| 
	Bill Allombert on Sun, 03 Mar 2024 13:41:30 +0100
	 | 
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
	
	| 
        Re: trying to parameterize solutions for Pythagorean ratios and Diophantine m-tuples
	 | 
 
- To: pari-users@pari.math.u-bordeaux.fr
 
- Subject: Re: trying to parameterize solutions for Pythagorean ratios and Diophantine m-tuples
 
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
 
- Date: Sun, 3 Mar 2024 13:41:03 +0100
 
- Arc-authentication-results: i=1; smail; arc=none
 
- Arc-message-signature: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc;	t=1709469670; c=relaxed/relaxed;	bh=VKsYpozn5o3Spm+fHYR+MpGqY1EHnb991ffWgJjYql4=;	h=DKIM-Signature:Date:From:To:Subject:Message-ID:Mail-Followup-To:	 References:MIME-Version:Content-Type:Content-Disposition:	 Content-Transfer-Encoding:In-Reply-To; b=AAGyIGmVDqn4n7dG6OG2IOSwTK77zF3y7FhTeL1kplauIrEeyrublE8B4IAsEhKkqYoFVuwJ85iZw2qlHp9zzWnVtBV4P38nKFmc7mEpd10wqYfQA5nCPphkQpPbiG9QRJakMbeJWUggHEubw1J23VF+fhclSYy4d4V0jk30O22m8SL7RPRZJ+MAjPZhPjP+s2jJlx1CYv/RYSlzAFhQ8KbtR8nc+ZoXy2ouLUfYGTM0AlSBCrGwXA/8FsRDDG9yF7Vsuts+dG/8GHIwIzIpF9332ZmTlUKH/Yy8zIaJH7mTJCI2XmLNcLuwV5b5AI8Ueg5AVNiLlB8kb38+36QcLUIT3SgXORJTfodZvoliTcF7+RlUziu4mjKdopO2OPphQaXKMZaYYOhZNDRpITMbAt2d1OsM5dujC29Rqd8aVqFSo7mWhj/nBY+YRZmK7N2MtxWB3Zaz5txk4MP6i9hP+GDNqjX9u3XbxEOH44V1QCjXBlFuDytIClCwo1pmo15oFwcQ+mwFsImbrJHDx/KFcoo2GDdUjpwxXHSpLfDhU1vDunrb1Xt1ePj3XxBY60GfHEELbcBZAdKJSrNzdid2fRzLJz3iGTBpYaZhEElypPzcXHBGzCMeqohfB/q7RWBlqa3xHvvGmwkE4VnbHFJvLo+MimY18TNx6ce7i6hf6DI=
 
- Arc-seal: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1709469670;	cv=none; b=jroxLO53yd6qfXqV5VLb4pd1FfJM2goYO65o+s/pmdQiJlIkFKCr3MvE8F+1v6kZZALWrApubRThV7mJGjSyp9UBx4CJtn4Pw/o71roiKkyj/G1H8TxkA7k8qOb7Yp2GDNBKpxhO8WSCPwBGnRaXhUqC9Wgohj5KDCvlUb+zN97WbtPHtdaQPXNiBHzWbUWSL0Hukcc3t9C8jcDdsPM4KJckXqG3QuL1iY1mOV47zz5NlsFQTMJHCCGDcH/C3QH5sI+g2yRqMz8AKrP844Fc5/nK4FknYGloRBNMYZeqzChch4mW6bdooNYS6PrxYVY7AZk3A4eX/DJag9MRwpwSlH55nTicpsquLYPAMdVb+/n04ATAuv7Z1CWCUaqUoEVYjht6DdfDbXWPEajHwCO1Bq+jS9kkXDnbW6TB3p6csbVNCdt6MVGIwwmtSq6reI8X7wG+t6yPl3pkFONo9JdN5G2X0WNpd55+KVCQTwk31ljCkJmwisoYdY0sRUM9wY24RjXaVoHcNL5KfQ3HmVWn98a5KRFHvH4HclqwbFkapESBmv7x6qmv6eCV9FEPfi1H34j7ZQ5qPHvvgPqJciPRJWCl0RVvfysuArH2N25MqD9QXmSasgPza/GKnQIxd+lbUGGpgejA4qmO3CFMt1WtlPP9SnMO5Z4UNNQq4+T6Bsg=
 
- Authentication-results: smail; dmarc=none header.from=math.u-bordeaux.fr
 
- Authentication-results: smail; arc=none
 
- Delivery-date: Sun, 03 Mar 2024 13:41:30 +0100
 
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=math.u-bordeaux.fr;	s=2022; t=1709469670;	bh=VKsYpozn5o3Spm+fHYR+MpGqY1EHnb991ffWgJjYql4=;	h=Date:From:To:Subject:References:In-Reply-To:From;	b=ToeCDl79irWGm1lUYOnDagSI/NqDuc6Vuv78jlsl9CNZjv8MVuP4dPd+0e3MM106Y	 4ML45iatFEJk7Z/2nIHD4qQBfOFb/f+RiKjOoEkz+FTELcriPTOvvNBg5yso8Fd5lp	 bMX6J5DSXgd4q4QLpruEOEVHl2khL0+7/fmj+meg+kqekj8XlMa4OUBurqI28duiIc	 xJYBizvkvjSZbv+O6MF3sTdAJYYJOn9PzmGM/809mBDIvXS8EWigS+UvGez1XcWbLm	 I5cb6DJvZ2fJLRjQfkAo3x+tJtclZ7LDwD5sizPoCr/Uxn93VCW86sZ3AwmYNckmx1	 jJyaA3pXf1F4dPWk9qg+kVo89UZ1x8xLUaEzlzmbAkEm1D3HPEyA10a5WzUUNrbgWn	 nIPFfRWwNTWbsD6YVvrsxwmS0Kpk3MJV4YJBHI5Np3Rcy1R1n+E0SdFCSN//j9fq/9	 4y6caWDpqrFLmCLV0aZXkL9VAQPRJtDDveROq93ow6mTAS+qCdsuQQKjfzEsDDKy8k	 HdxIkksLLr6Au1cOcE6txsGyRQm71EE+eSsOMGtQqgy1zJkwb4hT4KolkP9RmrqJqK	 axxW0EABqtOkTFUU8aNr6fSmBXYp5VI6zRsDLuusjhBTweLI8XoCB2XR095z1MUO3r	 lfqPeA+17SYLEjesGbY5tIw8=
 
- In-reply-to: <f11b75fd-b85d-41c8-91f5-ff04920a6bf5@gmail.com>
 
- Mail-followup-to: pari-users@pari.math.u-bordeaux.fr
 
- References: <f11b75fd-b85d-41c8-91f5-ff04920a6bf5@gmail.com>
 
On Sat, Mar 02, 2024 at 05:22:15PM -0800, American Citizen wrote:
> (3)    30*q*p^3 + 144*q^2*p^2 - 30*q^3*p = r^2 for p,q,r in Z
> 
> This is almost an homogeneous quadratic equation in p,q made a square, but
> the product of the powers = 3
> for each binomial term on the left.
> 
> Is there a parametric solution for (2) given m,n or (3) ?
Divide 3) by q^4 and set x=p/q, y =r/q^2, you get
y^2 = 30*x^3 + 144*x^2-30*x
then set y = Y/30  x = X/30
So 
Y^2 = X^3 + 144*X^2 - 900*X
which is a rank-2 elliptic curve with full 2-torsion,
so there are a lot of solutions.
? E=ellinit([0,144,0,-900,0])
? elltors(E)
%8 = [4,[2,2],[[-150,0],[0,0]]]
? ellrank(E)
%9 = [2,2,0,[[-90,720],[45,585]]]
For example [-90,720] is [p,q] = [3,-1], 
and         [45,585]  is [p,q] = [3, 2] 
and ellmul(E,[-90,720],5)
gives [-1724297003000010/567013106089369,-858234297395033146517040/13501737061684979934653]
leads to [57476566766667, -567013106089369]
Cheers,
Bill.