Parametrizing \mathbb{Q} -curves by modular units

François Brunault (joint work with Hang Liu and Haixu Wang) January 12, 2022

Atelier PARI/GP, Besançon

Motivation: Mahler measures and *L*-functions

Mahler measures

Definition

The Mahler measure of a Laurent polynomial $P \in \mathbb{C}[x_1^{\pm 1}, \dots, x_n^{\pm 1}]$ is

$$m(P) = \int_0^1 \cdots \int_0^1 \log |P(e^{2\pi i t_1}, \ldots, e^{2\pi i t_n})| dt_1 \cdots dt_n$$

• For
$$P \in \mathbb{C}[x]$$
 monic, Jensen's formula gives $m(P) = \sum_{\substack{P(\alpha)=0 \\ |\alpha| \ge 1}} \log |\alpha|.$

- If P has coefficients in Q, then m(P) is a period in the sense of Kontsevich and Zagier.
- In favorable situations, *m*(*P*) is (often conjecturally) related to *L*-functions. For example (Smyth, 1981):

$$m(1 + x + y) = L'(\chi_{-3}, -1)$$

$$m(1 + x + y + z) = -14\zeta'(-2)$$

Mahler measures

Boyd and Deninger discovered experimentally in 1997:

$$m(x + \frac{1}{x} + y + \frac{1}{y} + 1) \stackrel{?}{=} L'(E, 0) = \frac{15}{4\pi^2}L(E, 2)$$

where *E* is the elliptic curve with affine equation $x + \frac{1}{x} + y + \frac{1}{y} + 1 = 0$. Boyd also found *families* of identities, for example

$$m\left(x+\frac{1}{x}+y+\frac{1}{y}+k\right)\stackrel{?}{=}r_k\cdot L'(E_k,0) \qquad (k\in\mathbb{Z}\setminus\{0,\pm 4\},\ r_k\in\mathbb{Q}^{\times}).$$

Only finitely many identities are proven: $|k| \in \{1, 2, 3, 5, 8, 12, 16\}$.

The proof requires E_k to be parametrized by *modular units*.

More precisely, we need $\varphi \colon X_1(N_k) \to E_k$ such that $\varphi^*(x)$ and $\varphi^*(y)$ are modular units. Outline of the proof:

$$m(P_k) \stackrel{\text{Jensen}}{=} \int_{\gamma} \eta(x, y) = \int_{\widetilde{\gamma}} \eta(\varphi^*(x), \varphi^*(y)) \stackrel{\text{Rogers-}}{=} L'(f_k, 0).$$

Objectives

- Discover new identities for Mahler measures of genus 1 polynomials.
- Prove them in a systematic way (when modular units are available).
- Determine whether an elliptic curve admits a parametrization by modular units.
- Generalize to elliptic curves over number fields and higher genus curves which are parametrized by modular curves.

Specifically, we will consider Q-curves.

\mathbb{Q} -curves

Definition

A \mathbb{Q} -curve is an elliptic curve defined over $\overline{\mathbb{Q}}$ which is isogenous to all its Galois conjugates.

Example

Let K be a real quadratic field, and $u \in K \setminus \{\pm 1\}$ such that $4u \in \mathcal{O}_K$ and $N_{K/\mathbb{Q}}(u) = 1$. Then $E_k : x + \frac{1}{x} + y + \frac{1}{y} + 4u = 0$ is a \mathbb{Q} -curve.

In this case the isogeny is defined over K.

Modularity theorem (Khare–Wintenberger, Ribet)

Let *E* be an elliptic curve over $\overline{\mathbb{Q}}$. Then *E* is a \mathbb{Q} -curve if and only if there exists a modular parametrization $\varphi \colon X_1(N)_{\overline{\mathbb{Q}}} \to E$.

Question. Can we make φ explicit?

Q-curves and modular forms

Let $\varphi \colon X_1(N)_{\overline{\mathbb{O}}} \to E$ be a modular parametrization.

Then $\varphi^*(\omega_E) = \omega_f = 2\pi i f(\tau) d\tau$ for some $f \in S_2(\Gamma_1(N))$ (not necessarily a newform!). Moreover

$$\Lambda_f := \left\{ \int_{\gamma} \omega_f : \gamma \in H_1(X_1(N), \mathbb{Z}) \right\}$$

is a lattice in \mathbb{C} , and we have $E(\mathbb{C}) \cong \mathbb{C}/\Lambda_f$.

Conversely, let $f \in S_2(\Gamma_1(N))$ such that Λ_f is a lattice in \mathbb{C} . Then $E_f = \mathbb{C}/\Lambda_f$ is a Q-curve with modular parametrization

$$\varphi \colon X_1(N)_{\overline{\mathbb{Q}}} \to E_f, \quad \tau \mapsto \Big[\int_0^\tau \omega_f\Big].$$

Questions. Given *E*, can we compute *f*, and conversely? Can we compute φ ? (and what does this mean?)

Computing the modular parametrization

Overview

Input: a modular form $f \in S_2(\Gamma_1(N))$ such that Λ_f is a lattice in \mathbb{C} . We always assume $f = \sum_{\sigma} c_{\sigma} F^{\sigma}$ is a $\overline{\mathbb{Q}}$ -linear combination of the Galois conjugates F^{σ} of a newform F in $S_2(\Gamma_1(N))$.

Goals:

- Compute the \mathbb{Q} -curve E_f in Weierstrass form.
- Determine if E_f can be parametrized by modular units.
- If so, compute φ in algebraic form. By this we mean finding two modular units u, v ∈ Q
 (X₁(N)) such that Q
 (E_f) ≃ Q
 (u, v).

We will construct u and v using Siegel units

$$g_{a,b}(\tau) = q^{\alpha} \prod_{\substack{n \ge 0 \\ n \equiv a \bmod N}} (1 - q^{n/N} \zeta_N^b) \prod_{\substack{n \ge 1 \\ n \equiv -a \bmod N}} (1 - q^{n/N} \zeta_N^{-b}).$$

where $a, b \in \mathbb{Z}/N\mathbb{Z}$, $\alpha = B_2(\{a/N\})$, $q^{\alpha} = e^{2\pi i \alpha \tau}$, $\zeta_N = e^{2\pi i/N}$.

Recall that $E_f = \mathbb{C}/\Lambda_f$ with $\Lambda_f = \{\int_{\gamma} \omega_f : \gamma \in H_1(X_1(N), \mathbb{Z})\}$. The map $\Gamma_1(N) \to H_1(X_1(N), \mathbb{Z}), \quad g \mapsto \{0, g0\}$

is a surjective group morphism.

- 1. Compute generators g_1, \ldots, g_r of $\Gamma_1(N)$ (more generally, $\Gamma_H(N)$) using msfarey and mspolygon.
- 2. For each $1 \le i \le r$, compute $I(g_i) = \int_0^{g_i 0} \omega_f$ using mfsymboleval.
- 3. Compute \mathbb{Z} -generators of $\Lambda_f = \langle I(g_1), \ldots, I(g_r) \rangle$ using lindep and qflll.

The elliptic curve $E_f = \mathbb{C}/\Lambda_f$ has Weierstrass equation

$$E_f: y^2 = x^3 - 27c_4(\Lambda_f)x - 54c_6(\Lambda_f).$$

Hypothesis: $c_4(\Lambda_f), c_6(\Lambda_f) \in \mathbb{Q}(\zeta_N).$

(This does not always hold.)

- 1. Compute c_4 , c_6 as complex numbers.
- 2. Reconstruct c_4, c_6 in $\mathbb{Q}(\zeta_N)$ using lindep.

We will see later how to check the Weierstrass equation is correct.

Recall that $\varphi \colon X_1(N) \to E_f$ is given by $\tau \mapsto [\int_0^\tau \omega_f]$.

Hypothesis: φ is defined over $\mathbb{Q}(\zeta_N)$.

(This does not always hold.)

- 1. Enumerate the cusps c_1, \ldots, c_s of $X_1(N)$.
- 2. For each $1 \le i \le s$, compute $z_i = \int_0^{c_i} \omega_f$.
- 3. Compute $p_i = \text{ellztopoint}(E_f, z_i) \in E_f(\mathbb{C})$.
- 4. Writing $p_i = (x_i, y_i)$, reconstruct x_i, y_i in $\mathbb{Q}(\zeta_N)$ using lindep.
- 5. Check whether $p_i \in E_f(\mathbb{Q}(\zeta_N))$.

Step 4: Admissible points

We want to find functions on E_f whose pull-back to $X_1(N)$ are modular units. We define

$$S = \left\{ p \in E_f : \varphi^{-1}(p) \subset \{ \operatorname{cusps} \} \right\} \subset \{ p_1, \ldots, p_s \}.$$

Then for any function h on E supported in S, $\varphi^*(h)$ is a modular unit.

1. Compute the modular degree $\deg(\varphi)$ using mfpetersson and

$$\int_{X_1(N)} \omega_f \wedge \overline{\omega_f} = \deg(\varphi) \cdot \int_{E_f} \omega_{E_f} \wedge \overline{\omega_{E_f}}.$$

- 2. For each cusp c, compute the ramification index $e_{\varphi}(c)$ using mfslashexpansion.
- 3. For each point $p \in \varphi(\{ cusps \})$, check whether

$$\sum_{\substack{c ext{ cusp } arphi(c) = p}} e_{arphi}(c) = \mathsf{deg}(arphi).$$

If true, put p in S.

We want to find two functions h_1 , h_2 on E_f whose zeros and poles are contained in S, and which generate the function field of E_f .

If $|S| \leq 2$, this is impossible.

If $|S| \ge 3$:

- 1. Generate principal divisors on E supported in S (this is possible since S consists of torsion points, by the Manin-Drinfeld theorem).
- 2. Take two such divisors D_1, D_2 and compute functions $h_1, h_2 \in \overline{\mathbb{Q}}(E)$ having these divisors.
- 3. Compute the minimal polynomial $P \in \overline{\mathbb{Q}}[X_1, X_2]$ of (h_1, h_2) .
- 4. Check the partial degrees of P to decide whether $\overline{\mathbb{Q}}(E_f) = \overline{\mathbb{Q}}(h_1, h_2)$.

If h_1, h_2 satisfy this condition, then $P(X_1, X_2) = 0$ is a model of E_f .

Because our computations were numerical, we haven't proved the parametrization exists yet!

1. Compute the q-expansion of $\varphi^*(x)$ and $\varphi^*(y)$ in $\mathbb{Q}(\zeta_N)((q))$.

$$\begin{cases} x = u^2 q^{-2e} + O(q^{-2e+1}) \\ y = u^3 q^{-3e} + O(q^{-3e+1}) \end{cases}$$

with $e = e_{\varphi}(\infty)$ and $u \in \mathbb{Q}(\zeta_N)^{\times}$, exactly as in elltaniyama: use the two equations $y^2 = x^3 - 27c_4x - 54c_6$ and $\omega_f = dx/2y$ to determine inductively the Fourier coefficients of x and y.

- 2. Deduce the q-expansions of h_1 and h_2 .
- 3. Express h_1, h_2 as products of Siegel units by comparing the divisors and checking the leading coefficient.

Each h_i is of the form

$$C \prod_{a,b \in \mathbb{Z}/N\mathbb{Z}} g_{a,b}^{e_{a,b}} \qquad (C \in \mathbb{Q}(\zeta_N)^{ imes}, e_{a,b} \in \mathbb{Z}).$$

- 4. Prove that these products are indeed modular for $\Gamma_1(N)$ (in general, such a product is only modular for $\Gamma(12N^2)$). This uses a criterion of Kubert–Lang.
- 5. Denoting by u_1, u_2 these modular units, prove that $P(u_1, u_2) = 0$ by checking the q-expansion to high enough accuracy.

The data (P, u_1, u_2) certifies the modular parametrization.

We can also certify the images of the cusps computed previously.

Question. How to describe and certify a modular parametrization when no modular unit is available?

Examples

Thank you!