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Goals

Fix a field K of characteristic 0 (think K = Q).

Consider the curve
C : f (x , y) = 0

where f (x , y) ∈ K [x , y ] is squarefree.

We would like to

Determine the genus of C ,

Compute Riemann-Roch spaces on C ,

Construct the Jacobian of C ,

. . .
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Goals

Determine the genus of C ,

Compute Riemann-Roch spaces on C ,

Construct the Jacobian of C ,

. . .

All this actually refers to the desingularisation C̃ → C of C .

CC̃
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Local parametrisations

For each point P = (xP , yP) of C , local parametrisations

x = X (t), y = Y (t)

where X ,Y are nonconstant formal power series such that
f
(
X (t),Y (t)

)
= 0 and X (0) = xP , Y (0) = yP .

We assume X and Y are not both series in tn for any n ⩾ 2.

Uniqueness: Hope that Parametrisations at P ↔ Points of C̃
above P . But can rescale t ← t ′ = ct + O(t2), c ̸= 0 . . .

Existence: OK if P is nonsingular: can Newton w.r.t. x or y .
But what if P is singular?
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Puiseux series

Theorem (Newton–Puiseux)

K{{x}} =
⋃

e⩾1 K ((x1/e)) is algebraically closed.

View f (x , y) = f (x)(y) ∈ K [x ][y ] ⊂ K ((x))[y ],
meaning we think of y as an algebraic function of x :

C̃ −→ C −→ P1
x .

Let n = degy f .

Then in K{{x}}, f (x)(y) has roots π1, · · · , πn

⇝ For each πj =
∑

n⩾n0
anx

n/e ,
local parametrisation x = te , y =

∑
n⩾n0

ant
n.

This yields all points above x = 0.
For the general case, translate / change variables.
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Rationality

Suppose X (t), Y (t) corresponds to P̃ ∈ C̃ .

We would like K (coeffs of X ,Y ) = the field of definition of P̃ .

" Rescalings t ← t ′ = ct + O(t2) typically destroy this!

If P is nonsingular, we can always have either X (t) = xP + t
or Y (t) = yP + t. But what if P is singular?

If X (t) = te , Y (t) =
∑
n⩾n0

ant
n, can rescale t ← ζet (ζee = 1)

⇝ X (t) = te , Y (t) =
∑
n⩾n0

anζ
n
e t

n.
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Rational parametrisations

Theorem (Duval)

There exists a globally Gal(K/K )-invariant set of
parametrisations

(
Xj(t),Yj(t)

)
, with Xj(t) = bjt

ej for each j ,

such that the roots of f (x)(y) = 0 in K{{x}} are the

Yj

(
ζej

ej

√
b−1
j x1/ej

)
for ζ

ej
ej = 1. In particular,

∑
j ej = n.

Suppose the
(
Xj(t),Yj(t)

)
for 1 ⩽ j ⩽ g form a system of

representatives of Galois orbits. For each j , let Kj be
K (bj , coefs of Yj), and fj = [Kj : K ]. Then

∑g
i=1 ej fj = n, and

f (x)(y) =

g∏
j=1

∏
σ:Kj ↪→K

∏
β
ej=b−1

j

(
y − Yj(βx

1/ei )
)

︸ ︷︷ ︸
irr. factors over K((x))︸ ︷︷ ︸

irr. factors over K((x))

.
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Computing the rational parametrisations

Write f (x)(y) =
∑

i ,j ai ,jx
jy i , and draw the Newton polygon

of the (i , j) in the support of f .

i = degy

j = degx

Let pi + qj = r be a segment, with p, q coprime, q > 0. Write

f =
∑

pi+qj=r

ai ,jx
jy i

︸ ︷︷ ︸
f0(x ,y)

+
∑

pi+qj>r

ai ,jx
jy i

︸ ︷︷ ︸
H.O.T.

.
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Computing the rational parametrisations

f =
∑

pi+qj=r

ai ,jx
jy i

︸ ︷︷ ︸
f0(x ,y)

+
∑

pi+qj>r

ai ,jx
jy i

︸ ︷︷ ︸
H.O.T.

.

Puiseux approach: Look for roots of valuation p/q, so

y = bxp/q + H.O.T. with b ∈ K
×
determined by f0(x , y) = 0:

f0(x , bx
p/q) =

∑
pi+qj=r

ai ,jx
qj/qbixpi/q = x r/q

∑
pi+qj=r

ai ,jb
i = x r/qB(b).

But as p, q coprime, i = i0 + qk , j = j0 − pk for k ∈ Z,
so B(b) is actually a polynomial in bq ⇝ q-th roots ⇝ bad for
rationality.
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Computing the rational parametrisations

f =
∑

pi+qj=r

ai ,jx
jy i

︸ ︷︷ ︸
f0(x ,y)

+
∑

pi+qj>r

ai ,jx
jy i

︸ ︷︷ ︸
H.O.T.

.

Rational approach: p, q coprime ⇝ Bézout up + vq = 1.

Look for x = b−utq, y = bv tp + H.O.T., b ∈ K
×
. Indeed,

f0(b
−utq, bv tp) =

∑
pi+qj=r

ai ,jb
−ujtqjbvi tpi

= t r
∑

pi+qj=r

ai ,jb
v(i0+qk)−u(j0−pk) = t rbvi0−uj0

∑
pi+qj=r

ai ,jb
k = t rbvi0−uj0B(b).

Solve B(b) = 0, plug in x = b−uxq1 , y = bvxp1 (1 + y1), and
iterate until the equation is nonsingular in y .
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Practical details

Store and remember the nonsingular equation in y obtained at
the end of the recursion
⇝ Black box able to give expansions with arbitrary t-adic
accuracy.

read("Algcurves.gp");

B=Branches0(y^3+2*x^3*y-x^7,t,a)[2][1];

BranchExpand(B,10)

BranchExpand(B,100)
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Practical details

Useful ingredient to handle successive algebraic extensions:

AlgExtend : (A,F ) 7−→ (B , g , a), where

A(x) ∈ K [x ] irr.,

F (x) ∈ K (α)[x ] where A(α) = 0,

and

B(x) ∈ K [x ] irr.

g(x) ∈ K [x ]: g(β) root of F (x) where B(β) = 0,

a(x) ∈ K [x ]: a(β) root of A(x).
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Computing the genus

Write again f (x , y) =
∑

i ,j ai ,jx
jy i .

Theorem (Novocin)

The ωi ,j =
x j−1y i−1

∂f
∂y

dx , i , j ∈ N, are holomorphic at the finite

nonsingular points. Any holomorphic differential on C is a
linear combination of the ωi ,j for (i , j) strictly in the convex
hull of the support of f (x , y).

⇝ Strategy: Compute local parametrisations at all the
singular points and at the points at infinity. Plug them into
the ωi ,j , and use linear algebra over K to find the
combinations whose polar parts vanish.

We get a K -basis of the space of holomorphic differentials.
The genus of the curve is its dimension.
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Integral closure (Preparation for Riemann-Roch)

Let K (C ) = FracK (x)[y ]/f (x , y).

The integral closure of K [x ] in K (C ) is

OC = {h(x , y) ∈ K (C ) | h holomorphic above x ̸=∞}.

Start with the approximation O =
⊕

j<n K [x ]y j
1,

where y1 = lcy (f )y .

For all irreducible U(x) ∈ K [x ], O is U-maximal unless
U2 | discy f (x , y).

For such U , compute the parametrisations at the points above
U(x) = 0, plug them into the x iy j

1/U(x) for i < degU and
j < n, and find linear combinations whose polar parts vanish.

Then join the local bases by performing a HNF over K [x ].
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CrvInit

The GP function CrvInit takes f (x , y) and computes the
rational parametrisations above the points P such that
x(P) =∞ or x(P) is a multiple root of ∆(x) or P is singular.

C=CrvInit(y^3+2*x^3*y-x^7);

CrvPrint(C);

C1=CrvInit(-256*x^56 + 6144*x^55 - 62464*x^54

+ 333824*x^53 - 859648*x^52 - 120832*x^51

+ 7252992*x^50 - 16046080*x^49 - 9891072*x^48

+ 90136576*x^47 - 73076736*x^46 - 237805568*x^45

+ 420485120*x^44 + 341843968*x^43 - 1165840384*x^42

- 192667648*x^41 + 2178936320*x^40 - 238563328*x^39

...

+ 3232*y^6*x^6 + 384*y^6*x^5

-96*y^6*x^4 - 16*y^6*x^3 + 27*y^8);
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Application: Weierstrass form

C : y 3 + 2x3y − x7 = 0 has genus g = 2, so it is hyperelliptic
⇝ has model H : w 2 = F (u).

Ω1(H) = ⟨du
w
, u du

w
⟩ ⇝ our basis of Ω1(C ) is (au+b) du

w
, (cu+d) du

w

⇝ Their quotient is au+b
cu+d

.

C[7] \\ yx/(2x^3+3y^2) dx, x^3/(2x^3+3y^2) dx

u = C[7][1][1]/C[7][1][2]

w = x

factor(MorImg(y^3+2*x^3*y-x^7,u,w))

poldisc(%[2,1],y)

DivPrint(FnDiv(C,u-2/3))
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Riemann-Roch

Let D =
∑

nP̃ P̃ formal Z-linear combination of points of C̃ .
The attached Riemann-Roch space is

L(D) = {h ∈ K (C ) | ordP̃ h ⩾ −nP̃ for all P̃}.
This is a finite-dimensional K -vector space. We want a basis.

Represent points P̃ ∈ C̃ either as nonsingular points P ∈ C , or
as local parametrisations.

Strategy:

Find d(x) ∈ K [x ] such that
h(x , y) ∈ L(D) =⇒ d(x)h(x , y) ∈ OC .

Use local parametrisations to find combinations vanishing
at appropriate order at relevant points.
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Riemann-Roch : Example

CrvPrint(C)

RiemannRoch(C,[2,5])

L=RiemannRoch(C,[[-1,1],3;3,1;1,-2])

DivPrint(FnDiv(C,L[1]))
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Riemann-Roch : Applications

We put a genus 1 curve in Weierstrass form:

C1 = CrvInit((x+y+1/x+1/y+1)*x*y);

CrvPrint(C1)

CrvEll(C1,[1,0,0])

We find a rational parametrisation of a curve of genus 0:

f = x^5+y^4+x^2*y^3;

C0 = CrvInit(f);

CrvPrint(C0)

[X,Y] = CrvRat(C0,1)

substvec(f,[x,y],[X,Y])
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Jacobians and Galois representations

With Riemann-Roch spaces, we can construct a Makdisi
model of the Jacobian J of C .

At the moment, only implemented for models of J over Zq/p
e ,

where q = pd with p a prime of good reduction, Zq is the ring
of integers of the unramified extension of Qp of degree d , and
e ∈ N is arbitrary.
But no difficulty for models of J over number fields.

p-adic models of J can be used to compute Galois
representations occurring in the torsion of J .

C=CrvInit(x^5 + y^5 - 6*x^3 + 6*x^2 + x*y - 3*y^2);

CrvPrint(C)

CrvPicTorsGalRep(C,2,13,700)
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Questions?

Thank you!
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