|
Bill Allombert on Wed, 05 Nov 2025 16:29:18 +0100
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
|
Re: one-bit estimate of Reg*Sha
|
- To: pari-dev@pari.math.u-bordeaux.fr
- Subject: Re: one-bit estimate of Reg*Sha
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Wed, 5 Nov 2025 16:29:14 +0100
- Delivery-date: Wed, 05 Nov 2025 16:29:18 +0100
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/simple; d=math.u-bordeaux.fr; s=2022; t=1762356556; bh=WbVcgcST6rDFer7swa8SWoafFDGlMz233pA/9VV5dvw=; h=Date:From:To:Subject:References:In-Reply-To:From; b=ScGRk4rOUYKNO442vxvyaGy0ju4u3SkHSGijhhErFklVBXg7pNMkVx06aMt6YZ9Yw 9Cobzwph/MFkZ4Q5qL+GSqQZ2ma0ty9HS0joZ+ei2Hr1Wiyymi+lKhFshH55e1c72J gGNR5TUk8+ASbWowkI7428uu6CTVVtsPAHKDfmktOcWRe/GOR2nBDOPK+qaQdGgoly AyV/V65/J9VYpoeehYtE3jDfkypvlEaBnaXzMlJibZxDhng6bB/uQdVOvYDOyz1QG+ gksZMvq/wxQEZmz7kSaYnCLO5ui4+LDhjivdseH1IrqnNgvkPTMsqq5OZ047PN1Mxb pYCGm7xePxrgh4uR2oV4PO4tZ5Vzd5F6nykiczqAaaNPgu6+vT4n/1Q2MRRZ6qJ1Wj 49fQ937MRcP1QUYwgYY8B/e19gtxoItI0w6P6zkg7rFWf+eGeQDgaOJ1wcKq6rUfX2 w4oQdHYFIP6/tq5tOn1/KjPkWComO1QYlEtszZFBiIsTpJeiP84nDAc9APeJFwb9EY waKeQniR7p8YKt6UAoM7P13wy2Fi/ZelBkJSDg4dTkBsyc61lqNvxtLb5Ojc4TX1cm ykkjTwDQ1Hwiwt5TXO5Bl6zB0VNi/OAVSYL+Tnssa/4d7wNl+i4wUaQh2yQedmg+eO XUPR152fmhqr3zf+/BDIE6OA=
- In-reply-to: <aMb4kmEQp4j8c7k0@seventeen>
- Mail-followup-to: pari-dev@pari.math.u-bordeaux.fr
- References: <aMb4kmEQp4j8c7k0@seventeen>
On Sun, Sep 14, 2025 at 07:17:09PM +0200, Bill Allombert wrote:
> Dear PARI-dev,
>
> For number fields under GRH it is possible to compute the product h*R
> analytically to a fixed floating point precision in polynomial time.
>
> Is there a similar result for the product Reg Sha of a rank-1 elliptic curves ?
> That is, computing lfun(E,1,1) with very low precision.
>
> I just need B such that B <= Reg Sha <= 2*B.
Another question:
Let E an elliptic cuve of conductor N, D a fundamental discriminant prime to N,
and E_D the twist of E by D.
Is it possible to compute L'_{E_D}(1) faster than for a
generic curve of conductor ~ N*D^2 ?
(for example in time O(sqrt(N*D)) instead of O(sqrt(N*D^2)))
Cheers,
Bill.