

LLL over Euclidean imaginary quadratic fields

Titouan Coladon ${ }^{1}$, Philippe Elbaz-Vincent ${ }^{1}$, Cyril Hugounenq ${ }^{1}$, Etienne Marcatel ${ }^{12}$
Atelier Pari GP, Grenoble, January 23rd, 2020

Motivation for Hermitian LLL

Cybersecurity Institute Univ. Grenoble Alpes

Applications:

■ Computational Number Theory.

- Cryptography.

■ MIMO: Multi Inputs Multi Outputs.

Previous works :

■ Napias (1996): motivated by Hermitian lattices.
■ Gan, Ling and Mow (2009): motivated by MIMO, only for $\mathbb{Z}[i]$

- Camus (2017): motivated by algorithmic studies of lattices.

■ Pellet-Mary, Lee, Stehlé and Wallet (2019): general but using CVP oracle.
■ Espitau, Kirchner, Fouque (2019): Not LLL but General and parallelisable.

Classical notations

- Gram-Schmidt Orthogonalization :

$$
\left\{\begin{array}{c}
b_{i}^{*}=b_{i}-\sum_{j=1}^{i-1} \mu_{i, j} \cdot b_{j}^{*} \\
\mu_{i, j}=\frac{\left\langle b_{i}, b_{j}^{*}\right\rangle}{\left\|b_{j}^{*}\right\|^{2}}
\end{array}\right.
$$

- LLL-Reduced for $\delta \in] 0.25,1[$ and $\eta \in[0.5,1[$:
- A lattice with basis $\left(b_{1}, \ldots, b_{n}\right)$ is said to be (δ, η)-LLL reduced if:

$$
\left\{\begin{array}{cc}
\left|\mu_{i, j}\right| \leqslant \eta & \text { (size condition) } \\
\left(\delta-\left|\mu_{i, j}\right|^{2}\right)\left\|b_{i-1}^{*}\right\|^{2} \leqslant\left\|b_{i}^{*}\right\|^{2} & \text { (Lovasz's condition) }
\end{array}\right.
$$

Algorithm 1 LLL
Input: A basis $B=\left(b_{1}, \ldots, b_{n}\right)$ and some reals δ and η.
Output: A (δ, η)-LLL reduced basis.
1: Compute μ, the GSO B^{*} and set $\kappa=1$
while $\kappa \leq n$ do
3: \quad for $j \in\{1, \ldots, \kappa-1\}$ do
4: if $\mu_{\kappa, j} \geq \eta$ then
5: $\quad b_{\kappa} \longleftarrow b_{\kappa}-\left\lfloor\mu_{\kappa, j}\right\rceil \cdot b_{j}$ and update μ accordingly
6: \quad if $\left(\delta-\mu_{\kappa, \kappa-1}^{2}\right) \cdot\left\|b_{\kappa-1}^{*}\right\|^{2}>\left\|b_{\kappa}^{*}\right\|^{2}$ then
Swap $b_{\kappa-1}$ and b_{κ} and update μ and B^{*} accordingly $\kappa \longleftarrow \kappa-1$
else

$$
\kappa \longleftarrow \kappa+1
$$

return B

We need :

- Euclideanity
- Gram-Schmidt Orthogonalization

Let K be an imaginary quadratic field, \mathcal{O}_{K} its ring of integers.

Hermitian scalar product for $a, b \in \mathbb{C}^{n}$,

$$
\langle a, b\rangle=\sum_{i=1}^{n} a_{i} \cdot \overline{b_{i}}
$$

Gram-Schmidt Orthogonalization for a basis $\left(b_{1}, \ldots, b_{n}\right)$,

$$
b_{i}^{*}=b_{i}-\sum_{j=1}^{i-1} \mu_{i, j} \cdot b_{j}^{*} \quad \text { with } \mu_{i, j}=\frac{\left\langle b_{i}, b_{j}^{*}\right\rangle}{\left\|b_{i}^{*}\right\|^{2}}
$$

Admissible fields

We define

$$
m_{K}=\sup _{x \in K} \inf _{y \in \mathcal{O}_{K}} \mathcal{N}(x-y)
$$

Admissible fields

K	$\mathbb{Q}[i]$	$\mathbb{Q}[i \sqrt{2}]$	$\mathbb{Q}\left[\frac{1+i \sqrt{3}}{2}\right]$	$\mathbb{Q}\left[\frac{1+i \sqrt{7}}{2}\right]$	$\mathbb{Q}\left[\frac{1+i \sqrt{11}}{2}\right]$
\mathcal{O}_{K}^{\times}	$\{ \pm 1, \pm i\}$	$\{-1,+1\}$	$e^{\frac{2 K \pi}{3}}$	$\{-1,+1\}$	$\{-1,+1\}$
m_{K}	$1 / 2$	$3 / 4$	$1 / 3$	$4 / 7$	$9 / 11$

Algebraic lattices

 Univ. Grenoble AlpesWe refer to Camus PhD. (2017) for the following definitions.
An algebraic lattice of rank n over K is a subgroup Λ of \mathbb{C}^{n} for which it exists a \mathbb{C}-basis $\mathcal{B}=\left(b_{1}, \ldots, b_{n}\right)$ of \mathbb{C}^{n} such that:

$$
\Lambda=\mathcal{O}_{K} b_{1} \oplus \cdots \oplus \mathcal{O}_{K} b_{n}
$$

LLL-Reduced for $\delta \in] 0.25,1\left[\right.$ and $\eta \in\left[m_{K}, 1[\right.$:

- $\left|\mu_{i, j}\right|^{2} \leqslant \eta$
- $\left\|b_{i}^{*}\right\|^{2} \geqslant\left(\delta-\left|\mu_{i, j}\right|^{2}\right)\left\|b_{i-1}^{*}\right\|^{2}$ (Lovasz's condition)

Pari GP script available!

Known fast implementation: fpLLL by N'Guyen and Stehlé (2005-2009) Exact representation:

- $\mathcal{B}=\left(b_{1}, \ldots, b_{n}\right)$
- $G=\left(<b_{i}, b_{j}>\right)_{i, j}$

Floating representation:
■ $\mu=\left(\frac{\left\langle b_{i}, b_{j}^{*}\right\rangle}{\left\|b_{j}^{2}\right\|^{2}}\right)_{i, j}$

- $\left.r=\left(<b_{i}, b_{j}^{*}\right\rangle\right)_{i, j}$

■ $s^{(i)}=\left(\left\|b_{i}\right\|^{2}-\sum_{k=1}^{j-1} \mu_{i, k} \cdot r_{i, k}\right)_{j}$

Also : IALatRed, implementation based on interval arithmetics (Espitau and Joux)

Euclidean	Hermitian				
$r_{i, j}=\left\langle b_{i}, b_{j}\right\rangle-\sum_{k=1}^{j-1} \mu_{j, k} \cdot r_{i, k}$	$r_{i, j}=\left\langle b_{i}, b_{j}\right\rangle-\sum_{k=1}^{j-1} \overline{\mu_{j, k}} \cdot r_{i, k}$				
$s_{j}^{(i)}=\left\\|b_{i}\right\\|^{2}-\sum_{k=1}^{j-1} \mu_{i, k} \cdot r_{i, k}$	$s_{j}^{(i)}=\left\\|b_{i}\right\\|^{2}-\sum_{k=1}^{j-1} \overline{\mu_{i, k}} \cdot r_{i, k}$				
$g_{k, k}=g_{k, k}-2 \lambda \cdot g_{j, k}+\|\lambda\|^{2} \cdot g_{j, j}$	$g_{k, k}=g_{k, k}-2 \operatorname{Re}\left(\bar{\lambda} \cdot g_{j, k}\right)+\|\lambda\|^{2} \cdot g_{j, j}$				

- For $\mathbb{Z}[i]$:
- Option -zi
- LLL, Enumeration, BKZ

■ For $\mathbb{Z}[j]$:

- Option -zj
- Only LLL for now
- Option-timing

■ Hermitian lattice generation: latticegen -zi

Next steps

 Univ. Grenoble Alpes- Proofs for Hermitian fpLLL (bounds, ...).
- Generalisation to other algebraic lattices:
- Some (Euclidean) cyclotomic number rings
- Code profiling and optimizations.

Contact philippe.elbaz-vincent@univ-grenoble-alpes.fr to beta test.

