Explicit Isogenies of prime degree over number fields

work in progress with Maarten Derickx

Barinder Singh Banwait

Ruprecht-Karls-Universität Heidelberg

Atelier PARI/GP Université de Franche-Comté, Besançon Thursday, 13th January 2022

Copyright Disclaimer: Photo credits and attribution are given on the final slide.

I was really looking forward to being there in person this week ...

I was really looking forward to being there in person this week ...

... but France had closed its border to people from the UK unless they had a "motifs impérieux" for travel, and

I was really looking forward to being there in person this week ...

... but France had closed its border to people from the UK unless they had a "motifs impérieux" for travel, and

Ces motifs ne permettront pas de se déplacer pour raisons touristiques ou professionnelles

This *did* get relaxed on 6th January, so I *could* have travelled with last-minute bookings, but then I received this ...

This *did* get relaxed on 6th January, so I *could* have travelled with last-minute bookings, but then I received this ...

Dear Barinder Banwait Birth date: 24/11/1986 Test date: 06/01/2022

Your coronavirus PCR test (or other lab test) result is positive. It's likely you had the virus when the test was done.

Self-isolate immediately (including if this is a follow-up test result) from the day your symptoms started, or the test date if you've no symptoms.

This *did* get relaxed on 6th January, so I *could* have travelled with last-minute bookings, but then I received this ...

Dear Barinder Banwait Birth date: 24/11/1986 Test date: 06/01/2022

Your coronavirus PCR test (or other lab test) result is positive. It's likely you had the virus when the test was done.

Self-isolate immediately (including if this is a follow-up test result) from the day your symptoms started, or the test date if you've no symptoms.

Fortunately it has been mostly mild.

Introduction	Isogeny Primes v1	A cubic example	Questions
00000			

Introduction

Introduction	Isogeny Primes v1	A cubic example	Questions
00000			
Rational Isc	ogenies		

Introduction	Isogeny Primes v1 0000000000000	A cubic example	Questions
Rational Isogenie	es		

Let E_1 , E_2 be two elliptic curves over a number field K. Write $G_K := \text{Gal}(\overline{K}/K)$.

Introduction 0●0000	Isogeny Primes v1 000000000000	A cubic example 000	Questions
Rational Iso	genies		

Let E_1 , E_2 be two elliptic curves over a number field K. Write $G_K := \operatorname{Gal}(\overline{K}/K)$.

Definition

• An isogeny $\phi: E_1 \rightarrow E_2$ is a non-constant morphism of curves which

Introduction	Isogeny Primes v1	A cubic example	Questions
00000			
Rational Iso	genies		

Let E_1 , E_2 be two elliptic curves over a number field K. Write $G_K := \text{Gal}(\overline{K}/K)$.

Definition

• An isogeny $\phi : E_1 \rightarrow E_2$ is a non-constant morphism of curves which \odot maps O_{E_1} to O_{E_2} ;

Introduction	Isogeny Primes v1	A cubic example	Questions
00000	00000000000	000	00
D. J. LI			

Let E_1 , E_2 be two elliptic curves over a number field K. Write $G_K := \operatorname{Gal}(\overline{K}/K)$.

- An isogeny $\phi: E_1 \rightarrow E_2$ is a non-constant morphism of curves which
 - \odot maps O_{E_1} to O_{E_2} ;
 - \Leftrightarrow induces a group homomorphism from $E_1(\overline{K})$ to $E_2(\overline{K})$;

Introduction	Isogeny Primes v1	A cubic example	Questions
00000			
D · · · · ·			

Let E_1 , E_2 be two elliptic curves over a number field K. Write $G_K := \text{Gal}(\overline{K}/K)$.

- An isogeny $\phi: E_1 \rightarrow E_2$ is a non-constant morphism of curves which
 - \odot maps O_{E_1} to O_{E_2} ;
 - \Leftrightarrow induces a group homomorphism from $E_1(\overline{K})$ to $E_2(\overline{K})$;
 - \Leftrightarrow has finite kernel.

Introduction	Isogeny Primes v1	A cubic example	Questions
00000			

Let E_1 , E_2 be two elliptic curves over a number field K. Write $G_K := \text{Gal}(\overline{K}/K)$.

- An isogeny $\phi: E_1 \rightarrow E_2$ is a non-constant morphism of curves which
 - \odot maps O_{E_1} to O_{E_2} ;
 - \Leftrightarrow induces a group homomorphism from $E_1(\overline{K})$ to $E_2(\overline{K})$;
 - \Leftrightarrow has finite kernel.

• The degree of
$$\phi = |\ker(\phi)| = [\overline{K}(E_1) : \phi^*\overline{K}(E_2)].$$

Introduction	Isogeny Primes v1	A cubic example	Questions
00000			

Let E_1 , E_2 be two elliptic curves over a number field K. Write $G_K := \text{Gal}(\overline{K}/K)$.

- An isogeny $\phi: E_1 \rightarrow E_2$ is a non-constant morphism of curves which
 - \odot maps O_{E_1} to O_{E_2} ;
 - \Leftrightarrow induces a group homomorphism from $E_1(\overline{K})$ to $E_2(\overline{K})$;
 - \Leftrightarrow has finite kernel.
- The degree of $\phi = |\ker(\phi)| = [\overline{K}(E_1) : \phi^*\overline{K}(E_2)].$
- ϕ is *K*-rational if it is compatible with the *G_K*-action on *E*₁ and *E*₂; that is, if the following diagram commutes for all $\sigma \in G_K$:

$$\begin{array}{ccc} E_1 & \stackrel{\phi}{\longrightarrow} & E_2 \\ \downarrow^{\sigma} & & \downarrow^{\sigma} \\ E_1 & \stackrel{\phi}{\longrightarrow} & E_2 \end{array}$$

Introduction	Isogeny Primes v1	A cubic example	Questions
00000			
-			

Let E_1 , E_2 be two elliptic curves over a number field K. Write $G_K := \operatorname{Gal}(\overline{K}/K)$.

Definition

- An isogeny $\phi: E_1 \rightarrow E_2$ is a non-constant morphism of curves which
 - \odot maps O_{E_1} to O_{E_2} ;
 - \Leftrightarrow induces a group homomorphism from $E_1(\overline{K})$ to $E_2(\overline{K})$;
 - ⇔ has finite kernel.
- The degree of $\phi = |\ker(\phi)| = [\overline{K}(E_1) : \phi^*\overline{K}(E_2)].$
- ϕ is *K*-rational if it is compatible with the *G_K*-action on *E*₁ and *E*₂; that is, if the following diagram commutes for all $\sigma \in G_K$:

$$\begin{array}{ccc} E_1 & \stackrel{\phi}{\longrightarrow} & E_2 \\ \downarrow^{\sigma} & & \downarrow^{\sigma} \\ E_1 & \stackrel{\phi}{\longrightarrow} & E_2 \end{array}$$

Equivalently, ϕ is K-rational if ker(ϕ) is G_{K} -stable.

Introduction	Isogeny Primes v1	A cubic example	Questions
00000			

Let E_1 , E_2 be two elliptic curves over a number field K. Write $G_K := \text{Gal}(\overline{K}/K)$.

Definition

- An isogeny $\phi: E_1 \rightarrow E_2$ is a non-constant morphism of curves which
 - \odot maps O_{E_1} to O_{E_2} ;
 - \Leftrightarrow induces a group homomorphism from $E_1(\overline{K})$ to $E_2(\overline{K})$;
 - \Leftrightarrow has finite kernel.
- The degree of $\phi = |\ker(\phi)| = [\overline{K}(E_1) : \phi^*\overline{K}(E_2)].$
- ϕ is *K*-rational if it is compatible with the *G_K*-action on *E*₁ and *E*₂; that is, if the following diagram commutes for all $\sigma \in G_K$:

$$\begin{array}{ccc} E_1 & \stackrel{\phi}{\longrightarrow} & E_2 \\ \sigma & & & \downarrow^{\sigma} \\ F_1 & \stackrel{\phi}{\longrightarrow} & E_2 \end{array}$$

Equivalently, ϕ is K-rational if ker(ϕ) is G_{K} -stable.

• ϕ is said to be cyclic if ker (ϕ) is a cyclic group.

Introduction	Isogeny Primes v1	A cubic example	Questions
00000			
Isogeny classes a	are finite over	number fields	

Theorem (Shafarevich, 1962)

Let E/K be an elliptic curve over a number field. Then there are only finitely many elliptic curves E'/K which are K-isogenous to E.

Theorem (Shafarevich, 1962)

Let E/K be an elliptic curve over a number field. Then there are only finitely many elliptic curves E'/K which are K-isogenous to E.

Fact

Every isogeny is the composition of a cyclic isogeny with the multiplication-by-m map for some $m \ge 1$.

Theorem (Shafarevich, 1962)

Let E/K be an elliptic curve over a number field. Then there are only finitely many elliptic curves E'/K which are K-isogenous to E.

Fact

Every isogeny is the composition of a cyclic isogeny with the multiplication-by-m map for some $m \ge 1$.

So between any two elliptic curves in the isogeny class of E, there is a unique minimal cyclic isogeny degree between them.

Introduction	Isogeny Primes v1	A cubic example	Questions
000000			
These minimal	cyclic isogeny degrees a	are implemented in PARI/0	GP as

Introduction	Isogeny Primes v1	A cubic example	Questions
000000			
These minimal cy	clic isogeny degrees	are implemented in PARI/G	P as

ellisomat.

```
? nf = nfinit(a<sup>2</sup> - 2);
? ell = ellinit([a,-1,0,18,46],nf);
? [L,M] = ellisomat(ell);
cpu time = 125 ms, real time = 163 ms.
? M[,1]
%8 = [1, 2, 4, 4, 3, 3, 6, 6, 12, 12, 12, 12]~
```

Introduction 000●00	Isogeny Primes v1 000000000000	A cubic example 000	Questions 00
These minim	nal cyclic isogeny degrees a	re implemented in PARI/	GP as
ellisomat.			

The degree computation is based on Billerey's algorithm for computing isogenies of prime degree for a fixed elliptic curve E/K.

Nicolas Billerey

Introduction	Isogeny Primes v1	A cubic example	Questions
000000			
Uniform isogeny	primes?		

Definition

For a number field K, a prime p is called an **isogeny prime for** K if there exists an elliptic curve over K which admits a K-rational p-isogeny. We write the set of such primes as IsogPrimeDeg(K).

Introduction	Isogeny Primes v1	A cubic example	Questions
000000	00000000000	000	00
Uniform isogeny	primes?		

Definition

For a number field K, a prime p is called an **isogeny prime for** K if there exists an elliptic curve over K which admits a K-rational p-isogeny. We write the set of such primes as IsogPrimeDeg(K).

By the theory of CM, IsogPrimeDeg(K) is infinite if K contains the Hilbert class field of an imaginary quadratic field.

Introduction	Isogeny Primes v1	A cubic example	Questions
000000	00000000000	000	00
Uniform isogeny	primes?		

Definition

For a number field K, a prime p is called an **isogeny prime for** K if there exists an elliptic curve over K which admits a K-rational p-isogeny. We write the set of such primes as lsogPrimeDeg(K).

By the theory of CM, IsogPrimeDeg(K) is infinite if K contains the Hilbert class field of an imaginary quadratic field.

Theorem (Mazur, 1978)

 $\mathsf{IsogPrimeDeg}(\mathbb{Q}) = \{2, 3, 5, 7, 11, 13, 17, 19, 37, 43, 67, 163\}$

Barry C. Mazur

Introduction	Isogeny Primes v1	A cubic example	Questions
00000	00000000000	000	00

Theorem (Momose + Merel, 1995)

Assume GRH. Then lsogPrimeDeg(K) is finite if and only if K does not contain the Hilbert class field of an imaginary quadratic field.

Fumiyuki Momose

Löic Merel

Introduction	Isogeny Primes v1	A cubic example	Questions
000000	•0000000000	000	00

Isogeny Prime v1

Introduction

Isogeny Primes v1

A cubic example

Questions

Computing IsogPrimeDeg(K)?

Isogeny Primes v1

A cubic example

Questions

Computing IsogPrimeDeg(K)?

Theorem (B.-Derickx)

Let K be a number field which does not contain the Hilbert class field of an imaginary quadratic field. Then there is an algorithm which computes a superset of lsogPrimeDeg(K) as the union of three sets:

 $\begin{aligned} \mathsf{IsogPrimeDeg}(\mathcal{K}) \subseteq \mathsf{PreTypeOneTwoPrimes}(\mathcal{K}) \cup \mathsf{TypeOnePrimes}(\mathcal{K}) \\ \cup \mathsf{TypeTwoPrimes}(\mathcal{K}). \end{aligned}$

With Maarten Derickx in West London last week

Introduction	Isogeny Primes v1	A cubic example	Questions
	00000000000		
lsogeny types			

Let E/K be an elliptic curve over a number field which admits a K-rational p-isogeny.

Introduction	Isogeny Primes v1	A cubic example	Questions
000000	00●000000000	000	
lsogeny types			

Let E/K be an elliptic curve over a number field which admits a K-rational p-isogeny. Let λ denote the isogeny character:

Introduction	Isogeny Primes v1	A cubic example	Questions
000000	00●000000000	000	
lsogeny types			

Let E/K be an elliptic curve over a number field which admits a K-rational p-isogeny. Let λ denote the isogeny character:

$$\lambda: G_{\mathcal{K}} \longrightarrow \operatorname{Aut} V(\overline{\mathcal{K}}) \cong \mathbb{F}_{p}^{\times},$$

Introduction	Isogeny Primes v1	A cubic example	Questions
	00000000000		
Isogenv types			

Let E/K be an elliptic curve over a number field which admits a K-rational p-isogeny. Let λ denote the isogeny character:

$$\lambda: G_{\mathcal{K}} \longrightarrow \operatorname{Aut} V(\overline{\mathcal{K}}) \cong \mathbb{F}_{p}^{\times},$$

where V is the kernel of the isogeny
Introduction	Isogeny Primes v1	A cubic example	Questions
	00000000000		
1			
Isogenv types			

$$\lambda: G_{\mathcal{K}} \longrightarrow \operatorname{Aut} V(\overline{\mathcal{K}}) \cong \mathbb{F}_{p}^{\times},$$

where V is the kernel of the isogeny, which can be thought of as a 1d G_K -representation.

Introduction	Isogeny Primes v1	A cubic example	Questions
000000	000000000000	000	
lsogeny types			

$$\lambda: G_{\mathcal{K}} \longrightarrow \operatorname{Aut} V(\overline{\mathcal{K}}) \cong \mathbb{F}_{p}^{\times},$$

where V is the kernel of the isogeny, which can be thought of as a 1d G_K -representation.

Theorem (Momose, watered-down)

Let K be a number field which does not contain the HCF of an IQF. Then there exists a constant $C_0 = C_0(K)$ such that for any prime $p > C_0$, and for any elliptic curve admitting a K-rational p-isogeny, the isogeny character λ falls into one of the following two types:

Introduction	Isogeny Primes v1	A cubic example	Questions
000000	00000000000	000	00
lsogeny types			

$$\lambda: G_{\mathcal{K}} \longrightarrow \operatorname{Aut} V(\overline{\mathcal{K}}) \cong \mathbb{F}_{p}^{\times},$$

where V is the kernel of the isogeny, which can be thought of as a 1d G_K -representation.

Theorem (Momose, watered-down)

Let K be a number field which does not contain the HCF of an IQF. Then there exists a constant $C_0 = C_0(K)$ such that for any prime $p > C_0$, and for any elliptic curve admitting a K-rational p-isogeny, the isogeny character λ falls into one of the following two types: Type 1. λ^{12} or $(\lambda \theta_p^{-1})^{12}$ is unramified ($\theta_p = mod-p$ cyclotomic character).

Introduction	Isogeny Primes v1	A cubic example	Questions
000000	00000000000	000	00
lsogeny types			

$$\lambda: G_{\mathcal{K}} \longrightarrow \operatorname{Aut} V(\overline{\mathcal{K}}) \cong \mathbb{F}_{p}^{\times},$$

where V is the kernel of the isogeny, which can be thought of as a 1d G_K -representation.

Theorem (Momose, watered-down)

Let K be a number field which does not contain the HCF of an IQF. Then there exists a constant $C_0 = C_0(K)$ such that for any prime $p > C_0$, and for any elliptic curve admitting a K-rational p-isogeny, the isogeny character λ falls into one of the following two types: Type 1. λ^{12} or $(\lambda \theta_p^{-1})^{12}$ is unramified ($\theta_p = \text{mod-}p$ cyclotomic character). Type 2. $\lambda^{12} = \theta_p^6$ and $p \equiv 3 \pmod{4}$.

Introduction	Isogeny Primes v1	A cubic example	Questions
	00000000000		

These two special types of λ arise from the following Lemma.

ntroduction	Isogeny Primes v1	A cubic example	Questions
000000	000●000000000	000	
These two special field theory, we ca coprime to <i>p</i> .	types of λ arise from n identify λ as a characteristic set of the set of	n the following Lemma. By aracter of $I_{\mathcal{K}}(p)$, ideals of H	y class K

ntroduction D00000	lsogeny Primes v1 000€000000000	A cubic example 000	Questions
These two s field theory,	pecial types of λ arise from we can identify λ as a cha	the following Lemma. B racter of $I_{\mathcal{K}}(p)$, ideals of	By class K
coprime to	ס.		

LEMMA 1. Assume that k is a Galois extension of \mathbf{Q} and that the rational prime p is unramified in k. Then for a fixed prime \mathfrak{p} of k lying over p, we have integers $a_{\sigma}, 0 \leq a_{\sigma} \leq 12$, for $\sigma \in \text{Gal}(k/\mathbf{Q})$ such that

 $\lambda^{12}((\alpha)) \equiv \alpha^{\epsilon} \pmod{p}$

for $\varepsilon = \Sigma_{\sigma} a_{\sigma} \sigma$ and $\alpha \in k^{\times}$ prime to p.

Introduction 000000	Isogeny Primes v1 000●000000000	A cubic example 000	Questions
These two field theory	special types of λ arise from η , we can identify λ as a cha	the following Lemma. Eracter of $I_{\mathcal{K}}(p)$, ideals of	By class <i>K</i>
coprime to	р.		

LEMMA 1. Assume that k is a Galois extension of \mathbf{Q} and that the rational prime p is unramified in k. Then for a fixed prime p of k lying over p, we have integers a_{σ} , $0 \leq a_{\sigma} \leq 12$, for $\sigma \in \text{Gal}(k/\mathbf{Q})$ such that

 $\lambda^{12}((\alpha)) \equiv \alpha^{\epsilon} \pmod{p}$

for $\varepsilon = \Sigma_{\sigma} a_{\sigma} \sigma$ and $\alpha \in k^{\times}$ prime to p.

We show that the same result holds in the non-Galois setting, by replacing $Gal(K/\mathbb{Q})$ with $Hom(K, K^g)$, where K^g is the Galois closure of K.

Introduction 000000	lsogeny Primes v1 000●000000000	A cubic example 000	Questions
These two special field theory, we ca	types of λ arise from an identify λ as a characteristic set of the set o	m the following Lemma. In a following Lemma. In a following the set of $I_K(p)$, ideals of	By class <i>K</i>
coprime to p.			

LEMMA 1. Assume that k is a Galois extension of **Q** and that the rational prime p is unramified in k. Then for a fixed prime \mathfrak{p} of k lying over p, we have integers a_{σ} , $0 \leq a_{\sigma} \leq 12$, for $\sigma \in \text{Gal}(k/\mathbf{Q})$ such that

 $\lambda^{12}((\alpha)) \equiv \alpha^{\varepsilon} \pmod{\mathfrak{p}}$

for $\varepsilon = \Sigma_{\sigma} a_{\sigma} \sigma$ and $\alpha \in k^{\times}$ prime to p.

We show that the same result holds in the non-Galois setting, by replacing $Gal(K/\mathbb{Q})$ with $Hom(K, K^g)$, where K^g is the Galois closure of K.

By fixing an ordering of the embeddings in $\Sigma := \text{Hom}(K, K^g)$, we can think of ε as a tuple $(a_{\sigma})_{\sigma \in \Sigma}$, called the isogeny signature.

Introduction 000000	Isogeny Primes v1 000●00000000	A cubic example 000	Questions
These two special	types of λ arise from	the following Lemma.	By class
field theory, we ca	In identify λ as a chara	acter of $I_K(p)$, ideals of	t K

coprime to *p*.

LEMMA 1. Assume that k is a Galois extension of \mathbf{Q} and that the rational prime p is unramified in k. Then for a fixed prime p of k lying over p, we have integers a_{σ} , $0 \leq a_{\sigma} \leq 12$, for $\sigma \in \text{Gal}(k/\mathbf{Q})$ such that

 $\lambda^{12}((\alpha)) \equiv \alpha^{\varepsilon} \pmod{\mathfrak{p}}$

for $\varepsilon = \Sigma_{\sigma} a_{\sigma} \sigma$ and $\alpha \in k^{\times}$ prime to p.

We show that the same result holds in the non-Galois setting, by replacing $Gal(K/\mathbb{Q})$ with $Hom(K, K^g)$, where K^g is the Galois closure of K.

By fixing an ordering of the embeddings in $\Sigma := \text{Hom}(K, K^g)$, we can think of ε as a tuple $(a_{\sigma})_{\sigma \in \Sigma}$, called the isogeny signature.

REMARK 1. The integers $a_{\mathfrak{P}}$'s take the values 0, 12; 4, 8 (only if the modular invariant $j(E) \equiv 0 \pmod{\mathfrak{p}}$ and $p \equiv 2 \pmod{3}$; 6 (only if $j(E) \equiv 1728 \pmod{\mathfrak{p}}$ and $p \equiv 3 \pmod{4}$ (cf. [Ma1], Chap. 3; [Ma2]).

We obtain the following picture for the reduction modulo p of $X_0(N)$:

From Mazur and Rapoport's Appendix to Mazur's 1977 paper. The *E* components arise from j = 1728 elliptic curves, the *F* and *G* from j = 0.

Introduction Isoge	ny Primes v1	A cubic example	Questions
00000 0000	00000000	000	00

λ of Type 1 means $\varepsilon = (0, \cdots, 0)$ or $(12, \cdots, 12)$

Introduction	Isogeny Primes v1	A cubic example	Questions
	00000000000		

$$\lambda$$
 of Type 1 means $arepsilon = (0, \cdots, 0)$ or $(12, \cdots, 12)$

 λ of Type 2 means $\varepsilon = (6, \cdots, 6)$

Introduction	Isogeny Primes v1	A cubic example	Questions
	00000000000		

$$\lambda$$
 of Type 1 means $\varepsilon = (0, \cdots, 0)$ or $(12, \cdots, 12)$

 λ of Type 2 means $\varepsilon = (6, \cdots, 6)$

For the other signatures ε one can construct a non-zero integer $ABC(\varepsilon, \mathfrak{q})$ (for prime ideals \mathfrak{q} of K) which multiplicatively bounds the isogeny primes with that signature.

Introduction	Isogeny Primes v1	A cubic example	Questions
	00000000000		
lvne()nePr	imes		

Let E/K be an elliptic curve with a K-rational *p*-isogeny of Type 1. Replacing this isogeny with its dual if necessary, we may suppose that $\lambda^{12h_{K}} = 1$, i.e., $\epsilon = (0, \dots, 0)$.

Introduction	Isogeny Primes v1	A cubic example	Questions
	00000000000		
TunoOnoPrimo	c		

Let E/K be an elliptic curve with a *K*-rational *p*-isogeny of Type 1. Replacing this isogeny with its dual if necessary, we may suppose that $\lambda^{12h_{K}} = 1$, i.e., $\epsilon = (0, \dots, 0)$.

Case 1. E has potentially good reduction at q.

TypeOnePrimes

Let E/K be an elliptic curve with a K-rational p-isogeny of Type 1. Replacing this isogeny with its dual if necessary, we may suppose that $\lambda^{12h_{K}} = 1$, i.e., $\epsilon = (0, \dots, 0)$.

Case 1. E has potentially good reduction at q.

Then $\lambda(\operatorname{Frob}_{\mathfrak{q}}) \equiv \beta$ for some root β of the characteristic polynomial of Frobenius of an elliptic curve over $\mathbb{F}_{\mathfrak{q}}$.

TypeOnePrimes

Let E/K be an elliptic curve with a K-rational p-isogeny of Type 1. Replacing this isogeny with its dual if necessary, we may suppose that $\lambda^{12h_{K}} = 1$, i.e., $\epsilon = (0, \dots, 0)$.

Case 1. E has potentially good reduction at q.

Then $\lambda(\operatorname{Frob}_{\mathfrak{q}}) \equiv \beta$ for some root β of the characteristic polynomial of Frobenius of an elliptic curve over $\mathbb{F}_{\mathfrak{q}}$.

$$p|\operatorname{\mathsf{Nm}}(\beta^{12h_{\mathfrak{q}}}-1)$$

i.e. we can multiplicatively bound this case.

Introduction	Isogeny Primes v1	A cubic example	Questions
000000	00000000000		

Case 2. E has potentially multiplicative reduction at q.

Introduction	Isogeny Primes v1	A cubic example	Questions
	00000000000		

$$x_{/\mathbb{F}_{\mathfrak{q}}} = \infty_{/\mathbb{F}_{\mathfrak{q}}} \text{ or } 0_{/\mathbb{F}_{\mathfrak{q}}}.$$

Introduction	Isogeny Primes v1	A cubic example	Questions
000000	00000000000	000	00

$$x_{/\mathbb{F}_{\mathfrak{q}}} = \infty_{/\mathbb{F}_{\mathfrak{q}}} \text{ or } 0_{/\mathbb{F}_{\mathfrak{q}}}.$$

One then proves in each case that

$$\lambda^2(\operatorname{Frob}_{\mathfrak{q}}) \equiv 1 \text{ or } \operatorname{Nm}(\mathfrak{q})^2.$$

Introduction	Isogeny Primes v1	A cubic example	Questions
000000	00000000000	000	00

$$x_{/\mathbb{F}_{\mathfrak{q}}} = \infty_{/\mathbb{F}_{\mathfrak{q}}} \text{ or } 0_{/\mathbb{F}_{\mathfrak{q}}}.$$

One then proves in each case that

$$\lambda^2(\operatorname{Frob}_{\mathfrak{q}}) \equiv 1 \text{ or } \operatorname{Nm}(\mathfrak{q})^2.$$

The latter case yields

$$1 = \lambda^{12h_{\mathfrak{q}}}(\mathsf{Frob}_{\mathfrak{q}}) \equiv \mathsf{Nm}(\mathfrak{q})^{12h_{\mathfrak{q}}} \pmod{p}$$

$$\Rightarrow p \mid \mathsf{Nm}(\mathfrak{q})^{12h_{\mathfrak{q}}} - 1.$$

Introduction	Isogeny Primes v1	A cubic example	Questions
000000	00000000000	000	00

$$x_{/\mathbb{F}_{\mathfrak{q}}} = \infty_{/\mathbb{F}_{\mathfrak{q}}} \text{ or } 0_{/\mathbb{F}_{\mathfrak{q}}}.$$

One then proves in each case that

$$\lambda^2(\operatorname{Frob}_{\mathfrak{q}}) \equiv 1 \text{ or } \operatorname{Nm}(\mathfrak{q})^2.$$

The latter case yields

$$1 = \lambda^{12h_{\mathfrak{q}}}(\operatorname{Frob}_{\mathfrak{q}}) \equiv \operatorname{Nm}(\mathfrak{q})^{12h_{\mathfrak{q}}} \pmod{p}$$

$$\Rightarrow p \mid \operatorname{Nm}(\mathfrak{q})^{12h_{\mathfrak{q}}} - 1.$$

In the first case: if any of the embedded points x^{σ} specializes to $0_{/\mathbb{F}_q}$, then we again get a non-zero multiplicative bound.

Introduction	Isogeny Primes v1	A cubic example	Questions
	000000000000		

Problem Case

The \mathbb{Q} -rational point $(x^{\sigma})_{\sigma \in \Sigma}$ on the *d*-th symmetric power modular curve $X_0(p)^{(d)}$ specializes to (∞, \dots, ∞) at \mathfrak{q} .

Introduction	Isogeny Primes v1	A cubic example	Questions
000000	000000000000	000	00

Problem Case

The Q-rational point $(x^{\sigma})_{\sigma \in \Sigma}$ on the *d*-th symmetric power modular curve $X_0(p)^{(d)}$ specializes to (∞, \cdots, ∞) at q.

Define the map

$$\begin{array}{cccc} f_p^{(d)}: \ X_0(p)_{\mathsf{sm},/\mathbb{Z}}^{(d)} &\longrightarrow & J_0(p)_{/\mathbb{Z}} &\longrightarrow & \tilde{J}_{/\mathbb{Z}} \\ D &\longmapsto [D-d(\infty)] \longmapsto [D-d(\infty)] \ (\mathrm{mod} \ \gamma_{\mathfrak{J}} J_0(p)) \end{array}$$

Introduction	Isogeny Primes v1	A cubic example	Questions
000000	000000000000	000	00

Problem Case

The \mathbb{Q} -rational point $(x^{\sigma})_{\sigma \in \Sigma}$ on the *d*-th symmetric power modular curve $X_0(p)^{(d)}$ specializes to (∞, \dots, ∞) at \mathfrak{q} .

Define the map

$$\begin{array}{cccc} f_p^{(d)}: \ X_0(p)_{\mathsf{sm},/\mathbb{Z}}^{(d)} &\longrightarrow & J_0(p)_{/\mathbb{Z}} &\longrightarrow & \tilde{J}_{/\mathbb{Z}} \\ D &\longmapsto [D-d(\infty)] \longmapsto [D-d(\infty)] \ (\mathrm{mod} \ \gamma_{\mathfrak{J}} J_0(p)) \end{array}$$

By an analogue of **Mazur's specialization lemma**, we obtain that $f(x^{\sigma}) = f(\infty, \dots, \infty)$.

Introduction	Isogeny Primes v1	A cubic example	Questions
	000000000000		

We have, therefore, the following state of affairs: the two \mathcal{O} -sections of $X_0(N)$, $x_{/\mathcal{O}}$ and $\boldsymbol{\infty}_{/\mathcal{O}}$, "cross" at \mathfrak{p} , and map to the same section of A under $f_{/\mathcal{O}}$ (the zero-section). But this contradicts the fact that f is a formal immersion at $\boldsymbol{\infty}_{/k(\mathfrak{p})}$.

Introduction	Isogeny Primes v1	A cubic example	Questions
	000000000000		

We have, therefore, the following state of affairs: the two \mathcal{O} -sections of $X_0(N)$, $x_{i,0}$ and $\boldsymbol{\infty}_{i,0}$, "cross" at \mathfrak{p} , and map to the same section of A under $f_{i,0}$ (the zero-section). But this contradicts the fact that f is a formal immersion at $\boldsymbol{\infty}_{i,k(\mathfrak{p})}$.

We conclude that f is *not* a formal immersion at (∞, \dots, ∞) . The set of such ps is very small and can be explicitly bounded.

Introduction	Isogeny Primes v1	A cubic example	Questions
	00000000000000		

Proposition 5.3. Let $H \subseteq (\mathbb{Z}/p\mathbb{Z})^{\times}/\{\pm 1\}$ be a subgroup. Let $\ell \neq p$ be a prime and consider $t = t_1(t_0)$ as in Proposition 5.1 when ℓ is odd, or t as in Corollary 5.2 when $\ell = 2$. Then $t \circ \iota$ is a formal immersion at all $\bar{x}_H \in X_H^{(d)}(\mathbb{F}_\ell)$ that are sums of images of rational cusps on $X_1(p)$, if for all partitions $d = n_1 + \ldots + n_m$ with $n_1 \geq \cdots \geq n_m$ and all m-tuples $(d_1 = 1, d_2, \ldots, d_m)$ of integers representing pairwise distinct elements of H, the d Hecke operators

(5.1)
$$(\mathsf{T}_{i}\langle \mathbf{d}_{j}\rangle \mathbf{t})_{\substack{j=1,\dots,r\\i=1,\dots,n}}$$

are \mathbb{F}_t -linearly independent in $\mathbb{T} \otimes \mathbb{F}_t$, where \mathbb{T} is considered as a subalgebra of $End_{\mathbb{Q}}(J_H)$.

Maarten Derickx

Sheldon Kamienny

William Stein

Michael Stoll

```
get bad formal immersion data(d):
p todo = [int(p) for p in prime range(11)]
for p in prime range(11, 2 * M * d);
    if is formall immersion fast(d, p):
    for q in prime divisors(q prod):
        q to bad p[int(q)] = int(q to bad p.get(q, 1) * p)
```

Introduction	Isogeny Primes v1	A cubic example	Questions
	00000000000		

TypeTwoPrimes

Condition CC (Momose + B.-Derickx)

Let K be a number field, and E/K an elliptic curve admitting a K-rational p-isogeny of Type 2.

Introd	uction

Isogeny Primes v1

A cubic example

TypeTwoPrimes

Condition CC (Momose + B.-Derickx)

Let K be a number field, and E/K an elliptic curve admitting a K-rational p-isogeny of Type 2. Let q be a rational prime admitting a prime ideal q | q of residue degree f satisfying:

Introduction	Isogeny Primes v1	A cubic example	Questions
	00000000000		

TypeTwoPrimes

Condition CC (Momose + B.-Derickx)

Let K be a number field, and E/K an elliptic curve admitting a K-rational p-isogeny of Type 2. Let q be a rational prime admitting a prime ideal q | q of residue degree f satisfying:

I is odd;

$$\ \, {\bf 9} \ \, q^{2f}+q^f+1\not\equiv 0 \ (\mathrm{mod} \ p).$$

Introduction	Isogeny Primes v1	A
	00000000000	

TypeTwoPrimes

Condition CC (Momose + B.-Derickx)

Let K be a number field, and E/K an elliptic curve admitting a K-rational p-isogeny of Type 2. Let q be a rational prime admitting a prime ideal q | q of residue degree f satisfying:

I is odd;

3 $q^{2f} + q^f + 1 \not\equiv 0 \pmod{p}$.

Then q does not split in $\mathbb{Q}(\sqrt{-p})$.

Introduction	Isogeny Prime
000000	00000000

TypeTwoPrimes

Condition CC (Momose + B.-Derickx)

Let K be a number field, and E/K an elliptic curve admitting a K-rational p-isogeny of Type 2. Let q be a rational prime admitting a prime ideal q | q of residue degree f satisfying:

s v1

I is odd;

2
$$q^f < p/4;$$

 $\ \, {\bf 9} \ \, q^{2f}+q^f+1\not\equiv 0 \ (\mathrm{mod} \ p).$

Then q does not split in $\mathbb{Q}(\sqrt{-p})$.

Proposition (B.-Derickx)

Assume GRH. Let K be a number field of degree d, and E/K an elliptic curve possessing a K-rational p-isogeny, for p a Type 2 prime. Then p satisfies

$$p \leq (8d \log(12p) + 16 \log(\Delta_{\mathcal{K}}) + 10d + 6)^4.$$

In particular, there are only finitely many primes p as above.

Introduction	Isogeny Primes v1	A cubic example	Questions
000000	00000000000	•00	00
Introduction	Isogeny Primes v1	A cubic example	Questions
-----------------	--------------------------	-----------------	-----------
000000	000000000000	○●○	
From Superset t	o Set		

Let's run the algorithm on $\mathbb{Q}(\zeta_7)^+$

Introduction 000000	Isogeny Primes v1 0000000000000	A cubic example ○●○	Questions
From Superset to Set			

Let's run the algorithm on $\mathbb{Q}(\zeta_7)^+$; we get a superset of

 $\mathsf{PrimesUpTo}(43) \cup \{67, 73, 163\}$.

Introduction 000000	Isogeny Primes v1 0000000000000	A cubic example ○●○	Questions
From Supers	set to Set		

Let's run the algorithm on $\mathbb{Q}(\zeta_7)^+$; we get a superset of

 $\mathsf{PrimesUpTo}(43) \cup \{67, 73, 163\}.$

How to determine which of these are actually in IsogPrimeDeg($\mathbb{Q}(\zeta_7)^+$)?

Introduction	Isogeny Primes v1	A cubic example	Questions
		000	
From Superse	et to Set		

Let's run the algorithm on $\mathbb{Q}(\zeta_7)^+$; we get a superset of

 $\mathsf{PrimesUpTo(43)} \cup \{67, 73, 163\}$.

How to determine which of these are actually in IsogPrimeDeg($\mathbb{Q}(\zeta_7)^+$)? The main ingredient is

Theorem (Box-Gajović-Goodman, 2021)

For $N \in \{53, 57, 61, 65, 67, 73\}$, the set of cubic points on $X_0(N)$ is finite and listed in Section 5 of [?].

20

Josha Box

Stevan Gajović

Pip Goodman

Introduction	Isogeny Primes v1	A cubic example	Questions
		000	
The first cubic	case of IsogPrim	neDeg	

Theorem (B.-Derickx)

Assuming GRH,

$\mathsf{IsogPrimeDeg}(\mathbb{Q}(\zeta_7)^+) = \mathsf{IsogPrimeDeg}(\mathbb{Q})$

Introduction	Isogeny Primes v1	A cubic example	Questions
			0

Questions

Introduction	Isogeny Primes v1	A cubic example	Questions
000000	000000000000	000	00

Question

Can Isogeny Primes v2 be implemented in PARI/GP?

Question

How can checking Type 2 primes be made much faster?