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upper half plane H.

@ Assume that the quotient space MN'\H has finite hyperbolic area p(I'), and
denote the hyperbolic distance function on H by d.

@ Let p € H have trivial stabilizer under the action of I'. Then the space
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N
Introduction

o Let I be a discrete subgroup of PSL(2,R), which acts on the hyperbolic
upper half plane H.

@ Assume that the quotient space MN'\H has finite hyperbolic area p(I'), and
denote the hyperbolic distance function on H by d.

@ Let p € H have trivial stabilizer under the action of I'. Then the space
D(p) :={zeH:d(z,p) < d(gz,p) forall g €'}
forms a fundamental domain for M\H, and is known as a Dirichlet domain.

@ It is a connected region whose boundary is a closed hyperbolic polygon with
finitely many sides, which come paired.
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Example 1

Figure 1: F =Q, © =21.
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Example 2

Figure 2: F = Q(v/5), Nmg/o(®) = 61.
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Applications

Computing a presentation for [ with a minimal set of generators;

@ Solving the word problem with respect to this set of generators;

@ Computing the cohomology of the Shimura curve, and the action of Hecke
operators;

@ Computing Hilbert modular forms;

o Efficiently computing the intersection number of pairs of closed geodesics;

@ And many more!
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Arithmetic Fuchsian groups

@ Let F be a totally real number field, and B a quaternion algebra over F of
discriminant ® that is ramified at all but one infinite place.
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discriminant ® that is ramified at all but one infinite place.

@ Take ¢ to be a corresponding embedding ¢ : B — Mat(2,R).
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@ Let F be a totally real number field, and B a quaternion algebra over F of
discriminant ® that is ramified at all but one infinite place.

@ Take ¢ to be a corresponding embedding ¢ : B — Mat(2,R).

@ Let O be a maximal order in B, and let Oy—1 be the group of elements of
reduced norm 1 in O.
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Arithmetic Fuchsian groups

@ Let F be a totally real number field, and B a quaternion algebra over F of
discriminant ® that is ramified at all but one infinite place.

@ Take ¢ to be a corresponding embedding ¢ : B — Mat(2,R).

Let O be a maximal order in B, and let Oy—1 be the group of elements of
reduced norm 1 in O.

Then o := «(Opn=1)/{£1} C PSL(2,R) is a discrete subgroup.
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Arithmetic Fuchsian groups

@ Let F be a totally real number field, and B a quaternion algebra over F of
discriminant ® that is ramified at all but one infinite place.

@ Take ¢ to be a corresponding embedding ¢ : B — Mat(2,R).

Let O be a maximal order in B, and let Oy—1 be the group of elements of
reduced norm 1 in O.

Then o := «(Opn=1)/{£1} C PSL(2,R) is a discrete subgroup.

@ We will be focusing on computing Dirichlet domains for .
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|
Arithmetic Fuchsian group initialization

@ John Voight has some lists of totally real number fields on his website (up to
degree 10).
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Arithmetic Fuchsian group initialization

@ John Voight has some lists of totally real number fields on his website (up to
degree 10).

@ The algebras package in PARI allows us to initialize quaternion algebras with
a maximal order.

@ Quaternion algebras can be initialized by specifying the ramification.
? F=nfinit(y~3-5xy+1);
? Al=alginit(F, [y-1, -51);
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Arithmetic Fuchsian group initialization

@ John Voight has some lists of totally real number fields on his website (up to
degree 10).

@ The algebras package in PARI allows us to initialize quaternion algebras with
a maximal order.

@ Quaternion algebras can be initialized by specifying the ramification.
F=nfinit (y~3-5*y+1);
Al=alginit(F, [y-1, -51);
I1=idealprimedec(F, 5)[1];
I2=idealprimedec(F, 17)[1]);
A2=alginit(F, [2, [[I1, 12], [1, 111, [1, 1, 011);

N N N N N
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General algorithm |

@ In 2009, John Voight published an algorithm to compute the fundamental
domain ([Voi09]), which was implemented in Magma.
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General algorithm |

@ In 2009, John Voight published an algorithm to compute the fundamental
domain ([Voi09]), which was implemented in Magma.

@ The outline of the algorithm is:

© Compute u = p(lo) via theoretical means;

@ Enumerate some elements of o, and store them in a (finite) set G (algebraic
part);

© Compute the normalized basis of G, i.e. the fundamental domain for (G)
(geometric part);

@ |If the area of the domain is u(lo), stop. Otherwise, go back to step 2.
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General algorithm |

@ In 2009, John Voight published an algorithm to compute the fundamental
domain ([Voi09]), which was implemented in Magma.

@ The outline of the algorithm is:

© Compute u = p(lo) via theoretical means;

@ Enumerate some elements of o, and store them in a (finite) set G (algebraic
part);

© Compute the normalized basis of G, i.e. the fundamental domain for (G)
(geometric part);

@ |If the area of the domain is u(lo), stop. Otherwise, go back to step 2.

@ The running times were okay for small examples, but they did not scale well.
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@ In 2015, Aurel Page generalized this algorithm to Kleinian groups ([Pagl5]).
His method to generate elements was probabilistic, and performed much
better than Voight’s method.
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@ In 2015, Aurel Page generalized this algorithm to Kleinian groups ([Pagl5]).
His method to generate elements was probabilistic, and performed much
better than Voight’s method.

@ Both the geometric and enumeration methods were running in O(y?) time,
with the geometry generally having the larger constant.
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General algorithm |l

@ In 2015, Aurel Page generalized this algorithm to Kleinian groups ([Pagl5]).
His method to generate elements was probabilistic, and performed much
better than Voight’s method.

@ Both the geometric and enumeration methods were running in O(y?) time,
with the geometry generally having the larger constant.

@ The Magma implementation for this is available from his website.
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My contributions

o Improved geometric algorithms that run in O(ulog(u)) time.
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@ Specialized Page’s probabilistic enumeration to Fuchsian groups.

@ Compiled large amounts of data to justify choices of constants.
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My contributions

Improved geometric algorithms that run in O(u log(p)) time.

Specialized Page's probabilistic enumeration to Fuchsian groups.
@ Compiled large amounts of data to justify choices of constants.

@ Made various code optimizations for even more speed!
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Improved geometric algorithms that run in O(u log(p)) time.

Specialized Page's probabilistic enumeration to Fuchsian groups.
@ Compiled large amounts of data to justify choices of constants.

@ Made various code optimizations for even more speed!

Code is written in PARI, and is publicly available on GitHub ([Ric21a]).

Python program to view and explore the computed fundamental domain (and
closed geodesics).
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My contributions

Improved geometric algorithms that run in O(u log(p)) time.

Specialized Page's probabilistic enumeration to Fuchsian groups.
@ Compiled large amounts of data to justify choices of constants.

@ Made various code optimizations for even more speed!

Code is written in PARI, and is publicly available on GitHub ([Ric21a]).

Python program to view and explore the computed fundamental domain (and
closed geodesics).

See [Ric21b] for more details.
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Timing comparison

Computations run on the same McGill server (which is slow; my current office
computer is about twice as fast).
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Computations run on the same McGill server (which is slow; my current office
computer is about twice as fast).

Table 1: Running times of the PARI versus the Magma implementation.

deg(F)

disc(F)

N(D)

Area

t(MAGMA)

t(PARI)

1

1

33

20.943

13.190s
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Table 1: Running times of the PARI versus the Magma implementation.

deg(F)

disc(F)

N(D)

Area

t(MAGMA)

t(PARI)

1

1

33

20.943
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0.022s
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Table 1: Running times of the PARI versus the Magma implementation.

deg(F) | disc(F) | N(®) | Area | t(MAGMA) | t(PARI)
1 1 33 20.943 13.190s 0.022s
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Timing comparison

Computations run on the same McGill server (which is slow; my current office
computer is about twice as fast).

Table 1: Running times of the PARI versus the Magma implementation.

g(F) | disc(F) | N(®) | Area | t(MAGMA) | t(PARI)
1 1 33 20.943 13.190s 0.022s
1
2

1 793 | 753.982 4h 22m 1.718s
33 37 226.195 4m 57s 0.946s
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Table 1: Running times of the PARI versus the Magma implementation.

deg(F) | disc(F) | N(®) | Area | t(MAGMA) | t(PARI)
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Timing comparison

Computations run on the same McGill server (which is slow; my current office
computer is about twice as fast).

Table 1: Running times of the PARI versus the Magma implementation.

deg(F) | disc(F) | N(®) | Area | t(MAGMA) | t(PARI)
1 1 33 20.943 13.190s 0.022s
1 1 793 | 753.982 4h 22m 1.718s
2 33 37 | 226.195 4m 57s 0.946s
2 44 79 | 571.770 | 69m 43s 3.142s
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Timing comparison

Computations run on the same McGill server (which is slow; my current office
computer is about twice as fast).

Table 1: Running times of the PARI versus the Magma implementation.

deg(F) | disc(F) | N(®) | Area | t(MAGMA) | t(PARI)
1 1 33 20.943 13.190s 0.022s
1 1 793 | 753.982 4h 22m 1.718s
2 33 37 | 226.195 4m 57s 0.946s
2 44 79 | 571.770 | 69m 43s 3.142s
3 473 99 | 418.879 | 28h 56m
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Timing comparison

Computations run on the same McGill server (which is slow; my current office
computer is about twice as fast).

Table 1: Running times of the PARI versus the Magma implementation.

deg(F) | disc(F) | N(®) | Area | t(MAGMA) | t(PARI)
1 1 33 20.943 13.190s 0.022s
1 1 793 | 753.982 4h 22m 1.718s
2 33 37 | 226.195 4m 57s 0.946s
2 44 79 | 571.770 | 69m 43s 3.142s
3 473 99 | 418.879 | 28h 56m 4.382s
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Timing comparison

Computations run on the same McGill server (which is slow; my current office
computer is about twice as fast).

Table 1: Running times of the PARI versus the Magma implementation.

deg(F) | disc(F) | N(®) | Area | t(MAGMA) | t(PARI)
1 1 33 20.943 13.190s 0.022s
1 1 793 | 753.982 4h 22m 1.718s
2 33 37 | 226.195 4m 57s 0.946s
2 44 79 | 571.770 | 69m 43s 3.142s
3 473 99 | 418.879 | 28h 56m 4.382s
4 14656 17 469.145 41m 28s
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Timing comparison

Computations run on the same McGill server (which is slow; my current office
computer is about twice as fast).

Table 1: Running times of the PARI versus the Magma implementation.

deg(F) | disc(F) | N(®) | Area | t(MAGMA) | t(PARI)
1 1 33 20.943 13.190s 0.022s
1 1 793 | 753.982 4h 22m 1.718s
2 33 37 | 226.195 4m 57s 0.946s
2 44 79 | 571.770 | 69m 43s 3.142s
3 473 99 | 418.879 | 28h 56m 4.382s
4 14656 17 469.145 41m 28s 12.107s

James Rickards (CU Boulder)

Fundamental domains

11 January 2022

11/17



Timing comparison

Computations run on the same McGill server (which is slow; my current office
computer is about twice as fast).

Table 1: Running times of the PARI versus the Magma implementation.

deg(F) | disc(F) | N(®) | Area t(MAGMA) | t(PARI)
1 1 33 | 20.943 13.190s 0.022s
1 1 793 | 753.982 4h 22m 1.718s
2 33 37 | 226.195 4m 57s 0.946s
2 44 79 | 571.770 69m 43s 3.142s
3 473 99 | 418.879 | 28h 56m 43825
4 14656 | 17 | 469.145 | 41m 28s | 12.107s
5 | 5763833 | 1 | 4490.383 | 31 days 19.9h
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Timing comparison

Computations run on the same McGill server (which is slow; my current office

computer is about twice as fast).

Table 1: Running times of the PARI versus the Magma implementation.

deg(F) | disc(F) | N(D) Area t(MAGMA) t(PARI)
1 1 33 20.943 13.190s 0.022s
1 1 793 753.982 4h 22m 1.718s
2 33 37 226.195 4m 57s 0.946s
2 44 79 571.770 69m 43s 3.142s
3 473 99 418.879 28h 56m 4.382s
4 14656 17 469.145 41m 28s 12.107s
5 5763833 1 4490.383 | 31 days 19.9h | 20m 22.5s
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Timing comparison

Computations run on the same McGill server (which is slow; my current office
computer is about twice as fast).

Table 1: Running times of the PARI versus the Magma implementation.

deg(F) | disc(F) | N(®) | Area t(MAGMA) | t(PARI)
1 1 33 | 20.943 13.190s 0.022s
1 1 793 | 753.982 4h 22m 1.718s
2 33 37 | 226.195 4m 57s 0.946s
2 44 79 | 571.770 69m 43s 3.142s
3 473 99 | 418.879 | 28h 56m 43825
4 14656 17 | 469.145 41m 28s 12.107s
5 5763833 | 1 | 4490.383 | 31 days 19.9h | 20m 22.5s
7 | 20134393 | 119 | 1507.964 | 25 days 21.4h
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Timing comparison

Computations run on the same McGill server (which is slow; my current office
computer is about twice as fast).

Table 1: Running times of the PARI versus the Magma implementation.

deg(F) | disc(F) | N(®) | Area t(MAGMA) | t(PARI)
1 1 33 | 20.943 13.190s 0.022s
1 1 793 | 753.982 4h 22m 1.718s
2 33 37 | 226.195 4m 57s 0.946s
2 44 79 | 571.770 69m 43s 3.142s
3 473 99 | 418.879 | 28h 56m 43825
4 14656 17 | 469.145 41m 28s 12.107s
5 5763833 | 1 | 4490.383 | 31 days 19.9h | 20m 22.5s
7 | 20134393 | 119 | 1507.964 | 25 days 21.4h | 20m 14.9s
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Total running time

@ The expected running time is

ciplog () + capt?,

where © = u(Fp), and ¢; and ¢, depend on n = deg(F).
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|
Total running time

@ The expected running time is

ciplog () + capt?,

where © = u(Fp), and ¢; and ¢, depend on n = deg(F).

@ The constants cause the geometry to dominate for small areas, especially for
n small.
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Figure 3: Time to compute the fundamental Figure 4: Time to compute the fundamental
domain, n=1. domain, n = 2.
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Figure 5: Time to compute the fundamental Figure 6: Time to compute the fundamental
domain, n = 3. domain, n = 4.
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Key implemented methods

@ U=algfdom(A): computes a Dirichlet domain for A. Can also supply an
Eichler order instead of the already computed maximal order.
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Key implemented methods

@ U=algfdom(A): computes a Dirichlet domain for A. Can also supply an
Eichler order instead of the already computed maximal order.

o P=algfdompresentation(U): computes a presentation for the group.

@ W=algfdomword(g, P, U): computes g as a word in terms of the
presentation.
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Key implemented methods

@ U=algfdom(A): computes a Dirichlet domain for A. Can also supply an
Eichler order instead of the already computed maximal order.

o P=algfdompresentation(U): computes a presentation for the group.

@ W=algfdomword(g, P, U): computes g as a word in terms of the
presentation.

@ python_printfdom(U, "fdexample"): prints the fundamental domain
data into a file, ready to be viewed with python.
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Code in action

Since | can't embed gp in LaTeX, we will switch windows.
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