Bill Allombert on Sun, 14 Sep 2025 19:17:11 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
one-bit estimate of Reg*Sha
|
- To: pari-dev@pari.math.u-bordeaux.fr
- Subject: one-bit estimate of Reg*Sha
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Sun, 14 Sep 2025 19:17:06 +0200
- Delivery-date: Sun, 14 Sep 2025 19:17:11 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/simple; d=math.u-bordeaux.fr; s=2022; t=1757870229; bh=Bj6IA3pUns2pA+vDEWWbt8HdXTNLUzV1f9gNK2lHjrA=; h=Date:From:To:Subject:From; b=L9MR+CvuodNXxyUqT6yApUMz/gPvQ9aevpKvN8Ix39IuFexEB9tuBQ7uw4MTuzF0P hUDOLkI+HN+waTXGZaT8sOW0Y09M/ClA8dEJMkUklWkcc9fzQQcloQoN8VdvUka8+M OQ4fQAu8zb2h6+73Uw905hYk/8NXmpCcPsKtxg9G/AcDfENbE95bet6JkHJS1JJz66 wprQo1iovvHO2h4Ten0DAJUvfLe1k6grsRKjhQbXN/8JoxykrLDhH7vesZ6EBjLWv5 8IvzyinaaOTKpXYhaAnM7vmiRPee873qJzcocioWi6MA4SNfkBagA3dBCMPEwfGRVA GjCddk3iGTrSzRhh5e/KDJJgCzp7h1ekaZF+gkZigIw/k2Xyj0afZKYnUbhuk0O+de 0hKbK1oAYtS8G4vHI3n/E/I12Pi5BicDufJl8/6F7/1JVIoGjAqHfzw/Ll7Fihbqeq bs1IEdqfGBzBSXxdU1MbudTihx/zF0eZmeWguye61k6JaufcepZ7vBnuFIKuk2HZBG /O/6KGQT7xQyCakbIU/qbEC3lNba64x5RfS4NHFgLNWXOqLlpa2TUOgoGJGykrCbt8 oilYOd0UBtHTCEy4g2+N5/znBa96ewXFPLwEvVhk3b4ruhohRUZEFnTSo389VVH7vH Uhopd8y9i2PUjGyn7rqKQxYg=
- Mail-followup-to: pari-dev@pari.math.u-bordeaux.fr
Dear PARI-dev,
For number fields under GRH it is possible to compute the product h*R
analytically to a fixed floating point precision in polynomial time.
Is there a similar result for the product Reg Sha of a rank-1 elliptic curves ?
That is, computing lfun(E,1,1) with very low precision.
I just need B such that B <= Reg Sha <= 2*B.
Cheers,
Bill