Parametrizing \mathbb{Q}-curves by modular units

François Brunault
(joint work with Hang Liu and Haixu Wang)
January 12, 2022
Atelier PARI/GP, Besançon

Motivation: Mahler measures
and L-functions

Mahler measures

Definition

The Mahler measure of a Laurent polynomial $P \in \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ is

$$
m(P)=\int_{0}^{1} \cdots \int_{0}^{1} \log \left|P\left(e^{2 \pi i t_{1}}, \ldots, e^{2 \pi i t_{n}}\right)\right| d t_{1} \cdots d t_{n} .
$$

- For $P \in \mathbb{C}[x]$ monic, Jensen's formula gives $m(P)=\sum_{P(\alpha)=0} \log |\alpha|$.
- If P has coefficients in $\overline{\mathbb{Q}}$, then $m(P)$ is a period in the sense of Kontsevich and Zagier.
- In favorable situations, $m(P)$ is (often conjecturally) related to L-functions. For example (Smyth, 1981):

$$
\begin{aligned}
& m(1+x+y)=L^{\prime}(\chi-3,-1) \\
& m(1+x+y+z)=-14 \zeta^{\prime}(-2)
\end{aligned}
$$

Mahler measures

Boyd and Deninger discovered experimentally in 1997:

$$
m\left(x+\frac{1}{x}+y+\frac{1}{y}+1\right) \stackrel{?}{=} L^{\prime}(E, 0)=\frac{15}{4 \pi^{2}} L(E, 2)
$$

where E is the elliptic curve with affine equation $x+\frac{1}{x}+y+\frac{1}{y}+1=0$.
Boyd also found families of identities, for example

$$
m\left(x+\frac{1}{x}+y+\frac{1}{y}+k\right) \stackrel{?}{=} r_{k} \cdot L^{\prime}\left(E_{k}, 0\right) \quad\left(k \in \mathbb{Z} \backslash\{0, \pm 4\}, r_{k} \in \mathbb{Q}^{\times}\right)
$$

Only finitely many identities are proven: $|k| \in\{1,2,3,5,8,12,16\}$.
The proof requires E_{k} to be parametrized by modular units.
More precisely, we need $\varphi: X_{1}\left(N_{k}\right) \rightarrow E_{k}$ such that $\varphi^{*}(x)$ and $\varphi^{*}(y)$ are modular units. Outline of the proof:

$$
m\left(P_{k}\right) \stackrel{\text { Jensen }}{=} \int_{\gamma} \eta(x, y)=\int_{\widetilde{\gamma}} \eta\left(\varphi^{*}(x), \varphi^{*}(y)\right) \stackrel{\begin{array}{c}
\text { Rogers- } \\
\text { Zudilin }
\end{array}}{=} L^{\prime}\left(f_{k}, 0\right)
$$

Mahler measures

Objectives

- Discover new identities for Mahler measures of genus 1 polynomials.
- Prove them in a systematic way (when modular units are available).
- Determine whether an elliptic curve admits a parametrization by modular units.
- Generalize to elliptic curves over number fields and higher genus curves which are parametrized by modular curves.

Specifically, we will consider \mathbb{Q}-curves.

\mathbb{Q}-curves

\mathbb{Q}-curves

Definition

A \mathbb{Q}-curve is an elliptic curve defined over $\overline{\mathbb{Q}}$ which is isogenous to all its Galois conjugates.

Example

Let K be a real quadratic field, and $u \in K \backslash\{ \pm 1\}$ such that $4 u \in \mathcal{O}_{K}$ and $\mathrm{N}_{K / \mathbb{Q}}(u)=1$. Then $E_{k}: x+\frac{1}{x}+y+\frac{1}{y}+4 u=0$ is a \mathbb{Q}-curve. In this case the isogeny is defined over K.

Modularity theorem (Khare-Wintenberger, Ribet)

Let E be an elliptic curve over $\overline{\mathbb{Q}}$. Then E is a \mathbb{Q}-curve if and only if there exists a modular parametrization $\varphi: X_{1}(N)_{\overline{\mathbb{Q}}} \rightarrow E$.

Question. Can we make φ explicit?

\mathbb{Q}-curves and modular forms

Let $\varphi: X_{1}(N)_{\overline{\mathbb{Q}}} \rightarrow E$ be a modular parametrization.
Then $\varphi^{*}\left(\omega_{E}\right)=\omega_{f}=2 \pi i f(\tau) d \tau$ for some $f \in S_{2}\left(\Gamma_{1}(N)\right)$ (not necessarily a newform!). Moreover

$$
\Lambda_{f}:=\left\{\int_{\gamma} \omega_{f}: \gamma \in H_{1}\left(X_{1}(N), \mathbb{Z}\right)\right\}
$$

is a lattice in \mathbb{C}, and we have $E(\mathbb{C}) \cong \mathbb{C} / \Lambda_{f}$.
Conversely, let $f \in S_{2}\left(\Gamma_{1}(N)\right)$ such that Λ_{f} is a lattice in \mathbb{C}. Then $E_{f}=\mathbb{C} / \Lambda_{f}$ is a \mathbb{Q}-curve with modular parametrization

$$
\varphi: X_{1}(N)_{\overline{\mathbb{Q}}} \rightarrow E_{f}, \quad \tau \mapsto\left[\int_{0}^{\tau} \omega_{f}\right] .
$$

Questions. Given E, can we compute f, and conversely? Can we compute φ ? (and what does this mean?)

Computing the modular parametrization

Overview

Input: a modular form $f \in S_{2}\left(\Gamma_{1}(N)\right)$ such that Λ_{f} is a lattice in \mathbb{C}.
We always assume $f=\sum_{\sigma} c_{\sigma} F^{\sigma}$ is a $\overline{\mathbb{Q}}$-linear combination of the Galois conjugates F^{σ} of a newform F in $S_{2}\left(\Gamma_{1}(N)\right)$.

Goals:

- Compute the \mathbb{Q}-curve E_{f} in Weierstrass form.
- Determine if E_{f} can be parametrized by modular units.
- If so, compute φ in algebraic form. By this we mean finding two modular units $u, v \in \overline{\mathbb{Q}}\left(X_{1}(N)\right)$ such that $\overline{\mathbb{Q}}\left(E_{f}\right) \cong \overline{\mathbb{Q}}(u, v)$.

We will construct u and v using Siegel units

$$
g_{a, b}(\tau)=q^{\alpha} \prod_{\substack{n \geq 0 \\ n \equiv a \bmod N}}\left(1-q^{n / N} \zeta_{N}^{b}\right) \prod_{\substack{n \geq 1 \\ n \equiv-a \bmod N}}\left(1-q^{n / N} \zeta_{N}^{-b}\right) .
$$

where $a, b \in \mathbb{Z} / N \mathbb{Z}, \alpha=B_{2}(\{a / N\}), q^{\alpha}=e^{2 \pi i \alpha \tau}, \zeta_{N}=e^{2 \pi i / N}$.

Step 1: The lattice Λ_{f}

Recall that $E_{f}=\mathbb{C} / \Lambda_{f}$ with $\Lambda_{f}=\left\{\int_{\gamma} \omega_{f}: \gamma \in H_{1}\left(X_{1}(N), \mathbb{Z}\right)\right\}$. The map

$$
\Gamma_{1}(N) \rightarrow H_{1}\left(X_{1}(N), \mathbb{Z}\right), \quad g \mapsto\{0, g 0\}
$$

is a surjective group morphism.

1. Compute generators g_{1}, \ldots, g_{r} of $\Gamma_{1}(N)$ (more generally, $\Gamma_{H}(N)$) using msfarey and mspolygon.
2. For each $1 \leq i \leq r$, compute $I\left(g_{i}\right)=\int_{0}^{g_{i j} 0} \omega_{f}$ using mfsymboleval.
3. Compute \mathbb{Z}-generators of $\Lambda_{f}=\left\langle I\left(g_{1}\right), \ldots, I\left(g_{r}\right)\right\rangle$ using lindep and qflll.

Step 2: The elliptic curve E_{f}

The elliptic curve $E_{f}=\mathbb{C} / \Lambda_{f}$ has Weierstrass equation

$$
E_{f}: y^{2}=x^{3}-27 c_{4}\left(\Lambda_{f}\right) x-54 c_{6}\left(\Lambda_{f}\right)
$$

Hypothesis: $\quad c_{4}\left(\Lambda_{f}\right), c_{6}\left(\Lambda_{f}\right) \in \mathbb{Q}\left(\zeta_{N}\right)$.
(This does not always hold.)

1. Compute c_{4}, c_{6} as complex numbers.
2. Reconstruct c_{4}, c_{6} in $\mathbb{Q}\left(\zeta_{N}\right)$ using lindep.

We will see later how to check the Weierstrass equation is correct.

Step 3: Images of cusps

Recall that $\varphi: X_{1}(N) \rightarrow E_{f}$ is given by $\tau \mapsto\left[\int_{0}^{\tau} \omega_{f}\right]$.
Hypothesis: φ is defined over $\mathbb{Q}\left(\zeta_{N}\right)$.
(This does not always hold.)

1. Enumerate the cusps c_{1}, \ldots, c_{s} of $X_{1}(N)$.
2. For each $1 \leq i \leq s$, compute $z_{i}=\int_{0}^{c_{i}} \omega_{f}$.
3. Compute $p_{i}=\operatorname{ellztopoint}\left(E_{f}, z_{i}\right) \in E_{f}(\mathbb{C})$.
4. Writing $p_{i}=\left(x_{i}, y_{i}\right)$, reconstruct x_{i}, y_{i} in $\mathbb{Q}\left(\zeta_{N}\right)$ using lindep.
5. Check whether $p_{i} \in E_{f}\left(\mathbb{Q}\left(\zeta_{N}\right)\right)$.

Step 4: Admissible points

We want to find functions on E_{f} whose pull-back to $X_{1}(N)$ are modular units. We define

$$
S=\left\{p \in E_{f}: \varphi^{-1}(p) \subset\{\text { cusps }\}\right\} \subset\left\{p_{1}, \ldots, p_{s}\right\} .
$$

Then for any function h on E supported in $S, \varphi^{*}(h)$ is a modular unit.

1. Compute the modular degree $\operatorname{deg}(\varphi)$ using mfpetersson and

$$
\int_{X_{1}(N)} \omega_{f} \wedge \overline{\omega_{f}}=\operatorname{deg}(\varphi) \cdot \int_{E_{f}} \omega_{E_{f}} \wedge \overline{\omega_{E_{f}}} .
$$

2. For each cusp c, compute the ramification index $e_{\varphi}(c)$ using mfslashexpansion.
3. For each point $p \in \varphi(\{$ cusps $\})$, check whether

$$
\sum_{\substack{c \text { cusp } \\ \varphi(c)=p}} e_{\varphi}(c)=\operatorname{deg}(\varphi) .
$$

If true, put p in S.

Step 5: The function field of E_{f}

We want to find two functions h_{1}, h_{2} on E_{f} whose zeros and poles are contained in S, and which generate the function field of E_{f}.

If $|S| \leq 2$, this is impossible.
If $|S| \geq 3$:

1. Generate principal divisors on E supported in S (this is possible since S consists of torsion points, by the Manin-Drinfeld theorem).
2. Take two such divisors D_{1}, D_{2} and compute functions $h_{1}, h_{2} \in \overline{\mathbb{Q}}(E)$ having these divisors.
3. Compute the minimal polynomial $P \in \overline{\mathbb{Q}}\left[X_{1}, X_{2}\right]$ of $\left(h_{1}, h_{2}\right)$.
4. Check the partial degrees of P to decide whether $\overline{\mathbb{Q}}\left(E_{f}\right)=\overline{\mathbb{Q}}\left(h_{1}, h_{2}\right)$.

If h_{1}, h_{2} satisfy this condition, then $P\left(X_{1}, X_{2}\right)=0$ is a model of E_{f}.

Step 6: Certifying the parametrization

Because our computations were numerical, we haven't proved the parametrization exists yet!

1. Compute the q-expansion of $\varphi^{*}(x)$ and $\varphi^{*}(y)$ in $\mathbb{Q}\left(\zeta_{N}\right)((q))$.

$$
\left\{\begin{array}{l}
x=u^{2} q^{-2 e}+O\left(q^{-2 e+1}\right) \\
y=u^{3} q^{-3 e}+O\left(q^{-3 e+1}\right)
\end{array}\right.
$$

with $e=e_{\varphi}(\infty)$ and $u \in \mathbb{Q}\left(\zeta_{N}\right)^{\times}$, exactly as in elltaniyama: use the two equations $y^{2}=x^{3}-27 c_{4} x-54 c_{6}$ and $\omega_{f}=d x / 2 y$ to determine inductively the Fourier coefficients of x and y.
2. Deduce the q-expansions of h_{1} and h_{2}.
3. Express h_{1}, h_{2} as products of Siegel units by comparing the divisors and checking the leading coefficient.

Step 6: Certifying the parametrization

Each h_{i} is of the form

$$
C \prod_{a, b \in \mathbb{Z} / N \mathbb{Z}} g_{a, b}^{e_{a, b}} \quad\left(C \in \mathbb{Q}\left(\zeta_{N}\right)^{\times}, e_{a, b} \in \mathbb{Z}\right) \text {. }
$$

4. Prove that these products are indeed modular for $\Gamma_{1}(N)$ (in general, such a product is only modular for $\left.\Gamma\left(12 N^{2}\right)\right)$. This uses a criterion of Kubert-Lang.
5. Denoting by u_{1}, u_{2} these modular units, prove that $P\left(u_{1}, u_{2}\right)=0$ by checking the q-expansion to high enough accuracy.

The data (P, u_{1}, u_{2}) certifies the modular parametrization.
We can also certify the images of the cusps computed previously.
Question. How to describe and certify a modular parametrization when no modular unit is available?

Examples

Thank you!

