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Introduction

This is tutorial about a branch developped by Takashi Fukuda, who started working on it in 2018

during the last Atelier in Besançon, and recently merged into the master branch.

PARI already includes many functions and algorithms to determine and work with class groups of

general number fields, notably bnfinit, bnrinit and bnrclassfield. Unconditionally in

small degrees, assuming GRH in moderate degrees, and with little hope of success in huge

degrees (> 150, say).

On the other hand, Iwasawa theory deals with (infinite!) towers of number fields, in particular

cyclotomic Zp-extensions and can give partial information about class groups of number fields of

very high degrees, in particular abelian fields. This tutorial centers on the subcyclopclgp

function which deals with the p-Sylow subgroups of the ideal class group of abelian number fields.
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Abelian number fields (1/2)

By Kronecker-Weber, these are subfields of cyclotomic fields. A good description for such a field

F is by a pair (f, H), where H is the subgroup of (Z/fZ)∗ = Gal(Q(ζf )/Q) fixing F . If f

is minimal, we call it the conductor of the extension: this is the critical parameter for all

complexities involved.

In PARI terms, we will use an argument fH to denote either of

an integer f , describing Q(ζf ) (implicitly H = (1));

a pair [f, H], where f is an integer and H is a vector of generators as t_INTMODs modulo

f or t_INTs (implicitly mapped to (Z/fZ)∗);

a pair [G, H] where G is idealstar(f, 1) and H is a subgroup, given by the canonical

HNF matrix giving the generators of H in terms of G.gen. This HNF matrix divides the

diagonal matrix with diagonal G.cyc and there is a one-to-one correspondence between

subgroups of a finite abelian group and such matrices; the determinant of the matrix is equal

to the subgroup index.
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Abelian number fields (2/2)

a pair [G, H] where G is a bnr structure attached to a ray class group Clf(Q) and H is a

subgroup given by a canonical HNF matrix; the place at infinity must not be forgotten: after Q

= bnfinit(y), the structure bnrinit(Q, [f,[1]]) for an integer f is attached to

Q(ζf ) and isomorphic to (Z/fZ)∗, whereas bnrinit(Q, f) is attached to its maximal

real subfield Q(ζf + ζ−1
f ) and isomorphic to (Z/fZ)∗/(±1);

an irreducible integral monic polynomial defining a primitive element for F .

The function bnrcompositum is particularly useful to build compositums in class field theoretic

terms: given two pairs [bnr1, H1] and [bnr2, H2] attached to abelian fields as above, it

returns a pair [bnr, H] attached to their compositum. This is much more efficient than using

polcompositum to obtain a defining polynomial.
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subcyclopclgp(fH, p, {flag = 0}) (1/3)

This function takes two arguments: an abelian number field F (given by an fH argument) and an

odd prime p > 2 not dividing [F : Q]. It returns information about the p-Sylow subgroup

A = AF of the ideal class group of F . An optional flag allows to compute only part of the

structure to save time.

We write A = A+ ⊕ A− according to the eigenvalues of complex conjugation. The function

returns a 6-component vector v and we shall concentrate on v[2] and v[3]:

v[1] is p

v[2] is [E, [e1, . . . , ek]] with E =
∑

i ei and e1 > · · · > ek . Meaning that A+ has order

pE and is isomorphic to Z/pe1 × · · · × Z/pek (elementary divisors).

v[3] similarly describes A−.

v[4] gives the structure of Gal(F/Q) (elementary divisors)

v[5] is the number of cyclic subfields K 6= Q contained in F
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subcyclopclgp (2/3)

v[6] is the number of Qp-conjugacy classes of injective characters

χ : Gal(K/Q) → Qp
×

.

A vector of primes is also accepted and the result is then a vector of vectors as above, one for

each prime and in the same order.

This is the behaviour if flag = 1 which is not the default value, since it is likely to be very costly.

By default (flag = 0) the function quickly computes

E(A−) and the structure of A− if it is easy to determine,

a proven sharp upper bound for E(A+) (which is expected, but not proven, to be the exact

value unless it is 0)

The corresponding (ei) vectors for non-computed structures are replaced by dummy empty

vectors.
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subcyclopclgp (3/3)

bit 1 of flag: finish and certify all computations;

bit 2 of flag: don’t compute anything about A+;

bit 4 of flag: don’t compute anything about A−.

E.g., flag = 1 + 4 (always) computes fully A+ but doesn’t compute anything about A−.
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Examples

Simple examples for F = Q(ζ22220), i.e., f = 110 × 101 or F = Q(ζ44440):

? subcyclopclgp(22220, 101)

time = 100 ms.

%1 = [101, [0, []], [41, [1, ..., 1]], ...]

? subcyclopclgp(44440, 101)

time = 300 ms.

%2 = [101, [1, [1]], [76, []], ...]

? subcyclopclgp(44440, 101, 1)

time = 43,942 ms.

%3 = [101, [1, [1]], [76, [2, 1, ..., 1]], ...]

? subcyclopclgp(22220, 11)

%4 = [11, [2, [1, 1]], [16, []], ...]

? subcyclopclgp(22220, 11, 1)

%5 = [11, [2, [1, 1]], [16, [2, 1, ..., 1]], ...]
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Examples

F = Q(
√

36322, ζ5)

? T = polcompositum(x^2-36322, polcyclo(5), 2);

? bnfinit(T).cyc

time = 2,870 ms.

%7 = [2000, 20, 20, 2]

? subcyclopclgp(T, 5)

time = 89 ms.

%6 = [5, [1, [1]], [4, []], ...]

? subcyclopclgp(T, 5, 1+4)

time = 93 ms.

%7 = [5, [1, [1]], [], ...]

? default(parisizemax, "4G")

? subcyclopclgp(T, 5, 1)

time = 33,468 ms.

%9 = [5, [1, [1]], [4, [3, 1]], ...]
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Examples

Still F = Q(
√

36322, ζ5), using a class-field theoretic description:

? Q = bnfinit(y);

? [,bnr1,H1] = rnfconductor(Q, x^2-36322);

? [,bnr2,H2] = rnfconductor(Q, polcyclo(5));

? [bnr,H] = bnrcompositum([bnr1,H1], [bnr2,H2]);

? subcyclopclgp([bnr,H], 5)

%14 = [5, [1, [1]], [4, []], ...]
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Examples

Compositum of Q(
√

2) and the subfield of Q(ζ532) of degree 53:

? bnr1 = bnrinit(Q, 8); H1 = Mat(2);

? bnr2 = bnrinit(Q, [53^2, [1]]); H2 = Mat(53);

? [bnr,H] = bnrcompositum([bnr1, H1], [bnr2, H2]);

? subcyclopclgp([bnr,H], 107)

time = 21 ms.

%18 = [107, [1, [1]], [0, []], ...]

The simpler direct construction is a disaster :

T = polcompositum(x^2-2,polsubcyclo(53^2,53), 2)

subcyclopclgp(T, 107)

will run for years trying to compute an [f, H] description (old efficiency bug, hard to fix).
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Other functions: subcyclohminus

subcyclohminus(fH) computes the relative class number h−(F ) up to Hasse’s unit index

Q ∈ {1, 2} using an analytic class number formula: more precisely it returns [h−, Q], or

[2h−/Q, 0] if Q could not be determined.

subcyclohminus(fH, p), with p an odd prime number, returns vp(h−(F )).

? subcyclohminus(22220, 101)

time = 40 ms.

%19 = 41

? p = 7860079; G = znstar(p, 1);

? subcyclohminus([G, Mat(13122)], 3)

time = 1,203 ms.

%21 = 65

This gives the 3-part of the subfield of degree 13122 in Q(ζ7860079).
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Other functions: subcycloiwasawa

subcycloiwasawa(fH, p); let p be a prime, F∞ the cyclotomic Zp-extension of F and let

Fn be its n-th layer. Computes the λ-invariant attached to F∞

subcycloiwasawa(fH, p, k) compute the Iwasawa polynomial (of degree λ) modulo

pk−logp λ
.

Not all cases are implemented in this function; e.g., p must be odd and not divide [F : Q] unless

F is quadratic. For quadratic fields, more information is actually output about the behaviour of AF

along F∞:

? subcycloiwasawa(x^2 + 1501391, 3)

time = 28 ms.

%22 = [14, -16, [2, 5]]

This says that at p = 3, we have λ = 14 and that e0 = 2, e1 = 5 and en = 14n − 16 for all

n > 2, where 3en is the 3-part of the class number of Fn.
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