \overline{\chi}_{\ell}^{b} \nu_{2},$$

with $\nu_i : (\mathbb{Z}/\mathfrak{c}_i\mathbb{Z})^{\times} \to \overline{\mathbb{F}_{\ell}}^{\times}$ primitive, $0 \leq a \leq b \leq \ell - 2$.

$$\begin{split} \overline{\chi}_{\ell}^{k-1} \varepsilon &\equiv \overline{\chi}_{\ell}^{a+b} \nu_1 \nu_2 \pmod{\lambda}; \\ a_p(f) &\equiv p^a \nu_1(p) + p^b \nu_2(p) \pmod{\lambda} \text{ for } p \nmid N\ell. \end{split}$$

Moreover $\mathfrak{c}_1\mathfrak{c}_2 \mid N$.

Assuming $\ell \nmid N\phi(N)$ and $\ell > k + 1$, we get $a = 0, b \equiv k - 1 \pmod{\ell - 1}$, $\varepsilon_1 \varepsilon_2 = \varepsilon$ (with ε_i the multiplicative lift of ν_i).

For $k \ge 2$, ε_i primitive Dirichlet character mod \mathfrak{c}_i .

$$E = C + \sum_{n=1}^{\infty} \left(\sum_{d|n} d^{k-1} \varepsilon_1\left(\frac{n}{d}\right) \varepsilon_2(d) \right) q^n \in \mathsf{M}_k(\mathfrak{c}_1 \mathfrak{c}_2, \varepsilon_1 \varepsilon_2),$$

\$\dots a_p(E) = \varepsilon_1(p) + p^{k-1} \varepsilon_2(p);

 \sim

For $k \ge 2$, ε_i primitive Dirichlet character mod \mathfrak{c}_i .

$$\begin{split} E &= C + \sum_{n=1}^{\infty} \left(\sum_{d|n} d^{k-1} \varepsilon_1\left(\frac{n}{d}\right) \varepsilon_2(d) \right) q^n \in \mathsf{M}_k(\mathfrak{c}_1 \mathfrak{c}_2, \varepsilon_1 \varepsilon_2), \\ a_p(E) &= \varepsilon_1(p) + p^{k-1} \varepsilon_2(p); \end{split}$$

We get for all $p \nmid N\ell$, $a_p(f) \equiv a_p(E) \pmod{\lambda}$.

Proposition

Let
$$\pi_M(f) := \sum_{\substack{(n,M)=1 \ p \mid M, p \nmid N}} a_n(f)q^n$$
. It's a modular form of weight k and level
 $N \cdot \prod_{p \mid M} p \prod_{\substack{p \mid M, p \nmid N}} p$.
In particular $\pi_{N\ell}(f) \in \begin{cases} \mathsf{M}_k(N\ell \operatorname{rad}(N)) & \text{if } \ell \mid N \\ \mathsf{M}_k(N\ell^2 \operatorname{rad}(N)) & \text{if } \ell \nmid N \end{cases}$.

Proposition

Let
$$\pi_M(f) := \sum_{\substack{(n,M)=1 \ p \mid M, p \nmid N}} a_n(f)q^n$$
. It's a modular form of weight k and level
 $N \cdot \prod_{p \mid M} p \prod_{\substack{|M,p| \nmid N}} p$.
In particular $\pi_{N\ell}(f) \in \begin{cases} M_k(N\ell \operatorname{rad}(N)) & \text{if } \ell \mid N \\ M_k(N\ell^2 \operatorname{rad}(N)) & \text{if } \ell \nmid N \end{cases}$.

Finally $\pi_{N\ell}(f) \equiv \pi_{N\ell}(E) \pmod{\lambda}$ and $\pi_{N\ell}(E)$ must vanish at all cusps, at least mod λ .

Proposition

Let
$$\pi_M(f) := \sum_{\substack{(n,M)=1\\p|M}} a_n(f)q^n$$
. It's a modular form of weight k and level
 $N \cdot \prod_{p|M} p \prod_{\substack{|M,p|N\\p|M,p|N}} p$.
In particular $\pi_{N\ell}(f) \in \begin{cases} M_k(N\ell \operatorname{rad}(N)) & \text{if } \ell \mid N\\ M_k(N\ell^2 \operatorname{rad}(N)) & \text{if } \ell \nmid N \end{cases}$.

Finally $\pi_{N\ell}(f) \equiv \pi_{N\ell}(E) \pmod{\lambda}$ and $\pi_{N\ell}(E)$ must vanish at all cusps, at least mod λ .

Explicit computations of the constant term of $\pi_{N\ell}(E)$ at the cusps give the result.

Compute all the factorisations ε = ε₁ε₂ with ε_i primitive mod c_i and c₁c₂ | N;

- Compute all the factorisations ε = ε₁ε₂ with ε_i primitive mod c_i and c₁c₂ | N;
- So For all $(\varepsilon_1, \varepsilon_2)$, compute the norm of $p^k \varepsilon_1(p)\overline{\varepsilon_2}(p)$ and $p^k (\varepsilon_1\overline{\varepsilon_2})_0(p)$ for $p \mid N$, and of $\frac{B_{k,(\varepsilon_1\overline{\varepsilon_2})_0}}{2k}$;

- Compute all the factorisations ε = ε₁ε₂ with ε_i primitive mod c_i and c₁c₂ | N;
- Solution For all $(\varepsilon_1, \varepsilon_2)$, compute the norm of $p^k \varepsilon_1(p)\overline{\varepsilon_2}(p)$ and $p^k (\varepsilon_1\overline{\varepsilon_2})_0(p)$ for $p \mid N$, and of $\frac{B_{k,(\varepsilon_1\overline{\varepsilon_2})_0}}{2k}$;
- Factor those norms in prime factors;

- Compute all the factorisations ε = ε₁ε₂ with ε_i primitive mod c_i and c₁c₂ | N;
- Solution For all $(\varepsilon_1, \varepsilon_2)$, compute the norm of $p^k \varepsilon_1(p)\overline{\varepsilon_2}(p)$ and $p^k (\varepsilon_1\overline{\varepsilon_2})_0(p)$ for $p \mid N$, and of $\frac{B_{k,(\varepsilon_1\overline{\varepsilon_2})_0}}{2k}$;
- Sector those norms in prime factors;
- The possible reducible primes are these factors together with the primes $\ell \leq k + 1$ or $| N\phi(N)$.

Reducible case:

• factorization of the Bernoulli numbers.

Reducible case:

• factorization of the Bernoulli numbers.

$$N\left(\frac{B_{13,\chi}}{26}\right) = \frac{2 \cdot 113 \cdot 193 \cdot 134558553601 \cdot 22067375903528446377409}{5243623697667301362305248753 \cdot 75053542187671653809158254882983463300937121}$$

with $\chi : (\mathbb{Z}/17\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ sending 3 to $e^{\frac{2i\pi}{16}}$.

Reducible case:

• factorization of the Bernoulli numbers.

 $N\left(\frac{B_{13,\chi}}{26}\right) = \frac{\frac{2 \cdot 113 \cdot 193 \cdot 134558553601 \cdot 22067375903528446377409 \cdot}{5243623697667301362305248753 \cdot 75053542187671653809158254882983463300937121}{17}$ with $\chi : (\mathbb{Z}/17\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ sending 3 to $e^{\frac{2i\pi}{16}}$. Dihedral case:

• Astronomical bound.

$$\overline{\rho}_{f,\lambda}^{\mathrm{ss}} \cong \overline{\chi}_{\ell}^{\mathsf{a}} \nu_1 \oplus \overline{\chi}_{\ell}^{\mathsf{b}} \nu_2$$

 $u_i : (\mathbb{Z}/\mathfrak{c}_i\mathbb{Z})^{\times} \to \overline{\mathbb{F}_{\ell}}^{\times} \text{ primitive, } \mathfrak{c}_1\mathfrak{c}_2|N \text{ and } 0 \leqslant a \leqslant b \leqslant \ell - 2.$

$$\overline{\rho}_{f,\lambda}^{\mathrm{ss}} \cong \overline{\chi}_{\ell}^{\mathsf{a}} \nu_1 \oplus \overline{\chi}_{\ell}^{\mathsf{b}} \nu_2$$

 $\nu_i : (\mathbb{Z}/\mathfrak{c}_i\mathbb{Z})^{\times} \to \overline{\mathbb{F}_{\ell}}^{\times}$ primitive, $\mathfrak{c}_1\mathfrak{c}_2|N$ and $0 \leq a \leq b \leq \ell-2$.

So for $p \nmid N\ell$, $a_p(f) \equiv p^a a_p(E) \pmod{\lambda}$ for a well chosen Eisenstein series.

$$\overline{\rho}_{f,\lambda}^{\mathrm{ss}} \cong \overline{\chi}_{\ell}^{\mathsf{a}} \nu_1 \oplus \overline{\chi}_{\ell}^{\mathsf{b}} \nu_2$$

 $\nu_i: (\mathbb{Z}/\mathfrak{c}_i\mathbb{Z})^{\times} \to \overline{\mathbb{F}_{\ell}}^{\times} \text{ primitive, } \mathfrak{c}_1\mathfrak{c}_2|N \text{ and } 0 \leqslant a \leqslant b \leqslant \ell - 2.$

So for $p \nmid N\ell$, $a_p(f) \equiv p^a a_p(E) \pmod{\lambda}$ for a well chosen Eisenstein series.

$$E = \begin{cases} E_{b-a+1}^{\varepsilon_1,\varepsilon_2} & \text{if } b-a>1 \text{ and } (b-a,\varepsilon_1,\varepsilon_2) \neq (1,1,1) \\ E_{b-a+\ell}^{\varepsilon_1,\varepsilon_2} & \text{if } \begin{cases} (b-a,\varepsilon_1,\varepsilon_2) = (1,1,1) \\ \text{or } b-a=0 \text{ and } (\ell,\varepsilon_1,\varepsilon_2) \neq (2,1,1) \\ E_4 & \text{if } (b=a,\ell=2,\varepsilon_1=\varepsilon_2=1) \end{cases} \end{cases}$$

The following are equivalent:

- $\ \, \overline{\rho}_{f,\lambda}^{\rm ss} \cong \overline{\chi}_{\ell}^{a} \overline{\varepsilon_{1}} \oplus \overline{\chi}_{\ell}^{b} \overline{\varepsilon_{2}} \text{ as before;}$
- 2 for all primes $p \nmid N\ell$, $a_p(f) \equiv p^a a_p(E) \pmod{\lambda}$;

The following are equivalent:

2 for all primes $p \nmid N\ell$, $a_p(f) \equiv p^a a_p(E) \pmod{\lambda}$;

 $\ \, { \ \, { \ \, o \ \,$

$$\mathcal{E} \in \mathsf{M}_{k_{\mathsf{E}}+\mathsf{a}(\ell+1)}(\mathsf{N}') \text{ such that } \mathcal{E} \equiv \sum_{(n,\mathsf{N}\ell)=1} n^{\mathsf{a}} \mathsf{a}_{\mathsf{n}}(\mathsf{E}) q^{\mathsf{n}} \pmod{\lambda};$$

The following are equivalent:

2 for all primes $p \nmid N\ell$, $a_p(f) \equiv p^a a_p(E) \pmod{\lambda}$;

 $\ \, {\bf 3} \ \, \pi_{N\ell}(f) \equiv {\mathcal E} \ \, ({\rm mod} \ \, \lambda) \ \, {\rm with} \ \,$

$$\mathcal{E} \in \mathsf{M}_{k_E+a(\ell+1)}(N') \text{ such that } \mathcal{E} \equiv \sum_{(n,N\ell)=1} n^a a_n(E) q^n \pmod{\lambda};$$

a for all primes $p \leq \frac{\max(k, k_E + a(\ell+1))N}{12} \prod_{q \mid N\ell} (q+1), p \nmid N\ell,$
 $a_p(f) \equiv p^a a_p(E) \pmod{\lambda}.$

The previous congruences depend on the residual characteristic $\ell.$

The previous congruences depend on the residual characteristic $\ell.$

Can we avoid the calculation of the candidates primes?

The previous congruences depend on the residual characteristic ℓ .

Can we avoid the calculation of the candidates primes?

Proposition

If
$$\overline{\rho}_{f,\lambda}$$
 is reducible for $\ell > k + 1$, $\ell \nmid N\phi(N)$, then

$$\pi_{N\ell}(f) \equiv \pi_{N\ell}(E_k^{\varepsilon_1,\varepsilon_2}) \pmod{\lambda},$$

with $\varepsilon_1 \varepsilon_2 = \varepsilon$.

• For all $\varepsilon_1 \varepsilon_2 = \varepsilon$, compute $\gcd_{p \leq B, p \nmid N} p \cdot (a_p(f) - a_p(E_k^{\varepsilon_1, \varepsilon_2}))$, these are the reducible primes bigger than k + 1 and not dividing $N\phi(N)$;

- For all $\varepsilon_1 \varepsilon_2 = \varepsilon$, compute $\gcd_{p \leq B, p \nmid N} p \cdot (a_p(f) a_p(E_k^{\varepsilon_1, \varepsilon_2}))$, these are the reducible primes bigger than k + 1 and not dividing $N\phi(N)$;
- Por all ℓ ≤ k + 1 or ℓ | Nφ(N), compute the possible Dirichlet characters and powers of the cyclotomic character of the decomposition;

- For all $\varepsilon_1 \varepsilon_2 = \varepsilon$, compute $\gcd_{p \leq B, p \nmid N} p \cdot (a_p(f) a_p(E_k^{\varepsilon_1, \varepsilon_2}))$, these are the reducible primes bigger than k + 1 and not dividing $N\phi(N)$;
- Provide a state of the decomposition;
- **③** For all set of parameters, check the previous congruences.

Thank you for your attention!