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Introduction

Let Γ be a discrete subgroup of PSL(2,R), which acts on the hyperbolic
upper half plane H.

Assume that the quotient space Γ\H has finite hyperbolic area µ(Γ), and
denote the hyperbolic distance function on H by d .

Let p ∈ H have trivial stabilizer under the action of Γ. Then the space

D(p) := {z ∈ H : d(z , p) ≤ d(gz , p) for all g ∈ Γ}

forms a fundamental domain for Γ\H, and is known as a Dirichlet domain.

It is a connected region whose boundary is a closed hyperbolic polygon with
finitely many sides, which come paired.
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Example 1

Figure 1: F = Q, D = 21.
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Example 2

Figure 2: F = Q(
√

5), NmF/Q(D) = 61.
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Applications

Computing a presentation for Γ with a minimal set of generators;

Solving the word problem with respect to this set of generators;

Computing the cohomology of the Shimura curve, and the action of Hecke
operators;

Computing Hilbert modular forms;

Efficiently computing the intersection number of pairs of closed geodesics;

And many more!
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Arithmetic Fuchsian groups

Let F be a totally real number field, and B a quaternion algebra over F of
discriminant D that is ramified at all but one infinite place.

Take ι to be a corresponding embedding ι : B → Mat(2,R).

Let O be a maximal order in B, and let ON=1 be the group of elements of
reduced norm 1 in O.

Then ΓO := ι(ON=1)/{±1} ⊆ PSL(2,R) is a discrete subgroup.

We will be focusing on computing Dirichlet domains for ΓO.
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Arithmetic Fuchsian group initialization

John Voight has some lists of totally real number fields on his website (up to
degree 10).

The algebras package in PARI allows us to initialize quaternion algebras with
a maximal order.

Quaternion algebras can be initialized by specifying the ramification.

? F=nfinit(y^3-5*y+1);

? A1=alginit(F, [y-1, -5]);

? I1=idealprimedec(F, 5)[1];

? I2=idealprimedec(F, 17)[1]);

? A2=alginit(F, [2, [[I1, I2], [1, 1]], [1, 1, 0]]);
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General algorithm I

In 2009, John Voight published an algorithm to compute the fundamental
domain ([Voi09]), which was implemented in Magma.

The outline of the algorithm is:
1 Compute µ = µ(ΓO) via theoretical means;
2 Enumerate some elements of ΓO, and store them in a (finite) set G (algebraic

part);
3 Compute the normalized basis of G , i.e. the fundamental domain for 〈G〉

(geometric part);
4 If the area of the domain is µ(ΓO), stop. Otherwise, go back to step 2.

The running times were okay for small examples, but they did not scale well.
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General algorithm II

In 2015, Aurel Page generalized this algorithm to Kleinian groups ([Pag15]).
His method to generate elements was probabilistic, and performed much
better than Voight’s method.

Both the geometric and enumeration methods were running in O(µ2) time,
with the geometry generally having the larger constant.

The Magma implementation for this is available from his website.
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My contributions

Improved geometric algorithms that run in O(µ log(µ)) time.

Specialized Page’s probabilistic enumeration to Fuchsian groups.

Compiled large amounts of data to justify choices of constants.

Made various code optimizations for even more speed!

Code is written in PARI, and is publicly available on GitHub ([Ric21a]).

Python program to view and explore the computed fundamental domain (and
closed geodesics).

See [Ric21b] for more details.
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Timing comparison

Computations run on the same McGill server (which is slow; my current office
computer is about twice as fast).

Table 1: Running times of the PARI versus the Magma implementation.

deg(F ) disc(F ) N(D) Area t(MAGMA) t(PARI)
1 1 33 20.943 13.190s
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2 33 37 226.195 4m 57s 0.946s
2 44 79 571.770 69m 43s 3.142s
3 473 99 418.879 28h 56m 4.382s
4 14656 17 469.145 41m 28s 12.107s
5 5763833 1 4490.383 31 days 19.9h 20m 22.5s
7 20134393 119 1507.964 25 days 21.4h
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Total running time

The expected running time is

c1µ log(µ) + c2µ
2,

where µ = µ(ΓO), and c1 and c2 depend on n = deg(F ).

The constants cause the geometry to dominate for small areas, especially for
n small.
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Running times I
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Figure 3: Time to compute the fundamental
domain, n = 1.
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Figure 4: Time to compute the fundamental
domain, n = 2.
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Running times II
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Figure 5: Time to compute the fundamental
domain, n = 3.
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Figure 6: Time to compute the fundamental
domain, n = 4.
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Key implemented methods

U=algfdom(A): computes a Dirichlet domain for A. Can also supply an
Eichler order instead of the already computed maximal order.

P=algfdompresentation(U): computes a presentation for the group.

W=algfdomword(g, P, U): computes g as a word in terms of the
presentation.

python_printfdom(U, "fdexample"): prints the fundamental domain
data into a file, ready to be viewed with python.

James Rickards (CU Boulder) Fundamental domains 11 January 2022 15 / 17



Key implemented methods

U=algfdom(A): computes a Dirichlet domain for A. Can also supply an
Eichler order instead of the already computed maximal order.

P=algfdompresentation(U): computes a presentation for the group.

W=algfdomword(g, P, U): computes g as a word in terms of the
presentation.

python_printfdom(U, "fdexample"): prints the fundamental domain
data into a file, ready to be viewed with python.

James Rickards (CU Boulder) Fundamental domains 11 January 2022 15 / 17



Key implemented methods

U=algfdom(A): computes a Dirichlet domain for A. Can also supply an
Eichler order instead of the already computed maximal order.

P=algfdompresentation(U): computes a presentation for the group.

W=algfdomword(g, P, U): computes g as a word in terms of the
presentation.

python_printfdom(U, "fdexample"): prints the fundamental domain
data into a file, ready to be viewed with python.

James Rickards (CU Boulder) Fundamental domains 11 January 2022 15 / 17



Key implemented methods

U=algfdom(A): computes a Dirichlet domain for A. Can also supply an
Eichler order instead of the already computed maximal order.

P=algfdompresentation(U): computes a presentation for the group.

W=algfdomword(g, P, U): computes g as a word in terms of the
presentation.

python_printfdom(U, "fdexample"): prints the fundamental domain
data into a file, ready to be viewed with python.

James Rickards (CU Boulder) Fundamental domains 11 January 2022 15 / 17



Code in action

Since I can’t embed gp in LaTeX, we will switch windows.
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