Explicit small image theorem for residual modular representations

Baptiste Peaucelle

Université Clermont Auvergne
Laboratoire de Mathématiques Blaise Pascal

January 22th, 2020

Notations

$$
\begin{aligned}
& G_{\mathbb{Q}} \\
& f=\sum_{n=1}^{\infty} a_{n}(f) q^{n} \in S_{k}^{\text {new }}(N, \varepsilon) \\
& K_{f} \\
& \lambda \\
& \mathbb{F}_{\lambda}
\end{aligned}
$$

Notations

$$
\begin{aligned}
& G_{\mathbb{Q}} \\
& f=\sum_{n=1}^{\infty} a_{n}(f) q^{n} \in S_{k}^{\text {new }}(N, \varepsilon) \\
& K_{f} \\
& \lambda \\
& \mathbb{F}_{\lambda}
\end{aligned}
$$

Absolute Galois group of \mathbb{Q} parabolic, normalized, new eigenform of weight k, level N and character ε coefficient field of f place of K_{f} above a prime number ℓ residual field of λ

Deligne attached in 1972 to f and λ, a semi-simple residual Galois representation

$$
\bar{\rho}_{f, \lambda}: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{\lambda}\right),
$$

unramified outside $N \ell$ and such that

$$
\begin{gathered}
\operatorname{Tr}\left(\bar{\rho}_{f, \lambda}\left(\operatorname{Frob}_{p}\right)\right)=a_{p}(f), \text { for } p \nmid N \ell \\
\operatorname{det}\left(\bar{\rho}_{f, \lambda}\right)=\bar{\chi}_{\ell}^{k-1} \varepsilon
\end{gathered}
$$

Ribet's theorem

Theorem (Ribet, 1985)

- For all but finitely many places $\lambda, \bar{\rho}_{f, \lambda}$ is irreducible;
- If f is not $C M$, for all but finitely many places λ, ℓ divides $\left|\bar{\rho}_{f, \lambda}\left(G_{\mathbb{Q}}\right)\right|$.

This finite set of places is called exceptional places.

Ribet's theorem

Theorem (Ribet, 1985)

- For all but finitely many places $\lambda, \bar{\rho}_{f, \lambda}$ is irreducible;
- If f is not $C M$, for all but finitely many places λ, ℓ divides $\left|\bar{\rho}_{f, \lambda}\left(G_{\mathbb{Q}}\right)\right|$. This finite set of places is called exceptional places.
$\Delta \in S_{12}(1): \bar{\rho}_{\Delta, \ell}$ is reducible for $\ell=2,3,5,7,691$ and irreducible but of order prime to ℓ for $\ell=23$.

Questions

(1) Can we find a computable bound for the "exceptional" places?

Questions

(1) Can we find a computable bound for the "exceptional" places?
(2) Can we explicitly compute the "exceptional" places?

Cardinal of the image

If ℓ does not divide $\left|\bar{\rho}_{f, \lambda}\left(G_{\mathbb{Q}}\right)\right|$, three cases:

Cardinal of the image

If ℓ does not divide $\left|\bar{\rho}_{f, \lambda}\left(G_{\mathbb{Q}}\right)\right|$, three cases:

- The representation is reducible;

Cardinal of the image

If ℓ does not divide $\left|\bar{\rho}_{f, \lambda}\left(G_{\mathbb{Q}}\right)\right|$, three cases:

- The representation is reducible;
- The image of $\bar{\rho}_{f, \lambda}\left(G_{\mathbb{Q}}\right)$ in $\mathrm{PGL}_{2}\left(\mathbb{F}_{\lambda}\right)$ is dihedral;

Cardinal of the image

If ℓ does not divide $\left|\bar{\rho}_{f, \lambda}\left(G_{\mathbb{Q}}\right)\right|$, three cases:

- The representation is reducible;
- The image of $\bar{\rho}_{f, \lambda}\left(G_{\mathbb{Q}}\right)$ in $\operatorname{PGL}_{2}\left(\mathbb{F}_{\lambda}\right)$ is dihedral;
- The image of $\bar{\rho}_{f, \lambda}\left(G_{\mathbb{Q}}\right)$ in $\mathrm{PGL}_{2}\left(\mathbb{F}_{\lambda}\right)$ is $\mathfrak{A}_{4}, \mathfrak{S}_{4}$ or \mathfrak{A}_{5}.

Cardinal of the image

If ℓ does not divide $\left|\bar{\rho}_{f, \lambda}\left(G_{\mathbb{Q}}\right)\right|$, three cases:

- The representation is reducible;
- The image of $\bar{\rho}_{f, \lambda}\left(G_{\mathbb{Q}}\right)$ in $\operatorname{PGL}_{2}\left(\mathbb{F}_{\lambda}\right)$ is dihedral;
- The image of $\bar{\rho}_{f, \lambda}\left(G_{\mathbb{Q}}\right)$ in $\mathrm{PGL}_{2}\left(\mathbb{F}_{\lambda}\right)$ is $\mathfrak{A}_{4}, \mathfrak{S}_{4}$ or \mathfrak{A}_{5}.

Theorem (P., 2019)

- If $\bar{\rho}_{f, \lambda}$ has projective image isomorphic to $\mathfrak{A}_{4}, \mathfrak{S}_{4}$ or \mathfrak{A}_{5}, the $\ell \mid N$ or $\ell \leqslant 4 k-3$.

Cardinal of the image

If ℓ does not divide $\left|\bar{\rho}_{f, \lambda}\left(G_{\mathbb{Q}}\right)\right|$, three cases:

- The representation is reducible;
- The image of $\bar{\rho}_{f, \lambda}\left(G_{\mathbb{Q}}\right)$ in $\mathrm{PGL}_{2}\left(\mathbb{F}_{\lambda}\right)$ is dihedral;
- The image of $\bar{\rho}_{f, \lambda}\left(G_{\mathbb{Q}}\right)$ in $\mathrm{PGL}_{2}\left(\mathbb{F}_{\lambda}\right)$ is $\mathfrak{A}_{4}, \mathfrak{S}_{4}$ or \mathfrak{A}_{5}.

Theorem (P., 2019)

- If $\bar{\rho}_{f, \lambda}$ has projective image isomorphic to $\mathfrak{A}_{4}, \mathfrak{S}_{4}$ or \mathfrak{A}_{5}, the $\ell \mid N$ or $\ell \leqslant 4 k-3$.
- If $\bar{\rho}_{f, \lambda}$ has dihedral projective image, then

$$
\ell \leqslant\left(2\left(8 k N^{2}(2 \log \log (N)+2.4)\right)^{\frac{k-1}{2}}\right)^{\left[K_{f}: \mathbb{Q}\right]} ;
$$

Reducible case

Theorem (P., 2019)
If $\bar{\rho}_{f, \lambda}$ is reducible, then one of the following applies:
(1) $\ell \mid N \phi(N)$, or $\ell \leqslant k+1$;

Reducible case

Theorem (P., 2019)

If $\bar{\rho}_{f, \lambda}$ is reducible, then one of the following applies:
(1) $\ell \mid N \phi(N)$, or $\ell \leqslant k+1$;
(2) There exists two primitive Dirichlet characters $\varepsilon_{1}, \varepsilon_{2}$ of conductor \mathfrak{c}_{1}, \mathfrak{c}_{2} such that $\varepsilon_{1} \varepsilon_{2}=\varepsilon, \mathfrak{c}_{1} \mathfrak{c}_{2} \mid N$ and ℓ divides one of the following:

- The norm of $p^{k}-\varepsilon_{1}(p) \overline{\varepsilon_{2}}(p)$ for $p \mid N$;
- The norm of $p^{k}-\left(\varepsilon_{1} \overline{\varepsilon_{2}}\right)_{0}(p)$ for $p \mid N$;
- The numerator of the norm of $\frac{B_{k,\left(\varepsilon_{1} \overline{\varepsilon_{2}}\right) 0}}{2 k}$,
where $\sum_{k=0}^{\infty} \frac{B_{k, \chi}}{k!} t^{k}=\sum_{n=1}^{\mathfrak{c}-1} \chi(n) \frac{t e^{n t}}{e^{n t}-1}$, and χ_{0} is the primitive character associated to χ.

Reducible case: general idea

If $\bar{\rho}_{f, \lambda}$ is reducible then

$$
\bar{\rho}_{f, \lambda}^{\mathrm{ss}} \cong \bar{\chi}_{\ell}^{a} \nu_{1} \oplus \bar{\chi}_{\ell}^{b} \nu_{2},
$$

with $\nu_{i}:\left(\mathbb{Z} / \mathfrak{c}_{i} \mathbb{Z}\right)^{\times} \rightarrow \overline{\mathbb{F}}_{\ell} \times$ primitive, $0 \leqslant a \leqslant b \leqslant \ell-2$.

Reducible case: general idea

If $\bar{\rho}_{f, \lambda}$ is reducible then

$$
\bar{\rho}_{f, \lambda}^{\mathrm{ss}} \cong \bar{\chi}_{\ell}^{a} \nu_{1} \oplus \bar{\chi}_{\ell}^{b} \nu_{2},
$$

with $\nu_{i}:\left(\mathbb{Z} / \mathfrak{c}_{i} \mathbb{Z}\right)^{\times} \rightarrow \overline{\mathbb{F}}_{\ell} \times$ primitive, $0 \leqslant a \leqslant b \leqslant \ell-2$.

$$
\begin{aligned}
& \bar{\chi}_{\ell}^{k-1} \varepsilon \equiv \bar{\chi}_{\ell}^{a+b} \nu_{1} \nu_{2}(\bmod \lambda) ; \\
& a_{p}(f) \equiv p^{a} \nu_{1}(p)+p^{b} \nu_{2}(p)(\bmod \lambda) \text { for } p \nmid N \ell .
\end{aligned}
$$

Reducible case: general idea

If $\bar{\rho}_{f, \lambda}$ is reducible then

$$
\bar{\rho}_{f, \lambda}^{\mathrm{ss}} \cong \bar{\chi}_{\ell}^{\mathrm{a}} \nu_{1} \oplus \bar{\chi}_{\ell}^{b} \nu_{2},
$$

with $\nu_{i}:\left(\mathbb{Z} / \mathfrak{c}_{i} \mathbb{Z}\right)^{\times} \rightarrow \overline{\mathbb{F}}_{\ell} \times$ primitive, $0 \leqslant a \leqslant b \leqslant \ell-2$.
$\bar{\chi}_{\ell}^{k-1} \varepsilon \equiv \bar{\chi}_{\ell}^{a+b} \nu_{1} \nu_{2}(\bmod \lambda)$;
$a_{p}(f) \equiv p^{a} \nu_{1}(p)+p^{b} \nu_{2}(p)(\bmod \lambda)$ for $p \nmid N \ell$.
Moreover $\mathfrak{c}_{1} \mathfrak{c}_{2} \mid N$.

Reducible case: general idea

If $\bar{\rho}_{f, \lambda}$ is reducible then

$$
\bar{\rho}_{f, \lambda}^{\mathrm{ss}} \cong \bar{\chi}_{\ell}^{a} \nu_{1} \oplus \bar{\chi}_{\ell}^{b} \nu_{2},
$$

with $\nu_{i}:\left(\mathbb{Z} / \mathfrak{c}_{i} \mathbb{Z}\right)^{\times} \rightarrow \overline{\mathbb{F}}_{\ell} \times$ primitive, $0 \leqslant a \leqslant b \leqslant \ell-2$.
$\bar{\chi}_{\ell}^{k-1} \varepsilon \equiv \bar{\chi}_{\ell}^{a+b} \nu_{1} \nu_{2}(\bmod \lambda)$;
$a_{p}(f) \equiv p^{a} \nu_{1}(p)+p^{b} \nu_{2}(p)(\bmod \lambda)$ for $p \nmid N \ell$.
Moreover $\mathfrak{c}_{1} \mathfrak{c}_{2} \mid N$.
Assuming $\ell \nmid N \phi(N)$ and $\ell>k+1$, we get $a=0, b \equiv k-1(\bmod \ell-1)$, $\varepsilon_{1} \varepsilon_{2}=\varepsilon$ (with ε_{i} the multiplicative lift of ν_{i}).

Eisenstein series

For $k \geqslant 2, \varepsilon_{i}$ primitive Dirichlet character $\bmod \mathfrak{c}_{i}$.

$$
E=C+\sum_{n=1}^{\infty}\left(\sum_{d \mid n} d^{k-1} \varepsilon_{1}\left(\frac{n}{d}\right) \varepsilon_{2}(d)\right) q^{n} \in \mathrm{M}_{k}\left(\mathfrak{c}_{1} \mathfrak{c}_{2}, \varepsilon_{1} \varepsilon_{2}\right)
$$

$\leadsto a_{p}(E)=\varepsilon_{1}(p)+p^{k-1} \varepsilon_{2}(p) ;$

Eisenstein series

For $k \geqslant 2, \varepsilon_{i}$ primitive Dirichlet character $\bmod \mathfrak{c}_{i}$.

$$
E=C+\sum_{n=1}^{\infty}\left(\sum_{d \mid n} d^{k-1} \varepsilon_{1}\left(\frac{n}{d}\right) \varepsilon_{2}(d)\right) q^{n} \in \mathrm{M}_{k}\left(\mathfrak{c}_{1} \mathfrak{c}_{2}, \varepsilon_{1} \varepsilon_{2}\right),
$$

$\leadsto a_{p}(E)=\varepsilon_{1}(p)+p^{k-1} \varepsilon_{2}(p) ;$
We get for all $p \nmid N \ell, a_{p}(f) \equiv a_{p}(E)(\bmod \lambda)$.

Reducible case: general idea II

Proposition

Let $\pi_{M}(f):=\quad \sum a_{n}(f) q^{n}$. It's a modular form of weight k and level $(n, M)=1$
$N \cdot \prod_{p \mid M} p \prod_{p \mid M, p \nmid N} p$.
In particular $\pi_{N \ell}(f) \in\left\{\begin{array}{ll}\mathrm{M}_{k}(N \ell \operatorname{rad}(N)) & \text { if } \ell \mid N \\ \mathrm{M}_{k}\left(N \ell^{2} \operatorname{rad}(N)\right) & \text { if } \ell \nmid N\end{array}\right.$.

Reducible case: general idea II

Proposition

Let $\pi_{M}(f):=\quad \sum a_{n}(f) q^{n}$. It's a modular form of weight k and level $(n, M)=1$
$N \cdot \prod_{p \mid M} p \prod_{p \mid M, p \nmid N} p$.
In particular $\pi_{N \ell}(f) \in\left\{\begin{array}{ll}\mathrm{M}_{k}(N \ell \operatorname{rad}(N)) & \text { if } \ell \mid N \\ \mathrm{M}_{k}\left(N \ell^{2} \operatorname{rad}(N)\right) & \text { if } \ell \nmid N\end{array}\right.$.

Finally $\pi_{N \ell}(f) \equiv \pi_{N \ell}(E)(\bmod \lambda)$ and $\pi_{N \ell}(E)$ must vanish at all cusps, at least $\bmod \lambda$.

Reducible case: general idea II

Proposition

Let $\pi_{M}(f):=\sum_{M} a_{n}(f) q^{n}$. It's a modular form of weight k and level $(n, M)=1$
$N \cdot \prod_{p \mid M} p \prod_{p \mid M, p \nmid N} p$.
In particular $\pi_{N \ell}(f) \in\left\{\begin{array}{ll}\mathrm{M}_{k}(N \ell \operatorname{rad}(N)) & \text { if } \ell \mid N \\ \mathrm{M}_{k}\left(N \ell^{2} \operatorname{rad}(N)\right) & \text { if } \ell \nmid N\end{array}\right.$.

Finally $\pi_{N \ell}(f) \equiv \pi_{N \ell}(E)(\bmod \lambda)$ and $\pi_{N \ell}(E)$ must vanish at all cusps, at least $\bmod \lambda$.

Explicit computations of the constant term of $\pi_{N \ell}(E)$ at the cusps give the result.

Algorithm for the reducible case

(1) Compute all the factorisations $\varepsilon=\varepsilon_{1} \varepsilon_{2}$ with ε_{i} primitive $\bmod \mathfrak{c}_{i}$ and $\mathfrak{c}_{1} \mathfrak{c}_{2} \mid N$;

Algorithm for the reducible case

(1) Compute all the factorisations $\varepsilon=\varepsilon_{1} \varepsilon_{2}$ with ε_{i} primitive $\bmod \mathfrak{c}_{i}$ and $\mathfrak{c}_{1} \mathfrak{c}_{2} \mid N$;
(2) For all $\left(\varepsilon_{1}, \varepsilon_{2}\right)$, compute the norm of $p^{k}-\varepsilon_{1}(p) \overline{\varepsilon_{2}}(p)$ and $p^{k}-\left(\varepsilon_{1} \overline{\varepsilon_{2}}\right)_{0}(p)$ for $p \mid N$, and of $\frac{B_{k,\left(\varepsilon_{1} \overline{\bar{\varepsilon}_{2}}\right)_{0}}^{2 k} \text {; }}{2}$

Algorithm for the reducible case

(1) Compute all the factorisations $\varepsilon=\varepsilon_{1} \varepsilon_{2}$ with ε_{i} primitive $\bmod \mathfrak{c}_{i}$ and $\mathfrak{c}_{1} \mathfrak{c}_{2} \mid N$;
(2) For all $\left(\varepsilon_{1}, \varepsilon_{2}\right)$, compute the norm of $p^{k}-\varepsilon_{1}(p) \overline{\varepsilon_{2}}(p)$ and $p^{k}-\left(\varepsilon_{1} \overline{\varepsilon_{2}}\right)_{0}(p)$ for $p \mid N$, and of $\frac{B_{k,\left(\varepsilon_{1} \overline{\varepsilon_{2}}\right) 0}}{2 k}$;
(3) Factor those norms in prime factors;

Algorithm for the reducible case

(1) Compute all the factorisations $\varepsilon=\varepsilon_{1} \varepsilon_{2}$ with ε_{i} primitive $\bmod \mathfrak{c}_{i}$ and $\mathfrak{c}_{1} \mathfrak{c}_{2} \mid N$;
(2) For all $\left(\varepsilon_{1}, \varepsilon_{2}\right)$, compute the norm of $p^{k}-\varepsilon_{1}(p) \overline{\varepsilon_{2}}(p)$ and $p^{k}-\left(\varepsilon_{1} \overline{\varepsilon_{2}}\right)_{0}(p)$ for $p \mid N$, and of $\frac{B_{k,\left(\varepsilon_{1} \overline{\bar{\varepsilon}_{2}}\right)_{0}}^{2 k} \text {; }}{2}$
(3) Factor those norms in prime factors;
(4) The possible reducible primes are these factors together with the primes $\ell \leqslant k+1$ or $\mid N \phi(N)$.

Applicability of the theorems?

Reducible case:

- factorization of the Bernoulli numbers.

Applicability of the theorems?

Reducible case:

- factorization of the Bernoulli numbers.
$N\left(\frac{B_{13, \chi}}{26}\right)=\frac{2 \cdot 113 \cdot 193 \cdot 134558553601 \cdot 22067375903528446377409}{17}$
with $\chi:(\mathbb{Z} / 17 \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}$sending 3 to $e^{\frac{2 i \pi}{16}}$.

Applicability of the theorems?

Reducible case:

- factorization of the Bernoulli numbers.
$N\left(\frac{B_{13, \chi}}{26}\right)=\frac{2 \cdot 113 \cdot 193 \cdot 134558553601 \cdot 22067375903528446377409 .}{17}$
with $\chi:(\mathbb{Z} / 17 \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}$sending 3 to $e^{\frac{2 i \pi}{16}}$.
Dihedral case:
- Astronomical bound.

Reducible case: explicit check I

Can we compute the exact list of "exceptional" primes?

Reducible case: explicit check I

Can we compute the exact list of "exceptional" primes?

$$
\bar{\rho}_{f, \lambda}^{\mathrm{ss}} \cong \bar{\chi}_{\ell}^{a} \nu_{1} \oplus \bar{\chi}_{\ell}^{b} \nu_{2}
$$

$\nu_{i}:\left(\mathbb{Z} / \mathfrak{c}_{i} \mathbb{Z}\right)^{\times} \rightarrow{\overline{\mathbb{F}_{\ell}}}^{\times}$primitive, $\mathfrak{c}_{1} \mathfrak{c}_{2} \mid N$ and $0 \leqslant a \leqslant b \leqslant \ell-2$.

Reducible case: explicit check I

Can we compute the exact list of "exceptional" primes?

$$
\bar{\rho}_{f, \lambda}^{\mathrm{ss}} \cong \bar{\chi}_{\ell}^{a} \nu_{1} \oplus \bar{\chi}_{\ell}^{b} \nu_{2}
$$

$\nu_{i}:\left(\mathbb{Z} / \mathfrak{c}_{i} \mathbb{Z}\right)^{\times} \rightarrow \overline{\mathbb{F}}_{\ell} \times$ primitive, $\mathfrak{c}_{1} \mathfrak{c}_{2} \mid N$ and $0 \leqslant a \leqslant b \leqslant \ell-2$.
So for $p \nmid N \ell, a_{p}(f) \equiv p^{a} a_{p}(E)(\bmod \lambda)$ for a well chosen Eisenstein series.

Reducible case: explicit check I

Can we compute the exact list of "exceptional" primes?

$$
\bar{\rho}_{f, \lambda}^{\mathrm{ss}} \cong \bar{\chi}_{\ell}^{a} \nu_{1} \oplus \bar{\chi}_{\ell}^{b} \nu_{2}
$$

$\nu_{i}:\left(\mathbb{Z} / \mathfrak{c}_{i} \mathbb{Z}\right)^{\times} \rightarrow{\overline{\mathbb{F}_{\ell}}}^{\times}$primitive, $\mathfrak{c}_{1} \mathfrak{c}_{2} \mid N$ and $0 \leqslant a \leqslant b \leqslant \ell-2$.
So for $p \nmid N \ell, a_{p}(f) \equiv p^{a} a_{p}(E)(\bmod \lambda)$ for a well chosen Eisenstein series.

$$
E= \begin{cases}E_{b-a+1}^{\varepsilon_{1}, \varepsilon_{2}} & \text { if } b-a>1 \text { and }\left(b-a, \varepsilon_{1}, \varepsilon_{2}\right) \neq(1,1,1) \\
E_{b-a+\ell}^{\varepsilon_{1}, \varepsilon_{2}} & \text { if }\left\{\begin{array}{c}
\left(b-a, \varepsilon_{1}, \varepsilon_{2}\right)=(1,1,1) \\
\text { or } b-a=0 \text { and }\left(\ell, \varepsilon_{1}, \varepsilon_{2}\right) \neq(2,1,1) \\
E_{4}
\end{array} \text { if }\left(b=a, \ell=2, \varepsilon_{1}=\varepsilon_{2}=1\right)\right.\end{cases}
$$

Reducible case: explicit check II

The following are equivalent:
(1) $\bar{\rho}_{f, \lambda}^{\mathrm{ss}} \cong \bar{\chi}_{\ell}^{a} \overline{\varepsilon_{1}} \oplus \bar{\chi}_{\ell}^{b} \overline{\varepsilon_{2}}$ as before;
(2) for all primes $p \nmid N \ell, a_{p}(f) \equiv p^{a} a_{p}(E)(\bmod \lambda)$;

Reducible case: explicit check II

The following are equivalent:
(1) $\bar{\rho}_{f, \lambda}^{\mathrm{ss}} \cong \bar{\chi}_{\ell}^{\mathrm{a}}{\overline{\varepsilon_{1}}} \oplus \bar{\chi}_{\ell}^{b} \overline{\varepsilon_{2}}$ as before;
(2) for all primes $p \nmid N \ell, a_{p}(f) \equiv p^{a} a_{p}(E)(\bmod \lambda)$;
(3) $\pi_{N \ell}(f) \equiv \mathcal{E}(\bmod \lambda)$ with

$$
\mathcal{E} \in \mathrm{M}_{k_{E}+a(\ell+1)}\left(N^{\prime}\right) \text { such that } \mathcal{E} \equiv \sum_{(n, N \ell)=1} n^{a} a_{n}(E) q^{n}(\bmod \lambda) ;
$$

Reducible case: explicit check II

The following are equivalent:
(1) $\bar{\rho}_{f, \lambda}^{\mathrm{ss}} \cong \bar{\chi}_{\ell}^{a}{\overline{\varepsilon_{1}}} \oplus \bar{\chi}_{\ell}^{b} \overline{\varepsilon_{2}}$ as before;
(2) for all primes $p \nmid N \ell, a_{p}(f) \equiv p^{a} a_{p}(E)(\bmod \lambda)$;
(3) $\pi_{N \ell}(f) \equiv \mathcal{E}(\bmod \lambda)$ with

$$
\mathcal{E} \in \mathrm{M}_{k_{E}+a(\ell+1)}\left(N^{\prime}\right) \text { such that } \mathcal{E} \equiv \sum_{(n, N \ell)=1} n^{a} a_{n}(E) q^{n}(\bmod \lambda) ;
$$

(9) for all primes $p \leqslant \frac{\max \left(k, k_{E}+a(\ell+1)\right) N}{12} \prod_{q \mid N \ell}(q+1), p \nmid N \ell$,

$$
a_{p}(f) \equiv p^{a} a_{p}(E)(\bmod \lambda)
$$

Reducible case: explicit check III

The previous congruences depend on the residual characteristic ℓ.

Reducible case: explicit check III

The previous congruences depend on the residual characteristic ℓ.
Can we avoid the calculation of the candidates primes?

Reducible case: explicit check III

The previous congruences depend on the residual characteristic ℓ.
Can we avoid the calculation of the candidates primes?

Proposition

If $\bar{\rho}_{f, \lambda}$ is reducible for $\ell>k+1, \ell \nmid N \phi(N)$, then

$$
\pi_{N \ell}(f) \equiv \pi_{N \ell}\left(E_{k}^{\varepsilon_{1}, \varepsilon_{2}}\right) \quad(\bmod \lambda),
$$

with $\varepsilon_{1} \varepsilon_{2}=\varepsilon$.

Algorithm

(1) For all $\varepsilon_{1} \varepsilon_{2}=\varepsilon$, compute $\operatorname{gcd} p \cdot\left(a_{p}(f)-a_{p}\left(E_{k}^{\varepsilon_{1}, \varepsilon_{2}}\right)\right)$, these are the reducible primes bigger than $k+1$ and not dividing $N \phi(N)$;

Algorithm

(1) For all $\varepsilon_{1} \varepsilon_{2}=\varepsilon$, compute $\operatorname{gcd} p \cdot\left(a_{p}(f)-a_{p}\left(E_{k}^{\varepsilon_{1}, \varepsilon_{2}}\right)\right)$, these are $p \leqslant B, p \nmid N$
the reducible primes bigger than $k+1$ and not dividing $N \phi(N)$;
(2) For all $\ell \leqslant k+1$ or $\ell \mid N \phi(N)$, compute the possible Dirichlet characters and powers of the cyclotomic character of the decomposition;

Algorithm

(1) For all $\varepsilon_{1} \varepsilon_{2}=\varepsilon$, compute $\operatorname{gcd} p \cdot\left(a_{p}(f)-a_{p}\left(E_{k}^{\varepsilon_{1}, \varepsilon_{2}}\right)\right)$, these are $p \leqslant B, p \nmid N$
the reducible primes bigger than $k+1$ and not dividing $N \phi(N)$;
(2) For all $\ell \leqslant k+1$ or $\ell \mid N \phi(N)$, compute the possible Dirichlet characters and powers of the cyclotomic character of the decomposition;
(3) For all set of parameters, check the previous congruences.

Thank you for your attention!

