| Bill Allombert on Wed, 09 Sep 2015 16:17:17 +0200 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
| GP interface for computing L functions |
Dear PARI developers,
We just added to master a new family of functions in GP to compute with general
L functions.
Some simple examples:
? lfun(1,2) \\ zeta(2) = Pi^2/6
%1 = 1.6449340668482264364724151666460251892
? lfun(-4,2) \\ L_chi(2) = Catalan with chi(n)=(-4/n)
%2 = 0.91596559417721901505460351493238411078
? K=nfinit(x^2+1); \\ Q(i)
? lfun(K,2) \\ zeta_K(2) = Catalan*Pi^2/6 with K=Q(i)
%4 = 1.5067030099229850308865650481820713960
? E=ellinit("11a1");
? lfun(E,1) \\ L_E(1)
%6 = 0.25384186085591068433775892335090946104
? ellL1(E)
%7 = 0.25384186085591068433775892335090946105
? lfunzeros(1,[10,30]) \\ zeros of zeta(1/2+I*t) with 10<=t<=30
%8 = [14.134725141734693790457251983562470271,21.022039638771554992628479593896902777,25.010857580145688763213790992562821819]
? E2=ellinit("5077a1");
? lfunorderzero(E2)
%10 = 3
? lfun(E2,1,3) \\ third derivative of L_E2 at 1
%11 = 10.391099400715804138751850510360917070
? ellanalyticrank(E2)
%12 = [3,10.391099400715804138751850510360917070]
? K2=bnfinit(x^2+23); B=bnrinit(K2,1,1);
? alpha=lfun([B,[1]],0,1) \\ L'(0) where L is the Hecke L function associated to one of
\\ the non trivial character of Cl(Q(sqrt(-23))
%13 = 0.28119957432296184651205076406787829979-2.3468559338982653182012529427009500020E-60*I
? algdep(exp(alpha),3)
%38 = x^3-x-1
? bnrL1(B)
%39 = [[1,0.28119957432296184651205076406787829979+0.E-38*I],[1,0.28119957432296184651205076406787829979+0.E-38*I],[0,-3/2]]
Below is the list of new functions:
lfun lfundiv lfunmfspec lfunsymsqspec
lfunabelianrelinit lfunetaquo lfunmul lfuntheta
lfunan lfunhardy lfunorderzero lfunthetainit
lfuncheckfeq lfuninit lfunqf lfunzeros
lfunconductor lfunlambda lfunrootres
lfuncreate lfunmfpeters lfunsymsq
Cheers,
The lfun team,
Bill, Henri, Karim and Pascal