p-adic computation of $\bmod \ell$ (modular) Galois representations

Nicolas Mascot

Trinity College Dublin

PARI/GP day
June $2^{\text {nd }} 2021$

Disclaimer

The code demonstrated in this talk is not yet well-polished.

I would be happy to hear your suggestions / remarks!

Topics

(1) Computations in Jacobians over finite fields
(2) p-adic computations in Jacobians
(3) p-adic computation of $\bmod \ell$ Galois representations
(1) p-adic computation of $\bmod \ell$ Galois representations attached to modular forms

Computations in Jacobians over finite fields

Curves and Jacobians

Let C be a curve of genus $g \in \mathbb{N}$.

The Jacobian J of C is an Abelian variety of dimension g.
Abelian: group law on J, similarly to elliptic curves.

Curves and Jacobians

Let C be a curve of genus $g \in \mathbb{N}$.

The Jacobian J of C is an Abelian variety of dimension g.
Abelian: group law on J, similarly to elliptic curves.

However, typically the equations of J are really horrible!
\rightsquigarrow We want to compute in J by just looking at C.
NB Jacobian of a curve $=$ Picard group of the curve \approx class group of a number field.

This is possible thanks to Makdisi's algorithms.

Makdisi's algorithms

All we need is the matrix

$$
V=\left(\begin{array}{ccc}
v_{1}\left(P_{1}\right) & v_{2}\left(P_{1}\right) & \cdots \\
\vdots & \vdots & \\
v_{1}\left(P_{n}\right) & v_{2}\left(P_{n}\right) & \cdots
\end{array}\right)
$$

where v_{1}, v_{2} are "functions" on C forming a basis of the space of global sections of a line bundle \mathcal{L} on $C(\approx$ Riemann-Roch space), and $P_{1}, P_{2}, \cdots \in C$ are sufficiently many points.

Makdisi's algorithms

All we need is the matrix

$$
V=\left(\begin{array}{ccc}
v_{1}\left(P_{1}\right) & v_{2}\left(P_{1}\right) & \cdots \\
\vdots & \vdots & \\
v_{1}\left(P_{n}\right) & v_{2}\left(P_{n}\right) & \cdots
\end{array}\right)
$$

where v_{1}, v_{2} are "functions" on C forming a basis of the space of global sections of a line bundle \mathcal{L} on $C(\approx$ Riemann-Roch space), and $P_{1}, P_{2}, \cdots \in C$ are sufficiently many points.

A point on J is then represented by a matrix

$$
W=\left(\begin{array}{ccc}
w_{1}\left(P_{1}\right) & w_{2}\left(P_{1}\right) & \cdots \\
\vdots & \vdots & \\
w_{1}\left(P_{n}\right) & w_{2}\left(P_{n}\right) & \cdots
\end{array}\right)
$$

where w_{1}, w_{2}, \cdots is a basis of a subspace.

Example: Smooth quartic over a finite field

We construct the Jacobian J of the curve

$$
C: x^{4}+2 y^{4}+x^{3}-3 x y-2=0
$$

over $\mathbb{F}_{29^{3}}$, and generate a random point on J.
$\mathrm{J}=$ smoothplanepicinit $\left(\mathrm{x}^{\wedge} 4+2 * \mathrm{y}^{\wedge} 4+\mathrm{x}^{\wedge} 3-3 * \mathrm{x} * \mathrm{y}-2,29,3\right)$
$\mathrm{W}=$ picrand(J)
picmember(J,W)
piciszero(J,W)
W2 = picrand(J);
piceq(J,W,W2)
picadd(J,W,W2)

Example: Smooth quartic over a finite field

We construct the Jacobian J of the curve

$$
C: x^{4}+2 y^{4}+x^{3}-3 x y-2=0
$$

over $\mathbb{F}_{29^{3}}$, and generate a random point on J.
$\mathrm{J}=$ smoothplanepicinit $\left(\mathrm{x}^{\wedge} 4+2 * \mathrm{y}^{\wedge} 4+\mathrm{x}^{\wedge} 3-3 * \mathrm{x} * \mathrm{y}-2,29,3\right)$
$\mathrm{W}=$ picrand (J)
picmember(J,W)
piciszero(J,W)
W2 = picrand(J);
piceq(J,W,W2)
picadd (J,W,W2)
Hyperelliptic and superelliptic curves are also available.
We plan to implement general curves; the only missing ingredient is Riemann-Roch spaces.

Point counting and random torsion points

The zeta function of C / \mathbb{F}_{p} is

$$
Z\left(C / \mathbb{F}_{p}, x\right) \stackrel{\text { def }}{=} \exp \left(\sum_{n \geq 1} \# C\left(\mathbb{F}_{p^{n}}\right) \frac{x^{n}}{n}\right)=\frac{L(x)^{\mathrm{rev}}}{(1-x)(1-p x)}
$$

where $L(x)=\operatorname{det}\left(x-\left.\operatorname{Frob}_{p}\right|_{J}\right) \in \mathbb{Z}[x]$.

Theorem

We have $\# J\left(\mathbb{F}_{p^{n}}\right)=\operatorname{Res}\left(L(x), x^{n}-1\right) \in \mathbb{N}$ for all $n \in \mathbb{N}$.
factor(piccard(J))
W = picrandtors(J,13);
picmember(J,W)
piciszero(J, picmul(J,W,13))
piciszero(J,W)
picistorsion(J,W,13)

Frobenius and pairings

If $\mu_{\ell} \subset \mathbb{F}_{q}$, we have the Frey-Rück pairing

$$
J\left(\mathbb{F}_{q}\right)[\ell] \times J\left(\mathbb{F}_{q}\right) / \ell J\left(\mathbb{F}_{q}\right) \longrightarrow \mathbb{F}_{q}^{\times} / \mathbb{F}_{q}^{\times \ell} \xrightarrow{\sim} \mathbb{Z} / \ell \mathbb{Z}
$$

P = pictorspairinginit(J, 13);
X = picrand(J);
pictorspairing(J, P, W, X)
pictorspairing(J, P, picmul(J, W, 2), X)
\rightsquigarrow We can analyse the action of Frobenius on $J\left(\mathbb{F}_{q}\right)[13]$:
FW = picfrob(J,W);
pictorspairing(J, P, FW, X)
piceq(J, picmul(J,W,9), picfrob(J,W))

p-adic computations in Jacobians

Truncated p-adics

Instead of working over $\mathbb{F}_{q}=\mathbb{F}_{p}[t] / T(t)=\mathbb{Z}[t] /(T(t), p)$ where $T(t)$ is irreducible $\bmod p$, we can work over

$$
\mathbb{Z}_{q} / p^{e}=\mathbb{Z}[t] /\left(T(t), p^{e}\right)
$$

for any $e \in \mathbb{N}$.
J2 = picsetprec (J,21) ;
 Now mod 29^e, e=21
Y = picrand(J2)
picmul(J2,Y,-3)
picmember (J2,W)
picmemberval(J2,W)
picmemberval(J2,Y)

Hensel-lifting torsion points

If $p \nmid \ell$ is a prime of good reduction of C, the reduction map

$$
J\left(\mathbb{Z}_{q}\right)[\ell] \longrightarrow J\left(\mathbb{F}_{q}\right)[\ell]
$$

is étale, so we can lift ℓ-torsion points.
W2 = piclifttors(J2,W,13);
picmember(J2,W2)
picistorsion(J2,W2,13)
piciszero(J2,W2)
piceq(J2, picmul(J2,W2, 9), picfrob(J2,W2))

p-adic computation of $\bmod \ell$
 Galois representations

Jacobians and Galois representations

Let C be a curve of genus g over \mathbb{Q}, let J be its Jacobian, and let $\ell \in \mathbb{N}$.

Then $J(\overline{\mathbb{Q}})[\ell] \simeq(\mathbb{Z} / \ell \mathbb{Z})^{2 g}$, and the points of $J[\ell]$ are not defined over \mathbb{Q} in general
\rightsquigarrow Galois representation

$$
\rho_{J, \ell}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \longrightarrow \operatorname{Aut}(J[\ell]) \simeq \mathrm{GSp}_{2 g}(\mathbb{Z} / \ell \mathbb{Z})
$$

Jacobians and Galois representations

Let C be a curve of genus g over \mathbb{Q}, let J be its Jacobian, and let $\ell \in \mathbb{N}$.

Then $J(\overline{\mathbb{Q}})[\ell] \simeq(\mathbb{Z} / \ell \mathbb{Z})^{2 g}$, and the points of $J[\ell]$ are not defined over \mathbb{Q} in general
\rightsquigarrow Galois representation

$$
\rho_{J, \ell}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \longrightarrow \operatorname{Aut}(J[\ell]) \simeq \mathrm{GSp}_{2 g}(\mathbb{Z} / \ell \mathbb{Z})
$$

If $p \nmid \ell$ is a prime of good reduction of C, then $\rho_{J, \ell}$ is unramified at p, and the characteristic polynomial of
$\rho_{J, \ell}\left(\mathrm{Frob}_{p}\right)$ is $L(x) \bmod \ell$, where $Z\left(C / \mathbb{F}_{p}\right)=\frac{L(x)^{\mathrm{rev}}}{(1-x)(1-p x)}$.

Jacobians and Galois representations

Let C be a curve of genus g over \mathbb{Q}, let J be its Jacobian, and let $\ell \in \mathbb{N}$.

Then $J(\overline{\mathbb{Q}})[\ell] \simeq(\mathbb{Z} / \ell \mathbb{Z})^{2 g}$, and the points of $J[\ell]$ are not defined over \mathbb{Q} in general
\rightsquigarrow Galois representation

$$
\rho_{J, \ell}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \longrightarrow \operatorname{Aut}(J[\ell]) \simeq \mathrm{GSp}_{2 g}(\mathbb{Z} / \ell \mathbb{Z})
$$

If $p \nmid \ell$ is a prime of good reduction of C, then $\rho_{J, \ell}$ is unramified at p, and the characteristic polynomial of
$\rho_{J, \ell}\left(\operatorname{Frob}_{p}\right)$ is $L(x) \bmod \ell$, where $Z\left(C / \mathbb{F}_{p}\right)=\frac{L(x)^{\mathrm{rev}}}{(1-x)(1-p x)}$.
We wish to compute $\rho_{J, \ell}$.

p-adic strategy to compute $\rho_{J, \ell}$

(1) Choose prime $p \nmid \ell$ of good reduction of C,
(2) Find $q=p^{a}$ such that $J[\ell]$ is defined over \mathbb{F}_{q},
(0) Generate random points of $J\left(\mathbb{F}_{q}\right)[\ell]$ until we get an \mathbb{F}_{ℓ}-basis,
(0. Lift this basis from $J\left(\mathbb{F}_{q}\right)$ to $J\left(\mathbb{Z}_{q} / p^{e}\right), e \gg 1$,
(0) Form all linear combinations of these points in $J\left(\mathbb{Z}_{q} / p^{e}\right)[\ell]$,
(0) $F(x)=\prod_{t \in J[f]}(x-\theta(t))$, where $\theta: J \rightarrow \mathbb{A}^{1}$,
(1) Identify $F(x) \in \mathbb{Q}[x]$.

Example: 2-torsion of the Klein quartic

Let $C: x^{3} y+y^{3}+x=0$. We compute $\rho_{J, 2}$.
f $=x^{\wedge} 3 * y+y^{\wedge} 3+x$;
$P=[1,0,0] ;$
Points on C
Q = [0,1,0];
 Needed to construct J -> A1
l = 2;
Look at J[2]
$\mathrm{p}=5$; e $=60$;
Work mod 5^60
$R=\operatorname{smoothplanegalrep}(f, l, p, e,[[P],[Q]])$
$\mathrm{fa}=\mathrm{factor}(\mathrm{R}[1])$
Mat(apply(polredabs,fa[,1]))
We see that the field of definition of $J[2]$ is $\mathbb{Q}\left(\zeta_{7}\right)$.

Sub-representations of $\rho_{J, \ell}$

Frequently, we only want the representation ρ_{T} coming from the points of a Galois-stable \mathbb{F}_{ℓ}-subspace $T \subset J[\ell]$.

Given $p \in \mathbb{N}$ prime, let
$L(x)=\operatorname{det}\left(x-\left.\operatorname{Frob}_{p}\right|_{J[\ell]}\right)$ and $\quad \chi_{T}(x)=\operatorname{det}\left(x-\left.\operatorname{Frob}_{p}\right|_{T}\right)$,
so that $\chi_{T} \mid L$.
If χ_{T} is coprime with $\psi_{T}=L / \chi_{T}$, then we can generate random points of T by applying $\psi_{T}\left(\mathrm{Frob}_{p}\right)$ to random points of $J[\ell]$
\rightsquigarrow We can compute ρ_{T}.

Example: A piece of hyperelliptic 7-torsion

```
h = x^3+x+1; \\ C : y^2+h(x)*y = f(x)
f = x^5+x^4; \\ Good reduction away from 13
P = [-1,0]; \\ Points on C
Q= [0,0]; \\ Needed to construct J -> A1
p = 17; e = 30; \\ Work mod 17^30
l = 7; \\ Look at piece of J[7]
chi = x^2-x-2; \\ Where Frob17 acts like this
R = hyperellgalrep([f,h],l,p,e,[P,Q],chi)
PR = projgalrep(R);
F = polredabs(PR[1])
polgalois(F)
factor(nfdisc(F))
```

We obtain a polynomial with Galois group $\mathrm{PGL}_{2}\left(\mathbb{F}_{7}\right)$ which ramifies only at 7 and at 13 .

p-adic computation of $\bmod \ell$

Galois representations attached to
modular forms

Galois representations attached to modular forms

Let $f=q+\sum_{n=2}^{+\infty} a_{n} q^{n} \in S_{k}\left(\Gamma_{1}(N), \varepsilon\right), k \geqslant 2$, be a newform with coefficient field $K_{f}=\mathbb{Q}\left(a_{n}, n \geqslant 2\right)$.

Pick a prime \mathfrak{l} of K_{f} above some $\ell \in \mathbb{N}$.

Galois representations attached to modular forms

Let $f=q+\sum_{n=2}^{+\infty} a_{n} q^{n} \in S_{k}\left(\Gamma_{1}(N), \varepsilon\right), k \geqslant 2$, be a newform with coefficient field $K_{f}=\mathbb{Q}\left(a_{n}, n \geqslant 2\right)$.

Pick a prime \mathfrak{l} of K_{f} above some $\ell \in \mathbb{N}$.

Theorem (Deligne, Serre)

There exists a Galois representation

$$
\rho_{f, l}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \longrightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{\mathrm{l}}\right)
$$

which is unramified outside ℓN, and such that the image of any Frobenius element at $p \nmid \ell N$ has characteristic polynomial

$$
x^{2}-a_{p} x+\varepsilon(p) p^{k-1} \in \mathbb{F}_{r}[x]
$$

Galois representations attached to modular forms

Let $f=q+\sum_{n=2}^{+\infty} a_{n} q^{n} \in S_{k}\left(\Gamma_{1}(N), \varepsilon\right), k \geqslant 2$, be a newform with coefficient field $K_{f}=\mathbb{Q}\left(a_{n}, n \geqslant 2\right)$.

Pick a prime \mathfrak{l} of K_{f} above some $\ell \in \mathbb{N}$.

Theorem (Deligne, Serre)

There exists a Galois representation

$$
\rho_{f, l}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \longrightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{\mathrm{l}}\right)
$$

which is unramified outside ℓN, and such that the image of any Frobenius element at $p \nmid \ell N$ has characteristic polynomial

$$
x^{2}-a_{p} x+\varepsilon(p) p^{k-1} \in \mathbb{F}_{r}[x]
$$

We wish to compute $\rho_{f, \mathfrak{l}}$.

Modular Galois representations in Jacobians

Under reasonable hypotheses, $\rho_{f, \text { r }}$ is afforded by a Galois-stable piece $T \subseteq J[\ell]$, where J is the Jacobian of the modular curve $X_{1}\left(N^{\prime}\right)$,

$$
N^{\prime}=\left\{\begin{array}{cc}
N & \text { if } k=2, \\
\ell N & \text { if } k>2 .
\end{array}\right.
$$

Modular curves

Curves

Points

where ζ_{N} is a fixed primitive N-th root of 1 .

Makdisi for $X(N)$

Need line bundle \mathcal{L} :
Pick \mathcal{L} whose sections are modular forms of weight 2.

Need points P_{1}, \cdots, P_{n} to evaluate forms at:
Fix (E, α), take the

$$
(E, \alpha \circ \gamma)
$$

for $\gamma \in \mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z}) / \pm 1$.

Still need to "evaluate" a basis of the space of forms of weight 2 at the $P_{i} \ldots$

Algebraic modular forms

Let $k \in \mathbb{N}$, and R a commutative ring such that $6 N \in R^{\times}$.

Algebraic modular forms

Let $k \in \mathbb{N}$, and R a commutative ring such that $6 N \in R^{\times}$.

Definition

An algebraic modular form of weight k for $X(N)$ over R is a rule f assigning a value to isomorphism classes of triples $(E / R, \alpha, \omega)$ where ω generates the differential forms on E / R

Algebraic modular forms

Let $k \in \mathbb{N}$, and R a commutative ring such that $6 N \in R^{\times}$.

Definition

An algebraic modular form of weight k for $X(N)$ over R is a rule f assigning a value to isomorphism classes of triples $(E / R, \alpha, \omega)$ where ω generates the differential forms on E / R, and such that

$$
f(E, \alpha, u \omega)=u^{-k} f(E, \alpha, \omega)
$$

for all $u \in R^{\times}$.

Algebraic modular forms

Definition

An algebraic modular form of weight k for $X(N)$ over R is a rule f assigning a value to triples $(E / R, \alpha, \omega)$, such that

$$
f(E, \alpha, u \omega)=u^{-k} f(E, \alpha, \omega)
$$

for all $u \in R^{\times}$.

Algebraic modular forms

Definition

An algebraic modular form of weight k for $X(N)$ over R is a rule f assigning a value to triples $(E / R, \alpha, \omega)$, such that

$$
f(E, \alpha, u \omega)=u^{-k} f(E, \alpha, \omega)
$$

for all $u \in R^{\times}$.
Short Weierstrass

$$
\begin{gathered}
(\mathcal{E}): y^{2}=x^{3}+A x+B \\
\\
\rightsquigarrow \omega=d x / 2 y .
\end{gathered}
$$

Algebraic modular forms

Definition

An algebraic modular form of weight k for $X(N)$ over R is a rule f assigning a value to triples $(E / R, \alpha, \omega)$, such that

$$
f(E, \alpha, u \omega)=u^{-k} f(E, \alpha, \omega)
$$

for all $u \in R^{\times}$.
Short Weierstrass

$$
\begin{gathered}
(\mathcal{E}): y^{2}=x^{3}+A x+B \\
\rightsquigarrow \omega=d x / 2 y
\end{gathered}
$$

Isomorphic to

$$
\left(\mathcal{E}^{\prime}\right): y^{2}=x^{3}+A^{\prime} x+B^{\prime}
$$

$$
\text { by }(x, y) \mapsto\left(u^{2} x, u^{3} y\right), A^{\prime}=u^{4} A, B^{\prime}=u^{6} B, \omega^{\prime}=u^{-1} \omega
$$

Algebraic modular forms

Definition

An algebraic modular form of weight k for $X(N)$ over R is a rule f assigning a value to pairs $(\mathcal{E} / R, \alpha)$, such that

$$
f\left(\mathcal{E}^{\prime}, \alpha\right)=u^{k} f(\mathcal{E}, \alpha)
$$

for all $u \in R^{\times}$.
Short Weierstrass

$$
\begin{gathered}
(\mathcal{E}): y^{2}=x^{3}+A x+B \\
\rightsquigarrow \omega=d x / 2 y
\end{gathered}
$$

Isomorphic to

$$
\left(\mathcal{E}^{\prime}\right): y^{2}=x^{3}+A^{\prime} x+B^{\prime}
$$

$$
\text { by }(x, y) \mapsto\left(u^{2} x, u^{3} y\right), A^{\prime}=u^{4} A, B^{\prime}=u^{6} B, \omega^{\prime}=u^{-1} \omega
$$

Algebraic modular forms

Definition

An algebraic modular form of weight k for $X(N)$ over R is a rule f assigning a value to pairs $(\mathcal{E} / R, \alpha)$, such that

$$
f\left(\mathcal{E}^{\prime}, \alpha\right)=u^{k} f(\mathcal{E}, \alpha)
$$

for all $u \in R^{\times}$.

Examples

$\mathcal{E} \mapsto A$ is a modular form of weight 4.
$\mathcal{E} \mapsto \Delta:=-64 A^{3}-432 B^{2}$ is a modular form of weight 12.
by $(x, y) \mapsto\left(u^{2} x, u^{3} y\right), A^{\prime}=u^{4} A, B^{\prime}=u^{6} B, \omega^{\prime}=u^{-1} \omega$.

Makdisi's moduli-friendly forms

$$
\alpha:(\mathbb{Z} / N \mathbb{Z})^{2} \simeq \mathcal{E}[N]
$$

For $v, w \in(\mathbb{Z} / N \mathbb{Z})^{2}$ such that $v, w, v+w$ are all nonzero, let $\lambda_{v, w}:(\mathcal{E}, \alpha) \longmapsto$ slope of line joining $\alpha(v)$ to $\alpha(w)$.

Makdisi's moduli-friendly forms

$$
\alpha:(\mathbb{Z} / N \mathbb{Z})^{2} \simeq \mathcal{E}[N]
$$

For $v, w \in(\mathbb{Z} / N \mathbb{Z})^{2}$ such that $v, w, v+w$ are all nonzero, let $\lambda_{v, w}:(\mathcal{E}, \alpha) \longmapsto$ slope of line joining $\alpha(v)$ to $\alpha(w)$.

Theorem (Makdisi, 2011)

(1) $\lambda_{v, w}$ is a modular form of weight 1 for $X(N)$.

Makdisi's moduli-friendly forms

$$
\alpha:(\mathbb{Z} / N \mathbb{Z})^{2} \simeq \mathcal{E}[N]
$$

For $v, w \in(\mathbb{Z} / N \mathbb{Z})^{2}$ such that $v, w, v+w$ are all nonzero, let $\lambda_{v, w}:(\mathcal{E}, \alpha) \longmapsto$ slope of line joining $\alpha(v)$ to $\alpha(w)$.

Theorem (Makdisi, 2011)

(1) $\lambda_{v, w}$ is a modular form of weight 1 for $X(N)$.
(2) The R-algebra generated by the $\lambda_{v, w}$ contains all modular forms for $X(N)$, except cuspforms of weight 1 .

Makdisi's moduli-friendly forms

$$
\alpha:(\mathbb{Z} / N \mathbb{Z})^{2} \simeq \mathcal{E}[N]
$$

For $v, w \in(\mathbb{Z} / N \mathbb{Z})^{2}$ such that $v, w, v+w$ are all nonzero, let $\lambda_{v, w}:(\mathcal{E}, \alpha) \longmapsto$ slope of line joining $\alpha(v)$ to $\alpha(w)$.

Theorem (Makdisi, 2011)

(1) $\lambda_{v, w}$ is a modular form of weight 1 for $X(N)$.
(2) The R-algebra generated by the $\lambda_{v, w}$ contains all modular forms for $X(N)$, except cuspforms of weight 1 .
(- The $\lambda_{v, w}$ are moduli-friendly!

Makdisi's moduli-friendly forms

$$
\alpha:(\mathbb{Z} / N \mathbb{Z})^{2} \simeq \mathcal{E}[N]
$$

For $v, w \in(\mathbb{Z} / N \mathbb{Z})^{2}$ such that $v, w, v+w$ are all nonzero, let $\lambda_{v, w}:(\mathcal{E}, \alpha) \longmapsto$ slope of line joining $\alpha(v)$ to $\alpha(w)$.

Theorem (Makdisi, 2011)

(1) $\lambda_{v, w}$ is a modular form of weight 1 for $X(N)$.
(2) The R-algebra generated by the $\lambda_{v, w}$ contains all modular forms for $X(N)$, except cuspforms of weight 1 .

- The $\lambda_{v, w}$ are moduli-friendly!
\rightsquigarrow We can compute in the Jacobian of $X(N)$ without equations nor q-expansions, just by looking at $\mathcal{E}[N]$ for one \mathcal{E} !

Example 1

Let

$$
f=q+(-i-1) q^{2}+(i-1) q^{3}+O\left(q^{4}\right) \in S_{2}\left(\Gamma_{1}(16)\right)
$$

and

$$
\mathfrak{l}=(5, i-2) .
$$

We catch $\rho_{f, 1}$ in the 5-torsion of the Jacobian of $X_{1}(16)$ (genus 2).

S = mfinit([16,2,0],1);
$\mathrm{f}=\mathrm{mfeigenbasis(S[1])[1];}$
R = mfgalrep(f,[5,[[2,2]]],[30,50],5)
factor (projgalrep(R)[1])

Example 2

Let

$$
f=\Delta=q-24 q^{2}+252 q^{3}+O\left(q^{4}\right) \in S_{12}\left(\Gamma_{1}(1)\right)
$$

and

$$
\mathfrak{l}=17 .
$$

We catch $\rho_{f, l}$ in the 17 -torsion of the Jacobian of $X_{1}(17)$ (genus 5).
$\mathrm{f}=\mathrm{mfDelta}()$;
$R=\operatorname{mfgalrep}(f, 17,100,200)$
F = polredbest(projgalrep(R) [1])
factor(nfdisc(F))

