| Karim Belabas on Thu, 07 Jan 2021 21:20:35 +0100 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
| Re: Curiosity |
* Andrea Ribuoli [2021-01-07 21:05]:
> I have installed PariGP and tried -in sequence- the following calculations (manually extending the number of iterations):
>
> c=0.0; for (i=1, 1000000, c=c+bigomega(i); print(c/i))
> 3.626619...
> c=0.0; for (i=1, 10000000, c=c+bigomega(i); print(c/i))
> 3.786124...
> c=0.0; for (i=1, 100000000, c=c+bigomega(i); print(c/i))
> 3.923512...
> c=0.0; for (i=1, 1000000000, c=c+bigomega(i); print(c/i))
> 4.044220...
>
>
> Is it possible to use PariGP to guess the limit of (c/i) for i => ∞ ?
If I understand correctly, you're computing
(1 / X) sum_{n <= X} \Omega(n)
for increasing X. This goes to infinity as loglog X.
In fact,
* sum_{n <= X} \omega(n) = sum_{n <= X} sum_{p | n, p prime} 1
= sum_{p <= X} [X / p]
= X sum_{p <= X} (1 / p) + O(X)
* sum_{p <= X} (1 / p) ~ loglog X
* it's an easy exercise to show that sum_{n <= X} (\Omega(n) - \omega(n))
is O(X)
See, e.g., Gerald Tenenbaum's "Introduction to analytic and probabilistic
number theory".
Cheers,
K.B.
--
Karim Belabas, IMB (UMR 5251) Tel: (+33) (0)5 40 00 26 17
Universite de Bordeaux Fax: (+33) (0)5 40 00 21 23
351, cours de la Liberation http://www.math.u-bordeaux.fr/~kbelabas/
F-33405 Talence (France) http://pari.math.u-bordeaux.fr/ [PARI/GP]
`