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Motivation: Mahler measures

and L-functions



Mahler measures

Definition

The Mahler measure of a Laurent polynomial P ∈ C[x±1
1 , . . . , x±1

n ] is

m(P) =

∫ 1

0

· · ·
∫ 1

0

log |P(e2πit1 , . . . , e2πitn)|dt1 · · · dtn.

• For P ∈ C[x ] monic, Jensen’s formula gives m(P) =
∑

P(α)=0
|α|≥1

log |α|.

• If P has coefficients in Q, then m(P) is a period in the sense of

Kontsevich and Zagier.

• In favorable situations, m(P) is (often conjecturally) related to

L-functions. For example (Smyth, 1981):

m(1 + x + y) = L′(χ−3,−1)

m(1 + x + y + z) = −14ζ ′(−2).
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Mahler measures

Boyd and Deninger discovered experimentally in 1997:

m
(
x +

1

x
+ y +

1

y
+ 1
) ?

= L′(E , 0) =
15

4π2
L(E , 2)

where E is the elliptic curve with affine equation x + 1
x + y + 1

y + 1 = 0.

Boyd also found families of identities, for example

m
(
x +

1

x
+ y +

1

y
+ k
) ?

= rk · L′(Ek , 0) (k ∈ Z\{0,±4}, rk ∈ Q×).

Only finitely many identities are proven: |k | ∈ {1, 2, 3, 5, 8, 12, 16}.

The proof requires Ek to be parametrized by modular units.

More precisely, we need ϕ : X1(Nk)→ Ek such that ϕ∗(x) and ϕ∗(y) are

modular units. Outline of the proof:

m(Pk)
Jensen

=

∫
γ

η(x , y) =

∫
γ̃

η(ϕ∗(x), ϕ∗(y))
Rogers-
Zudilin= L′(fk , 0).
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Mahler measures

Objectives

• Discover new identities for Mahler measures of genus 1 polynomials.

• Prove them in a systematic way (when modular units are available).

• Determine whether an elliptic curve admits a parametrization by

modular units.

• Generalize to elliptic curves over number fields and higher genus

curves which are parametrized by modular curves.

Specifically, we will consider Q-curves.
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Q-curves



Q-curves

Definition

A Q-curve is an elliptic curve defined over Q which is isogenous to all

its Galois conjugates.

Example

Let K be a real quadratic field, and u ∈ K\{±1} such that 4u ∈ OK

and NK/Q(u) = 1. Then Ek : x + 1
x + y + 1

y + 4u = 0 is a Q-curve.

In this case the isogeny is defined over K .

Modularity theorem (Khare–Wintenberger, Ribet)

Let E be an elliptic curve over Q. Then E is a Q-curve if and only if

there exists a modular parametrization ϕ : X1(N)Q → E .

Question. Can we make ϕ explicit?
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Q-curves and modular forms

Let ϕ : X1(N)Q → E be a modular parametrization.

Then ϕ∗(ωE ) = ωf = 2πif (τ)dτ for some f ∈ S2(Γ1(N)) (not necessarily

a newform!). Moreover

Λf :=
{∫

γ

ωf : γ ∈ H1(X1(N),Z)
}

is a lattice in C, and we have E (C) ∼= C/Λf .

Conversely, let f ∈ S2(Γ1(N)) such that Λf is a lattice in C. Then

Ef = C/Λf is a Q-curve with modular parametrization

ϕ : X1(N)Q → Ef , τ 7→
[∫ τ

0

ωf

]
.

Questions. Given E , can we compute f , and conversely? Can we

compute ϕ? (and what does this mean?)
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Computing the modular

parametrization



Overview

Input: a modular form f ∈ S2(Γ1(N)) such that Λf is a lattice in C.

We always assume f =
∑
σ cσF

σ is a Q-linear combination of the Galois

conjugates Fσ of a newform F in S2(Γ1(N)).

Goals:

• Compute the Q-curve Ef in Weierstrass form.

• Determine if Ef can be parametrized by modular units.

• If so, compute ϕ in algebraic form. By this we mean finding two

modular units u, v ∈ Q(X1(N)) such that Q(Ef ) ∼= Q(u, v).

We will construct u and v using Siegel units

ga,b(τ) = qα
∏
n≥0

n≡a mod N

(1− qn/NζbN)
∏
n≥1

n≡−a mod N

(1− qn/Nζ−bN ).

where a, b ∈ Z/NZ, α = B2({a/N}), qα = e2πiατ , ζN = e2πi/N .
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Step 1: The lattice Λf

Recall that Ef = C/Λf with Λf = {
∫
γ
ωf : γ ∈ H1(X1(N),Z)}. The map

Γ1(N)→ H1(X1(N),Z), g 7→ {0, g0}

is a surjective group morphism.

1. Compute generators g1, . . . , gr of Γ1(N) (more generally, ΓH(N))

using msfarey and mspolygon.

2. For each 1 ≤ i ≤ r , compute I (gi ) =
∫ gi0

0
ωf using mfsymboleval.

3. Compute Z-generators of Λf = 〈I (g1), . . . , I (gr )〉 using lindep and

qflll.

7



Step 2: The elliptic curve Ef

The elliptic curve Ef = C/Λf has Weierstrass equation

Ef : y2 = x3 − 27c4(Λf )x − 54c6(Λf ).

Hypothesis: c4(Λf ), c6(Λf ) ∈ Q(ζN).

(This does not always hold.)

1. Compute c4, c6 as complex numbers.

2. Reconstruct c4, c6 in Q(ζN) using lindep.

We will see later how to check the Weierstrass equation is correct.
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Step 3: Images of cusps

Recall that ϕ : X1(N)→ Ef is given by τ 7→ [
∫ τ

0
ωf ].

Hypothesis: ϕ is defined over Q(ζN).

(This does not always hold.)

1. Enumerate the cusps c1, . . . , cs of X1(N).

2. For each 1 ≤ i ≤ s, compute zi =
∫ ci

0
ωf .

3. Compute pi = ellztopoint(Ef , zi ) ∈ Ef (C).

4. Writing pi = (xi , yi ), reconstruct xi , yi in Q(ζN) using lindep.

5. Check whether pi ∈ Ef (Q(ζN)).
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Step 4: Admissible points

We want to find functions on Ef whose pull-back to X1(N) are modular

units. We define

S =
{
p ∈ Ef : ϕ−1(p) ⊂ {cusps}

}
⊂ {p1, . . . , ps}.

Then for any function h on E supported in S , ϕ∗(h) is a modular unit.

1. Compute the modular degree deg(ϕ) using mfpetersson and∫
X1(N)

ωf ∧ ωf = deg(ϕ) ·
∫
Ef

ωEf
∧ ωEf

.

2. For each cusp c , compute the ramification index eϕ(c) using

mfslashexpansion.

3. For each point p ∈ ϕ({cusps}), check whether∑
c cusp
ϕ(c)=p

eϕ(c) = deg(ϕ).

If true, put p in S .
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Step 5: The function field of Ef

We want to find two functions h1, h2 on Ef whose zeros and poles are

contained in S , and which generate the function field of Ef .

If |S | ≤ 2, this is impossible.

If |S | ≥ 3:

1. Generate principal divisors on E supported in S (this is possible since

S consists of torsion points, by the Manin-Drinfeld theorem).

2. Take two such divisors D1,D2 and compute functions h1, h2 ∈ Q(E )

having these divisors.

3. Compute the minimal polynomial P ∈ Q[X1,X2] of (h1, h2).

4. Check the partial degrees of P to decide whether Q(Ef ) = Q(h1, h2).

If h1, h2 satisfy this condition, then P(X1,X2) = 0 is a model of Ef .
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Step 6: Certifying the parametrization

Because our computations were numerical, we haven’t proved the

parametrization exists yet!

1. Compute the q-expansion of ϕ∗(x) and ϕ∗(y) in Q(ζN)((q)).{
x = u2q−2e + O(q−2e+1)

y = u3q−3e + O(q−3e+1)

with e = eϕ(∞) and u ∈ Q(ζN)×, exactly as in elltaniyama: use

the two equations y2 = x3 − 27c4x − 54c6 and ωf = dx/2y to

determine inductively the Fourier coefficients of x and y .

2. Deduce the q-expansions of h1 and h2.

3. Express h1, h2 as products of Siegel units by comparing the divisors

and checking the leading coefficient.
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Step 6: Certifying the parametrization

Each hi is of the form

C
∏

a,b∈Z/NZ

g
ea,b
a,b (C ∈ Q(ζN)×, ea,b ∈ Z).

4. Prove that these products are indeed modular for Γ1(N) (in general,

such a product is only modular for Γ(12N2)). This uses a criterion

of Kubert–Lang.

5. Denoting by u1, u2 these modular units, prove that P(u1, u2) = 0 by

checking the q-expansion to high enough accuracy.

The data (P, u1, u2) certifies the modular parametrization.

We can also certify the images of the cusps computed previously.

Question. How to describe and certify a modular parametrization when

no modular unit is available?
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Examples



Thank you!
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