Plane algebraic curves in PARI/GP

Nicolas Mascot

Trinity College Dublin

Atelier PARI/GP 2022 January 14, 2022 Fix a field K of characteristic 0 (think $K = \mathbb{Q}$).

Consider the curve

$$C:f(x,y)=0$$

where $f(x, y) \in K[x, y]$ is squarefree.

We would like to

- Determine the genus of C,
- Compute Riemann-Roch spaces on C,
- Construct the Jacobian of C,

• . . .

Goals

- Determine the genus of C,
- Compute Riemann-Roch spaces on C,
- Construct the Jacobian of C,
- . . .

All this actually refers to the desingularisation $\widetilde{C} \to C$ of C.

For each point $P = (x_P, y_P)$ of C, local parametrisations x = X(t), y = Y(t)

where X, Y are nonconstant formal power series such that f(X(t), Y(t)) = 0 and $X(0) = x_P$, $Y(0) = y_P$.

We assume X and Y are not both series in t^n for any $n \ge 2$.

Uniqueness: Hope that Parametrisations at $P \leftrightarrow$ Points of \widetilde{C} above P. But can rescale $t \leftarrow t' = ct + O(t^2)$, $c \neq 0 \dots$

Existence: OK if P is nonsingular: can Newton w.r.t. x or y. But what if P is singular?

Theorem (Newton–Puiseux)

 $\overline{K}{\{x\}} = \bigcup_{e \ge 1} \overline{K}((x^{1/e}))$ is algebraically closed.

View $f(x, y) = f(x)(y) \in K[x][y] \subset K((x))[y]$, meaning we think of y as an algebraic function of x:

$$\widetilde{C} \longrightarrow C \longrightarrow \mathbb{P}^1_x.$$

Let $n = \deg_y f$. Then in $\overline{K}\{\{x\}\}, f(x)(y)$ has roots π_1, \dots, π_n \rightsquigarrow For each $\pi_j = \sum_{n \ge n_0} a_n x^{n/e}$, local parametrisation $x = t^e$, $y = \sum_{n \ge n_0} a_n t^n$.

This yields all points above x = 0. For the general case, translate / change variables. Suppose X(t), Y(t) corresponds to $\widetilde{P} \in \widetilde{C}$.

We would like $K(\text{coeffs of } X, Y) = \text{the field of definition of } \widetilde{P}$.

 \bigwedge Rescalings $t \leftarrow t' = ct + O(t^2)$ typically destroy this!

If P is nonsingular, we can always have either $X(t) = x_P + t$ or $Y(t) = y_P + t$. But what if P is singular?

If
$$X(t) = t^e$$
, $Y(t) = \sum_{n \ge n_0} a_n t^n$, can rescale $t \leftarrow \zeta_e t$ ($\zeta_e^e = 1$)

$$\rightsquigarrow X(t) = t^e, \ Y(t) = \sum_{n \ge n_0} a_n \zeta_e^n t^n.$$

Rational parametrisations

Theorem (Duval)

There exists a globally Gal(\overline{K}/K)-invariant set of parametrisations $(X_j(t), Y_j(t))$, with $X_j(t) = b_j t^{e_j}$ for each j, such that the roots of f(x)(y) = 0 in $\overline{K}\{\{x\}\}$ are the $Y_j(\zeta_{e_j} \sqrt[e_j]{b_j^{-1}} x^{1/e_j})$ for $\zeta_{e_j}^{e_j} = 1$. In particular, $\sum_j e_j = n$.

Suppose the $(X_j(t), Y_j(t))$ for $1 \le j \le g$ form a system of representatives of Galois orbits. For each j, let K_j be $K(b_j, \text{coefs of } Y_j)$, and $f_j = [K_j : K]$. Then $\sum_{i=1}^g e_i f_j = n$, and

Computing the rational parametrisations

Write $f(x)(y) = \sum_{i,j} a_{i,j} x^j y^i$, and draw the Newton polygon of the (i,j) in the support of f.

Let pi + qj = r be a segment, with p, q coprime, q > 0. Write

$$f = \underbrace{\sum_{\substack{pi+qj=r\\f_0(x,y)}} a_{i,j} x^j y^i}_{f_0(x,y)} + \underbrace{\sum_{\substack{pi+qj>r\\\mathsf{HO.T.}}} a_{i,j} x^j y^i}_{\mathsf{HO.T.}}.$$

Computing the rational parametrisations

$$f = \underbrace{\sum_{\substack{pi+qj=r\\f_0(x,y)}} a_{i,j} x^j y^i}_{f_0(x,y)} + \underbrace{\sum_{\substack{pi+qj>r\\HOT.}} a_{i,j} x^j y^i}_{HOT.}.$$

Puiseux approach: Look for roots of valuation p/q, so $y = bx^{p/q} + \text{H.O.T.}$ with $b \in \overline{K}^{\times}$ determined by $f_0(x, y) = 0$:

$$f_0(x, bx^{p/q}) = \sum_{pi+qj=r} a_{i,j} x^{qj/q} b^i x^{pi/q} = x^{r/q} \sum_{pi+qj=r} a_{i,j} b^i = x^{r/q} B(b).$$

But as p, q coprime, $i = i_0 + qk$, $j = j_0 - pk$ for $k \in \mathbb{Z}$, so B(b) is actually a polynomial in $b^q \rightsquigarrow q$ -th roots \rightsquigarrow bad for rationality.

Computing the rational parametrisations

$$f = \underbrace{\sum_{\substack{pi+qj=r\\f_0(x,y)}} a_{i,j} x^j y^i}_{f_0(x,y)} + \underbrace{\sum_{\substack{pi+qj>r\\HO.T.}} a_{i,j} x^j y^i}_{HO.T.}.$$

Rational approach: p, q coprime \rightsquigarrow Bézout up + vq = 1. Look for $x = b^{-u}t^q$, $y = b^v t^p + \text{H.O.T.}$, $b \in \overline{K}^{\times}$. Indeed,

$$f_0(b^{-u}t^q, b^v t^p) = \sum_{pi+qj=r} a_{i,j} b^{-uj} t^{qj} b^{vi} t^{pi}$$

$$=t^{r}\sum_{pi+qj=r}a_{i,j}b^{\nu(i_{0}+qk)-u(j_{0}-pk)}=t^{r}b^{\nu i_{0}-uj_{0}}\sum_{pi+qj=r}a_{i,j}b^{k}=t^{r}b^{\nu i_{0}-uj_{0}}B(b).$$

Solve B(b) = 0, plug in $x = b^{-u}x_1^q$, $y = b^v x_1^p (1 + y_1)$, and iterate until the equation is nonsingular in y.

Store and remember the nonsingular equation in y obtained at the end of the recursion \rightsquigarrow Black box able to give expansions with arbitrary *t*-adic accuracy.

```
read("Algcurves.gp");
B=Branches0(y^3+2*x^3*y-x^7,t,a)[2][1];
BranchExpand(B,10)
BranchExpand(B,100)
```

Useful ingredient to handle successive algebraic extensions:

AlgExtend : $(A, F) \longmapsto (B, g, a)$, where

•
$$A(x) \in K[x]$$
 irr.,

•
$$F(x) \in K(lpha)[x]$$
 where $A(lpha) = 0$,

and

Computing the genus

Write again
$$f(x, y) = \sum_{i,j} a_{i,j} x^j y^i$$
.

Theorem (Novocin)

The $\omega_{i,j} = \frac{x^{j-1}y^{i-1}}{\frac{\partial f}{\partial y}} dx$, $i, j \in \mathbb{N}$, are holomorphic at the finite nonsingular points. Any holomorphic differential on *C* is a linear combination of the $\omega_{i,j}$ for (i, j) strictly in the convex hull of the support of f(x, y).

 \rightsquigarrow Strategy: Compute local parametrisations at all the singular points and at the points at infinity. Plug them into the $\omega_{i,j}$, and use linear algebra over K to find the combinations whose polar parts vanish.

We get a K-basis of the space of holomorphic differentials. The genus of the curve is its dimension.

Integral closure (Preparation for Riemann-Roch)

Let $K(C) = \operatorname{Frac} K(x)[y]/f(x, y)$.

The integral closure of K[x] in K(C) is

 $\mathcal{O}_{\mathcal{C}} = \{h(x, y) \in \mathcal{K}(\mathcal{C}) \mid h \text{ holomorphic above } x \neq \infty\}.$

Start with the approximation $\mathcal{O} = \bigoplus_{j < n} \mathcal{K}[x] y_1^j$, where $y_1 = lc_y(f)y$.

For all irreducible $U(x) \in K[x]$, \mathcal{O} is U-maximal unless $U^2 \mid \operatorname{disc}_y f(x, y)$.

For such U, compute the parametrisations at the points above U(x) = 0, plug them into the $x^i y_1^j / U(x)$ for $i < \deg U$ and j < n, and find linear combinations whose polar parts vanish.

Then join the local bases by performing a HNF over K[x].

CrvInit

. . .

The GP function CrvInit takes f(x, y) and computes the rational parametrisations above the points P such that $x(P) = \infty$ or x(P) is a multiple root of $\Delta(x)$ or P is singular.

C1=CrvInit(-256*x^56 + 6144*x^55 - 62464*x^54

- + 333824*x^53 859648*x^52 120832*x^51
- + 7252992*x^50 16046080*x^49 9891072*x^48
- + 90136576*x⁴⁷ 73076736*x⁴⁶ 237805568*x⁴⁵
- + 420485120*x^44 + 341843968*x^43 1165840384*x^42
- 192667648*x^41 + 2178936320*x^40 238563328*x^39
- + 3232*y^6*x^6 + 384*y^6*x^5
- -96*y^6*x^4 16*y^6*x^3 + 27*y^8);

 $C: y^3 + 2x^3y - x^7 = 0$ has genus g = 2, so it is hyperelliptic \rightsquigarrow has model $H: w^2 = F(u)$.

 $\Omega^{1}(H) = \langle \frac{du}{w}, \frac{u \, du}{w} \rangle \rightsquigarrow \text{ our basis of } \Omega^{1}(C) \text{ is } \frac{(au+b) \, du}{w}, \frac{(cu+d) \, du}{w} \\ \rightsquigarrow \text{ Their quotient is } \frac{au+b}{cu+d}.$

C[7] \\ yx/(2x^3+3y^2) dx, x^3/(2x^3+3y^2) dx u = C[7][1][1]/C[7][1][2] w = x factor(MorImg(y^3+2*x^3*y-x^7,u,w)) poldisc(%[2,1],y) DivPrint(FnDiv(C,u-2/3))

Riemann-Roch

Let $D = \sum n_{\widetilde{P}} \widetilde{P}$ formal \mathbb{Z} -linear combination of points of \widetilde{C} . The attached Riemann-Roch space is

$$L(D) = \{h \in K(C) \mid \operatorname{ord}_{\widetilde{P}} h \geqslant -n_{\widetilde{P}} \text{ for all } \widetilde{P}\}.$$

This is a finite-dimensional K-vector space. We want a basis.

Represent points $\widetilde{P} \in \widetilde{C}$ either as nonsingular points $P \in C$, or as local parametrisations.

Strategy:

- Find $d(x) \in K[x]$ such that $h(x, y) \in L(D) \Longrightarrow d(x)h(x, y) \in \mathcal{O}_C$.
- Use local parametrisations to find combinations vanishing at appropriate order at relevant points.

```
CrvPrint(C)
RiemannRoch(C,[2,5])
L=RiemannRoch(C,[[-1,1],3;3,1;1,-2])
DivPrint(FnDiv(C,L[1]))
```

Riemann-Roch : Applications

We put a genus 1 curve in Weierstrass form:

```
C1 = CrvInit((x+y+1/x+1/y+1)*x*y);
CrvPrint(C1)
CrvEll(C1,[1,0,0])
```

We find a rational parametrisation of a curve of genus 0:

```
f = x^5+y^4+x^2*y^3;
C0 = CrvInit(f);
CrvPrint(C0)
[X,Y] = CrvRat(C0,1)
substvec(f,[x,y],[X,Y])
```

Jacobians and Galois representations

With Riemann-Roch spaces, we can construct a Makdisi model of the Jacobian J of C.

At the moment, only implemented for models of J over \mathbb{Z}_q/p^e , where $q = p^d$ with p a prime of good reduction, \mathbb{Z}_q is the ring of integers of the unramified extension of \mathbb{Q}_p of degree d, and $e \in \mathbb{N}$ is arbitrary.

But no difficulty for models of J over number fields.

p-adic models of J can be used to compute Galois representations occurring in the torsion of J.

C=CrvInit(x⁵ + y⁵ - 6*x³ + 6*x² + x*y - 3*y²); CrvPrint(C) CrvPicTorsGalRep(C,2,13,700)

Thank you!