

LLL over Euclidean imaginary quadratic fields

Titouan Coladon¹, Philippe Elbaz-Vincent¹, Cyril Hugounenq¹, <u>Etienne Marcatel¹²</u>

Atelier Pari GP, Grenoble, January 23rd, 2020

This work is supported by the French National Research Agency in the framework of the "Investissements d'avenir" program (ANR-15-IDEX-02)

Motivation for Hermitian LLL

Applications:

- Computational Number Theory.
- Cryptography.
- MIMO: Multi Inputs Multi Outputs.

Previous works :

- Napias (1996): motivated by Hermitian lattices.
- Gan, Ling and Mow (2009): motivated by MIMO, only for $\mathbb{Z}[i]$
- Camus (2017): motivated by algorithmic studies of lattices.
- Pellet-Mary, Lee, Stehlé and Wallet (2019): general but using CVP oracle.
- Espitau, Kirchner, Fouque (2019): Not LLL but General and parallelisable.

Classical notations

Gram-Schmidt Orthogonalization :

$$egin{cases} b_i^* = b_i - \sum\limits_{j=1}^{i-1} \mu_{i,j} \cdot b_j^* \ \mu_{i,j} = rac{\langle b_i, b_j^*
angle}{\|b_j^*\|^2} \end{cases}$$

- LLL-Reduced for $\delta \in]0.25, 1[$ and $\eta \in [0.5, 1[$:
 - ▶ A lattice with basis (b_1, \ldots, b_n) is said to be (δ, η) -LLL reduced if :

$$\begin{cases} |\mu_{i,j}| \leqslant \eta & \text{(size condition)} \\ (\delta - |\mu_{i,j}|^2) \|b_{i-1}^*\|^2 \leqslant \|b_i^*\|^2 & \text{(Lovasz's condition)} \end{cases}$$

Algorithm 1 LLL

Input: A basis $B = (b_1, \ldots, b_n)$ and some reals δ and η . **Output:** A (δ, η) -LLL reduced basis. 1: Compute μ , the GSO B^* and set $\kappa = 1$ 2: while $\kappa < n$ do for $j \in \{1, ..., \kappa - 1\}$ do 3: if $\mu_{\kappa,i} \geq \eta$ then 4: $b_{\kappa} \leftarrow b_{\kappa} - |\mu_{\kappa,i}| \cdot b_{i}$ and update μ accordingly 5: if $(\delta - \mu_{r}^2 |_{r-1}) \cdot \|b_{r-1}^*\|^2 > \|b_r^*\|^2$ then 6: Swap $b_{\kappa-1}$ and b_{κ} and update μ and B^* accordingly 7: $\kappa \leftarrow \kappa - 1$ 8: else ٩· $\kappa \leftarrow \kappa + 1$ 10: 11: return *B*

We need :

- Euclideanity
- Gram-Schmidt Orthogonalization

Field definition

Let K be an imaginary quadratic field, \mathcal{O}_K its ring of integers.

Hermitian scalar product for $a, b \in \mathbb{C}^n$,

$$\langle a,b
angle = \sum_{i=1}^n a_i\cdot \overline{b_i}$$

Gram-Schmidt Orthogonalization for a basis (b_1, \ldots, b_n) ,

$$b_i^* = b_i - \sum_{j=1}^{i-1} \mu_{i,j} \cdot b_j^*$$
 with $\mu_{i,j} = \frac{\langle b_i, b_j^* \rangle}{\|b_i^*\|^2}$

State of the art

Admissible fields

 INSTITUT
 Cybersecurity Institute

 FOURIER
 Univ. Grenoble Alpes

We define

State of the art

7/13

Admissible fields

$$\mathcal{K}$$
 $\mathbb{Q}[i]$
 $\mathbb{Q}[i\sqrt{2}]$
 $\mathbb{Q}[\frac{1+i\sqrt{3}}{2}]$
 $\mathbb{Q}[\frac{1+i\sqrt{7}}{2}]$
 $\mathbb{Q}[\frac{1+i\sqrt{11}}{2}]$
 $\mathcal{O}_{\mathcal{K}}^{\times}$
 $\{\pm 1, \pm i\}$
 $\{-1, +1\}$
 $e^{\frac{2k\pi}{3}}$
 $\{-1, +1\}$
 $\{-1, +1\}$
 $m_{\mathcal{K}}$
 $1/2$
 $3/4$
 $1/3$
 $4/7$
 $9/11$

State of the art

Algebraic lattices

We refer to Camus PhD. (2017) for the following definitions.

An algebraic lattice of rank *n* over *K* is a subgroup Λ of \mathbb{C}^n for which it exists a \mathbb{C} -basis $\mathcal{B} = (b_1, \ldots, b_n)$ of \mathbb{C}^n such that:

$$\Lambda = \mathcal{O}_{\mathcal{K}} b_1 \oplus \cdots \oplus \mathcal{O}_{\mathcal{K}} b_n$$

LLL-Reduced for $\delta \in]0.25, 1[$ and $\eta \in [m_K, 1[:$

 $\|\mu_{i,j}\|^2 \leq \eta$ $\|b_i^*\|^2 \geq (\delta - |\mu_{i,j}|^2) \|b_{i-1}^*\|^2 \text{ (Lovasz's condition)}$

Pari GP script available !

Known fast implementation: fpLLL by N'Guyen and Stehlé (2005-2009) Exact representation:

- $\blacksquare \mathcal{B} = (b_1, \ldots, b_n)$
- $G = (\langle b_i, b_j \rangle)_{i,j}$

Floating representation:

• $\mu = \left(\frac{\langle b_i, b_j^* \rangle}{\|b_j^*\|^2}\right)_{i,j}$ • $r = (\langle b_i, b_j^* \rangle)_{i,j}$ • $s^{(i)} = (\|b_i\|^2 - \sum_{k=1}^{j-1} \mu_{i,k} \cdot r_{i,k})_j$

Also : IALatRed, implementation based on interval arithmetics (Espitau and Joux)

Hermitian fpLLL

Euclidean	Hermitian
$r_{i,j} = \langle b_i, b_j angle - \sum_{k=1}^{j-1} \mu_{j,k} \cdot r_{i,k}$	$r_{i,j} = \langle b_i, b_j angle - \sum_{k=1}^{j-1} \overline{\mu_{j,k}} \cdot r_{i,k}$
$s_j^{(i)} = \ b_i\ ^2 - \sum_{k=1}^{j-1} \mu_{i,k} \cdot r_{i,k}$	$s_{j}^{(i)} = \ b_{i}\ ^{2} - \sum_{k=1}^{j-1} \overline{\mu_{i,k}} \cdot r_{i,k}$
$g_{k,k} = g_{k,k} - 2\lambda \cdot g_{j,k} + \lambda ^2 \cdot g_{j,j}$	$g_{k,k} = g_{k,k} - 2Re(\overline{\lambda} \cdot g_{j,k}) + \lambda ^2 \cdot g_{j,j}$

11/13

Hermitian fpLLL: features

■ For ℤ[*i*] :

- ► Option -zi
- ► LLL, Enumeration, BKZ
- For **Z**[*j*] :
 - ► Option -zj
 - ► Only LLL for now
- Option -timing
- Hermitian lattice generation : latticegen -zi

- Proofs for Hermitian fpLLL (bounds, ...).
- Generalisation to other algebraic lattices:
 - ► Some (Euclidean) cyclotomic number rings
- Code profiling and optimizations.

Contact philippe.elbaz-vincent@univ-grenoble-alpes.fr to beta test.