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Hypergeometric Motives ?

A good introduction

David Roberts & Fernando Rodriguez Villegas, Hypergeometric Motives,

https://arxiv.org/abs/2109.00027

Frits Beukers, Henri Cohen & Anton Mellit, Finite Hypergeometric Functions,

https://arxiv.org/abs/1505.02900

For the purpose of this tutorial, HGMs are a nice source of motivic L-functions (sometimes

conjecturally!), related to point counting on families of algebraic varieties of the form

n
∏

i=1

xγi

i = t,
n

∑

i=1

xi = 0,
n

∏

i=1

xi 6= 0 ,

where (γi) ∈ Zn and t ∈ Q∗ specifies a variety in the family. One can write periods in terms of

classical hypergeometric functions nFn−1(α, β; t) and count points in terms of Jacobi sums.

One recovers in this way L-functions attached to Artin representations, curves over number fields,

Siegel modular forms, etc. Example: the Legendre family of elliptic curves,

Et : y2 = x(x − 1)(x − t); note that t = 0, 1 correspond to singular points.
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Hypergeometric template (1/4): (α, β) format

A hypergeometric template is a pair of multisets of rational numbers α = (α1, . . . , αd) and

β = (β1, . . . , βd) having the same number of elements. We set

A(x) =
∏

16j6d

(x − e2πiαj ), B(x) =
∏

16k6d

(x − e2πiβk) .

We make the following assumptions:

αj 6≡ βk (mod 1) for all j and k; or equivalently gcd(A, B) = 1.

αj /∈ Z for all j; or equivalently A(1) 6= 0.

our template is defined over Q, in other words A, B ∈ Z[x]; or equivalently if some a/D

with gcd(a, D) = 1 occurs in the αj or βk , then all the b/D modulo 1 with

gcd(b, D) = 1 also occur.
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Hypergeometric templates (2/4): cyclotomic and γ formats

The defined over Q assumption allows to abbreviate each occurence of [a1/D, . . . , aϕ(D)/D]

(where the ai range in (Z/DZ)∗) to [D]. We have three possible ways of giving a

hypergeometric template:

by the two GP vectors [α1, . . . , αd] and [β1, . . . , βd] (α, β parameters),

or by their denominators [D1, . . . , Dm] and [E1, . . . , En] (cyclotomic parameters); note

that
∑

j ϕ(Dj) =
∑

k ϕ(Ek) = d.

a third and final way is to give the gamma vector (γn) defined by

A(X)/B(X) =
∏

n(Xn − 1)γn , which satisfies
∑

n nγn = 0.

To any such data we associate a hypergeometric template using the function hgminit; then the

αj and βk are obtained using hgmalpha, cyclotomic parameters using hgmcyclo and the

gamma vectors using hgmgamma.

N.B. β = (0, . . . , 0) or E = (1, . . . , 1) can be omitted in (α, β) and cyclotomic formats,

respectively.
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Hypergeometric templates (3/4) : example

To such a hypergeometric template is associated a number of additional parameters: the

degree d, the (motivic) weight w, a Hodge polynomial P , a Tate twist T , and a normalizing

M-factor M =
∏

n nnγn . The hgmparams function returns

[d, w, [P, T ], M ] .

Example with cyclotomic parameters [5], [1, 1, 1, 1]:

? H = hgminit([5]);

? hgmparams(H)

%2 = [4, 3, [x^3+x^2+x+1,0], 3125]

? hgmalpha(H)

%3 = [[1/5, 2/5, 3/5, 4/5], [0, 0, 0, 0]]

? hgmcyclo(H)

%4 = [Vecsmall([5]), Vecsmall([1, 1, 1, 1])]

? hgmgamma(H)

%5 = Vecsmall([-5,0,0,0,1]) \\ A/B = (x^5-1) / (x-1)^5
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Hypergeometric templates (4/4) : example

? H2 = hgminit([2,3,4],[1,5]);

? hgmparams(H2)

%7 = [5, 2, [x^2 + 3*x + 1, 1], 6912/3125]

? hgmalpha(H2)

%8 = [[1/4, 1/3, 1/2, 2/3, 3/4], [0, 1/5, 2/5, 3/5, 4/5]]

? hgmgamma(H2)

%9 = Vecsmall([-2, 0, 1, 1, -1])
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Motives (1/3)

A hypergeometric motive (HGM) is a pair (H, t), where H is a hypergeometric template and

t ∈ Q∗. For t 6= 1, this data is (conjecturally) attached to a pure motive M of weight w,

essentially the middle cohomology group of some algebraic variety. Traces of Frobenius on Mℓ,

are given by an explicit formula (Katz) involving Jacobi sums, equivalently by a finite

hypergeometric sum evaluated at t: for each finite field Fq , we can compute an integer

Nq(H, t) = Tr(Frq | (H, t)).

This formula only makes sense for good primes p; there are two kinds of bad primes:

p is wild if it divides a denominator of the αj or βi (equivalently, one of the cyclotomic

parameters)

else it is tame if vp(t) 6= 0 or vp(t − 1) 6= 0.
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Motives (2/3)

The local Euler factor at a good prime p is then given by the (inverse of the) usual formula

Pp(T ) = exp



−
∑

f≥1

Npf (H, t)

f
T f



 ,

always a polynomial of degree d. N.B. the Euler factor Lp used in the global L-function is

1/Pp(p−s). The formulas is modified for tame primes or for t = 1 (Roberts, Rodriguez Villegas,

Watkins,. . . ) and usually deg Pp < d in this case.

Various recipes are conjectured for wild primes (often Lp ≡ 1) but we did not implement them.

On the other hand Lp can be guessed via the global functional equation: once a global L-function

is computed, we can obtain Euler factor at any prime, using lfuneuler.
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Motives (3/3)

? hgmeulerfactor(H, t = -1, p = 3) \\ good prime

%10 = 729*x^4 + 135*x^3 + 45*x^2 + 5*x + 1

? hgmeulerfactor(H, -1, 2) \\ tame prime

%11 = 16*x^3 + 6*x^2 + x + 1

? hgmeulerfactor(H, -1, 5) \\ wild primes not implemented

%12 = 0

? hgmeulerfactor(H, 1/3, 3) \\ tame prime

%13 = -x + 1

? hgmeulerfactor(H, 1/3, 2) \\ tame prime

%14 = 16*x^3 + 6*x^2 + x + 1

\\For H2 now: 2,3,5 are wild

? hgmeulerfactor(H2, 2, 7) \\ good prime

%15 = 16807*x^5 - 2401*x^4 + 294*x^3 + 42*x^2 - 7*x + 1

? hgmeulerfactor(H2, 1/8, 7) \\ tame prime

%16 = -2401*x^4 - 343*x^3 + 7*x + 1
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The global L-function (1/2)

If one suitably defines Pp(T ) for all primes p including the wild ones, then the L-function defined

by

L(H, s) =
∏

p

Pp(p−s)−1

is motivic (Katz), with analytic continuation and functional equation, as used in the L-function

package of Pari/GP. If the motivic weight w is even, there is a possible (multiple) pole at

w/2 + 1.

The command L = lfunhgm(H, t) creates such an L-function. In particular it must guess

the local Euler factors at wild primes, which can be very expensive when the conductor

lfunparams(L)[1] or the degree d is large. This L-function can then be used with all the

functions of the lfun package. For instance we can now obtain the global conductor and check

the Euler factors at all bad primes.

In our example, lfunhgm(H, 1/2) is very fast (only 5 is wild and the conductor is 5000).

More complicated, L = lfunhgm(H, 1/64) finishes in about 20 seconds (the conductor is

525000).

Atelier 2022 (13/01/2022) – p. 10/12



The global L-function (2/2)

? [N] = lfunparams(L); N \\the conductor

%17 = 525000

? print(factor(N))

%18 = [2, 3; 3, 1; 5, 5; 7, 1]

? lfuneuler(L,2)

%19 = 1/(-x + 1)

? lfuneuler(L,3)

%20 = 1/(81*x^3 + 6*x^2 - 4*x + 1)

? lfuneuler(L,5)

%21 = 1

? lfuneuler(L,7)

%22 = 1/(2401*x^3 + 301*x^2 + x + 1)
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Coefficients of the L-function

Two additional functions related to the global L-function are available which do not require its full

initialization: hgmcoefs(H,t,n) computes the first n coefficients of the L-function by setting

all wild Euler factors to 1; this is identical to lfunan(L,n) when this hypothesis is correct (in

particular if there are no wild primes) otherwise all coefficients divisible by a wild prime will be

wrong. In the above example, only 5 is wild and L5 is indeed trivial, so all is fine.

The second is the function hgmcoef(H,t,n) which only computes the nth coefficient of the

global L-function. It gives an error if n is divisible by a wild prime.

? hgmcoefs(H, 1/64, 7^6)[7^6] \\ slow: 7^6 > 10^6

time = 1min, 1,564 ms.

%26 = -25290600

? hgmcoef(H, 1/64, 7^6)

%27 = -25290600

? hgmcoef(H, 1/64, 10)
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