hermann on Tue, 27 May 2025 18:27:45 +0200 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: How to determine Mod(a,b) with t_COMPLEX b? |
On 2025-05-27 13:34, hermann@stamm-wilbrandt.de wrote:
I found the reason for no difference — real(b) and imag(b) were relative prime.Thank you for that approach of using t_COMPLEX (t_POL in Bill's approach).Cheers, K.B.I cannot find a difference in set of minimal residues for both normalizations:$ gp -q ? a = 1+4*I; b = 3+2*I; ? myround(z) = ceil(real(z)-1/2) + I * ceil(imag(z)-1/2); ? S=Set([a - round(a/b)*b | r<-[-real(b)..real(b)];i<-[-imag(b)..imag(b)];a<-[r+i*I]]); ? myS=Set([a - myround(a/b)*b | r<-[-real(b)..real(b)];i<-[-imag(b)..imag(b)];a<-[r+i*I]]); ? #S==norml2(b)&&#myS==norml2(b) 1 ? setminus(S,myS) [] ? setminus(myS,S) [] ? Regards, Hermann.
If not relative prime, there are differences: ? b*=2 6 + 4*I? S=Set([a - round(a/b)*b | r<-[-real(b)..real(b)];i<-[-imag(b)..imag(b)];a<-[r+i*I]]); ? myS=Set([a - myround(a/b)*b | r<-[-real(b)..real(b)];i<-[-imag(b)..imag(b)];a<-[r+i*I]]);
? #S==norml2(b)&&#myS==norml2(b) 1 ? setminus(S,myS) [-3 - 2*I, -1 - 5*I, 2 - 3*I] ? setminus(myS,S) [-2 + 3*I, 1 + 5*I, 3 + 2*I] ? Regards, Hermann.