| Bill Allombert on Wed, 26 Feb 2003 19:05:22 +0100 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
| Re: zetakinit() puzzle |
On Wed, Feb 26, 2003 at 06:01:41PM +0100, Karim BELABAS wrote:
> On Wed, 26 Feb 2003, Bill Allombert wrote:
> > What is a bug in a sense is the following:
> >
> > ? sin(2^22)
> > %1 = 0.9751293949417070368170374003
> > ? sin(2^22*1.)
> > %2 = 0.9751293949417070368170374003
> > ? sin(2^22+.)
> > %3 = 0.9751293949417070368170274962
> > The correct result being the last one.
>
> Yes, this is quite a different situation. When the input is exact,
> counter-measures can be taken.
>
> > sin() could be smart enough to reduce mod 2Pi correctly when the
> > input is exact, using sizedigit(x\3)+prec digits of Pi instead of prec.
> >
> > The following patch fix that for sin, cos, tan, cotan and sincos (used by
> > exp(I*x)). This is not perfect, since sometimes the result will have more
> > than default(realprecision) words of precision.
>
> This should be trivial to fix: results are t_REAL. Just affrr them to
> cgetr(prec) and remove the gerepiles [ which are slightly slower anyway ].
>
> To be extra careful, you could check for an exact 0 input and directly return
> realzero(prec) / realun(prec) instead. But it shouldn't make any difference.
>
> Of course, we have the same kind of problems with exact t_COMPLEX and
> t_QUADs...
I suppose gsincos take care of t_COMPLEX ? t_QUAD are more tricky to handle.
Here a new patch (that still need to change the bench).
Now, I wonder if mpsc_exact is an overkill. Should not
mpsc_exact(GEN x,long prec){return gadd(x,realzero(prec));}
be as good, and work for exact t_QUAD as well ?
Index: src/basemath/trans1.c
===================================================================
RCS file: /home/megrez/cvsroot/pari/src/basemath/trans1.c,v
retrieving revision 1.81
diff -u -r1.81 trans1.c
--- src/basemath/trans1.c 2003/01/15 20:46:02 1.81
+++ src/basemath/trans1.c 2003/02/26 17:54:48
@@ -1673,6 +1673,29 @@
/** **/
/********************************************************************/
+/*Transform an exact number to a real with sufficient accuracy
+ *to avoid precision loss in modulo Pi reduction*/
+
+static GEN
+mpsc_exact(GEN x, long prec)
+{
+ long t=typ(x);
+ GEN p1;
+ long pr=prec, d;
+ switch(t)
+ {
+ case t_INT:
+ pr += lgefint(x)-2;
+ break;
+ default:
+ d=lgefint(x[1])-lgefint(x[2])+1;
+ if (d>0)
+ pr += d;
+ }
+ p1=cgetr(pr); gaffect(x,p1);
+ return p1;
+}
+
/* Reduce x0 mod Pi/2 to x in [-Pi/4, Pi/4]. Return cos(x)-1 */
static GEN
mpsc1(GEN x0, long *ptmod8)
@@ -1827,6 +1850,12 @@
gerepilemanyvec(av,tetpil,y+1,2);
return y;
+ case t_INT: case t_FRAC: case t_FRACN:
+ p1=cgetr(prec); av=avma;
+ p2=mpsc_exact(x,prec);
+ affrr(mpcos(p2),p1); avma=av;
+ return p1;
+
case t_INTMOD: case t_PADIC: err(typeer,"gcos");
default:
@@ -1900,6 +1929,12 @@
y[2]=lmul(p1,v);
gerepilemanyvec(av,tetpil,y+1,2);
return y;
+
+ case t_INT: case t_FRAC: case t_FRACN:
+ p1=cgetr(prec); av=avma;
+ p2=mpsc_exact(x,prec);
+ affrr(mpsin(p2),p1); avma=av;
+ return p1;
case t_INTMOD: case t_PADIC: err(typeer,"gsin");
@@ -1979,9 +2014,11 @@
switch(typ(x))
{
case t_INT: case t_FRAC: case t_FRACN:
- av=avma; p1=cgetr(prec); gaffect(x,p1); tetpil=avma;
- mpsincos(p1,s,c); gptr[0]=s; gptr[1]=c;
- gerepilemanysp(av,tetpil,gptr,2);
+ *s=cgetr(prec); *c=cgetr(prec); av=avma;
+ p1=mpsc_exact(x,prec);
+ mpsincos(p1,&ps,&pc);
+ affrr(ps,*s); affrr(pc,*c);
+ avma=av;
return;
case t_REAL:
@@ -2098,6 +2135,11 @@
av = avma; gsincos(x,&s,&c,prec);
return gerepileupto(av, gdiv(s,c));
+ case t_INT: case t_FRAC: case t_FRACN:
+ s=cgetr(prec); av=avma; c=mpsc_exact(x,prec);
+ affrr(mptan(c),s); avma=av;
+ return s;
+
case t_INTMOD: case t_PADIC: err(typeer,"gtan");
default:
@@ -2144,6 +2186,11 @@
case t_COMPLEX:
av = avma; gsincos(x,&s,&c,prec);
return gerepileupto(av, gdiv(c,s));
+
+ case t_INT: case t_FRAC: case t_FRACN:
+ s=cgetr(prec); av=avma; c=mpsc_exact(x,prec);
+ affrr(mpcotan(c),s); avma=av;
+ return s;
case t_INTMOD: case t_PADIC: err(typeer,"gcotan");
Cheers,
Bill.