Plane algebraic curves in PARI/GP

Nicolas Mascot

Trinity College Dublin
Atelier PARI/GP 2022
January 14, 2022

Goals

Fix a field K of characteristic 0 (think $K=\mathbb{Q}$).
Consider the curve

$$
C: f(x, y)=0
$$

where $f(x, y) \in K[x, y]$ is squarefree.
We would like to

- Determine the genus of C,
- Compute Riemann-Roch spaces on C,
- Construct the Jacobian of C,
- ...

Goals

- Determine the genus of C,
- Compute Riemann-Roch spaces on C,
- Construct the Jacobian of C,
- ...

All this actually refers to the desingularisation $\widetilde{C} \rightarrow C$ of C.

Local parametrisations

For each point $P=\left(x_{P}, y_{P}\right)$ of C, local parametrisations

$$
x=X(t), y=Y(t)
$$

where X, Y are nonconstant formal power series such that $f(X(t), Y(t))=0$ and $X(0)=x_{P}, Y(0)=y_{P}$.

We assume X and Y are not both series in t^{n} for any $n \geqslant 2$.
Uniqueness: Hope that Parametrisations at $P \leftrightarrow$ Points of \widetilde{C} above P. But can rescale $t \leftarrow t^{\prime}=c t+O\left(t^{2}\right), c \neq 0 \ldots$

Existence: OK if P is nonsingular: can Newton w.r.t. x or y. But what if P is singular?

Puiseux series

Theorem (Newton-Puiseux)

$$
\bar{K}\{\{x\}\}=\bigcup_{e \geqslant 1} \bar{K}\left(\left(x^{1 / e}\right)\right) \text { is algebraically closed. }
$$

View $f(x, y)=f(x)(y) \in K[x][y] \subset K((x))[y]$, meaning we think of y as an algebraic function of x :

$$
\widetilde{C} \longrightarrow C \longrightarrow \mathbb{P}_{x}^{1}
$$

Let $n=\operatorname{deg}_{y} f$.
Then in $\bar{K}\{\{x\}\}, f(x)(y)$ has roots π_{1}, \cdots, π_{n} \rightsquigarrow For each $\pi_{j}=\sum_{n \geqslant n_{0}} a_{n} x^{n / e}$, local parametrisation $x=t^{e}, y=\sum_{n \geqslant n_{0}} a_{n} t^{n}$.

This yields all points above $x=0$.
For the general case, translate / change variables.

Rationality

Suppose $X(t), Y(t)$ corresponds to $\widetilde{P} \in \widetilde{C}$.
We would like K (coeffs of $X, Y)=$ the field of definition of \widetilde{P}.
\triangle Rescalings $t \leftarrow t^{\prime}=c t+O\left(t^{2}\right)$ typically destroy this!
If P is nonsingular, we can always have either $X(t)=x_{P}+t$ or $Y(t)=y_{P}+t$. But what if P is singular?

If $X(t)=t^{e}, Y(t)=\sum_{n \geqslant n_{0}} a_{n} t^{n}$, can rescale $t \leftarrow \zeta_{e} t\left(\zeta_{e}^{e}=1\right)$
$\rightsquigarrow X(t)=t^{e}, Y(t)=\sum_{n \geqslant n_{0}} a_{n} \zeta_{e}^{n} t^{n}$.

Rational parametrisations

Theorem (Duval)

There exists a globally $\operatorname{Gal}(\bar{K} / K)$-invariant set of parametrisations $\left(X_{j}(t), Y_{j}(t)\right)$, with $X_{j}(t)=b_{j} t^{e_{j}}$ for each j, such that the roots of $f(x)(y)=0$ in $\bar{K}\{\{x\}\}$ are the $Y_{j}\left(\zeta_{e_{j}} \sqrt[e^{2}]{b_{j}^{-1}} x^{1 / e_{j}}\right)$ for $\zeta_{e_{j}}^{e_{j}}=1$. In particular, $\sum_{j} e_{j}=n$.

Suppose the $\left(X_{j}(t), Y_{j}(t)\right)$ for $1 \leqslant j \leqslant g$ form a system of representatives of Galois orbits. For each j, let K_{j} be $K\left(b_{j}\right.$, coefs of $\left.Y_{j}\right)$, and $f_{j}=\left[K_{j}: K\right]$. Then $\sum_{i=1}^{g} e_{j} f_{j}=n$, and

$$
f(x)(y)=\prod_{j=1}^{g} \prod_{\sigma: K_{j} \hookrightarrow \bar{K}} \underbrace{\prod_{\beta^{e_{j}}=b_{j}^{-1}}\left(y-Y_{j}\left(\beta x^{1 / e_{i}}\right)\right)}_{\text {irr. factors over } K((x))}
$$

Computing the rational parametrisations

Write $f(x)(y)=\sum_{i, j} a_{i, j} x^{j} y^{i}$, and draw the Newton polygon of the (i, j) in the support of f.

Let $p i+q j=r$ be a segment, with p, q coprime, $q>0$. Write

$$
f=\underbrace{\sum_{p i+q j=r} a_{i, j} x^{j} y^{i}}_{f_{0}(x, y)}+\underbrace{\sum_{p i+q j>r} a_{i, j} x^{j} y^{i}}_{\text {Н.О.Т. }} .
$$

Computing the rational parametrisations

$$
f=\underbrace{\sum_{p i+q j=r} a_{i, j} x^{j} y^{i}}_{f_{0}(x, y)}+\underbrace{\sum_{p i+q j>r} a_{i, j} x^{j} y^{i}}_{\text {H.O.T. }} .
$$

Puiseux approach: Look for roots of valuation p / q, so
$y=b x^{p / q}+$ H.O.T. with $b \in \bar{K}^{\times}$determined by $f_{0}(x, y)=0$:
$f_{0}\left(x, b x^{p / q}\right)=\sum_{p i+q j=r} a_{i, j} x^{q j / q} b^{i} x^{p i / q}=x^{r / q} \sum_{p i+q j=r} a_{i, j} b^{i}=x^{r / q} B(b)$.
But as p, q coprime, $i=i_{0}+q k, j=j_{0}-p k$ for $k \in \mathbb{Z}$, so $B(b)$ is actually a polynomial in $b^{q} \rightsquigarrow q$-th roots \rightsquigarrow bad for rationality.

Computing the rational parametrisations

$$
f=\underbrace{\sum_{p i+q j=r} a_{i, j} x^{j} y^{i}}_{f_{0}(x, y)}+\underbrace{\sum_{p i+a j>r} a_{i, j} x^{j} y^{i}}_{\text {H.O.T. }}
$$

Rational approach: p, q coprime \rightsquigarrow Bézout $u p+v q=1$. Look for $x=b^{-u} t^{q}, y=b^{\vee} t^{p}+$ H.O.T., $b \in \bar{K}^{\times}$. Indeed,

$$
\begin{gathered}
f_{0}\left(b^{-u} t^{q}, b^{\vee} t^{p}\right)=\sum_{p i+q j=r} a_{i, j} b^{-u j} t^{q j} b^{v i} t^{p i} \\
=t^{r} \sum_{p i+q j=r} a_{i, j} b^{v\left(i_{0}+q k\right)-u\left(j_{0}-p k\right)}=t^{r} b^{v_{0}-u_{j}} \sum_{p i+q j=r} a_{i, j} b^{k}=t^{r} b^{v_{0}-u j_{0}} B(b) .
\end{gathered}
$$

Solve $B(b)=0$, plug in $x=b^{-u} x_{1}^{q}, y=b^{\nu} x_{1}^{p}\left(1+y_{1}\right)$, and iterate until the equation is nonsingular in y.

Practical details

Store and remember the nonsingular equation in y obtained at the end of the recursion
\rightsquigarrow Black box able to give expansions with arbitrary t-adic accuracy.
read("Algcurves.gp");
B=Branches0 ($\mathrm{y}^{\wedge} 3+2 * \mathrm{x}^{\wedge} 3 * \mathrm{y}-\mathrm{x}^{\wedge} 7$, t, a) [2] [1] ;
BranchExpand ($\mathrm{B}, 10$)
BranchExpand (B, 100)

Practical details

Useful ingredient to handle successive algebraic extensions:
AlgExtend : $(A, F) \longmapsto(B, g, a)$, where

- $A(x) \in K[x]$ irr.,
- $F(x) \in K(\alpha)[x]$ where $A(\alpha)=0$,
and
- $B(x) \in K[x]$ irr.
- $g(x) \in K[x]: g(\beta)$ root of $F(x)$ where $B(\beta)=0$,
- $a(x) \in K[x]: a(\beta)$ root of $A(x)$.

Computing the genus

Write again $f(x, y)=\sum_{i, j} a_{i, j} x^{j} y^{i}$.

Theorem (Novocin)

The $\omega_{i, j}=\frac{x^{j-1} y^{i-1}}{\frac{\partial f}{\partial y}} \mathrm{~d} x, i, j \in \mathbb{N}$, are holomorphic at the finite nonsingular points. Any holomorphic differential on C is a linear combination of the $\omega_{i, j}$ for (i, j) strictly in the convex hull of the support of $f(x, y)$.
\rightsquigarrow Strategy: Compute local parametrisations at all the singular points and at the points at infinity. Plug them into the $\omega_{i, j}$, and use linear algebra over K to find the combinations whose polar parts vanish.

We get a K-basis of the space of holomorphic differentials.
The genus of the curve is its dimension.

Integral closure (Preparation for Riemann-Roch)

Let $K(C)=\operatorname{Frac} K(x)[y] / f(x, y)$.
The integral closure of $K[x]$ in $K(C)$ is

$$
\mathcal{O}_{C}=\{h(x, y) \in K(C) \mid h \text { holomorphic above } x \neq \infty\} .
$$

Start with the approximation $\mathcal{O}=\bigoplus_{j<n} K[x] y_{1}^{j}$, where $y_{1}=\mid c_{y}(f) y$.

For all irreducible $U(x) \in K[x], \mathcal{O}$ is U-maximal unless $U^{2} \mid \operatorname{disc}_{y} f(x, y)$.

For such U, compute the parametrisations at the points above $U(x)=0$, plug them into the $x^{i} y_{1}^{j} / U(x)$ for $i<\operatorname{deg} U$ and $j<n$, and find linear combinations whose polar parts vanish. Then join the local bases by performing a HNF over $K[x]$.

CrvInit

The GP function CrvInit takes $f(x, y)$ and computes the rational parametrisations above the points P such that $x(P)=\infty$ or $x(P)$ is a multiple root of $\Delta(x)$ or P is singular. C=CrvInit ($\mathrm{y}^{\wedge} 3+2 * \mathrm{x}^{\wedge} 3 * \mathrm{y}-\mathrm{x}^{\wedge} 7$) ; CrvPrint (C) ;

C1=CrvInit ($-256 * x^{\wedge} 56+6144 * x^{\wedge} 55-62464 * x^{\wedge} 54$
$+333824 * x^{\wedge} 53-859648 * x^{\wedge} 52$ - 120832*x^51
$+7252992 * x \wedge 50-16046080 * x \wedge 49$ - 9891072*x^48
$+90136576 * x^{\wedge} 47-73076736 * x \wedge 46-237805568 * x^{\wedge} 45$
$+420485120 * x^{\wedge} 44+341843968 * x^{\wedge} 43-1165840384 * x^{\wedge} 42$

- 192667648*x^41 + 2178936320*x^40-238563328*x^39
$+3232 * y^{\wedge} 6 * x^{\wedge} 6+384 * y^{\wedge} 6 * x^{\wedge} 5$
$\left.-96 * \mathrm{y}^{\wedge} 6 * \mathrm{x} \wedge 4-16 * \mathrm{y}^{\wedge} 6 * \mathrm{x}^{\wedge} 3+27 * \mathrm{y}^{\wedge} 8\right)$;

Application: Weierstrass form

C : $y^{3}+2 x^{3} y-x^{7}=0$ has genus $g=2$, so it is hyperelliptic \rightsquigarrow has model $H: w^{2}=F(u)$.
$\Omega^{1}(H)=\left\langle\frac{\mathrm{d} u}{w}, \frac{u \mathrm{~d} u}{w}\right\rangle \rightsquigarrow$ our basis of $\Omega^{1}(C)$ is $\frac{(a u+b) \mathrm{d} u}{w}, \frac{(c u+d) \mathrm{d} u}{w}$ \rightsquigarrow Their quotient is $\frac{a u+b}{c u+d}$.

C[7]
 $y x /(2 x \wedge 3+3 y \wedge 2) d x, x^{\wedge} 3 /\left(2 x^{\wedge} 3+3 y^{\wedge} 2\right) d x$ $\mathrm{u}=\mathrm{C}[7][1][1] / \mathrm{C}[7][1][2]$
w = x
factor (MorImg(y^3+2*x^3*y-x^7,u,w))
poldisc(\% [2,1],y)
DivPrint(FnDiv(C,u-2/3))

Riemann-Roch

Let $D=\sum n_{\widetilde{P}} \widetilde{P}$ formal \mathbb{Z}-linear combination of points of \widetilde{C}. The attached Riemann-Roch space is

$$
L(D)=\left\{h \in K(C) \mid \operatorname{ord}_{\tilde{P}} h \geqslant-n_{\widetilde{P}} \text { for all } \widetilde{P}\right\} .
$$

This is a finite-dimensional K-vector space. We want a basis. Represent points $\widetilde{P} \in \widetilde{C}$ either as nonsingular points $P \in C$, or as local parametrisations.

Strategy:

- Find $d(x) \in K[x]$ such that $h(x, y) \in L(D) \Longrightarrow d(x) h(x, y) \in \mathcal{O}_{C}$.
- Use local parametrisations to find combinations vanishing at appropriate order at relevant points.

Riemann-Roch: Example

CrvPrint (C)
RiemannRoch (C, $[2,5]$)
L=RiemannRoch (C, [[-1, 1] , 3; 3, 1; 1, -2])
DivPrint (FnDiv(C,L[1]))

Riemann-Roch : Applications

We put a genus 1 curve in Weierstrass form:
C1 $=\operatorname{CrvInit}((x+y+1 / x+1 / y+1) * x * y)$;
CrvPrint(C1)
CrvEll(C1, $[1,0,0])$

We find a rational parametrisation of a curve of genus 0 :
$\mathrm{f}=\mathrm{x}^{\wedge} 5+\mathrm{y}^{\wedge} 4+\mathrm{x}^{\wedge} 2 * \mathrm{y}^{\wedge} 3$;
C0 $=\operatorname{CrvInit}(f)$;
CrvPrint(C0)
$[\mathrm{X}, \mathrm{Y}]=\operatorname{CrvRat}(\mathrm{C} 0,1)$
substvec (f, $[x, y],[X, Y])$

Jacobians and Galois representations

With Riemann-Roch spaces, we can construct a Makdisi model of the Jacobian J of C.

At the moment, only implemented for models of J over \mathbb{Z}_{q} / p^{e}, where $q=p^{d}$ with p a prime of good reduction, \mathbb{Z}_{q} is the ring of integers of the unramified extension of \mathbb{Q}_{p} of degree d, and $e \in \mathbb{N}$ is arbitrary.
But no difficulty for models of J over number fields.
p-adic models of J can be used to compute Galois representations occurring in the torsion of J.
C=CrvInit (x^5 + $\mathrm{y}^{\wedge} 5-6 * \mathrm{x}^{\wedge} 3+6 * \mathrm{x}^{\wedge} 2+\mathrm{x} * \mathrm{y}-3 * \mathrm{y}^{\wedge} 2$) ;
CrvPrint (C)
CrvPicTorsGalRep(C, 2, 13,700)

Questions?

Thank you!

