Bill Allombert on Mon, 02 Jun 2025 22:07:34 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Reimplementing the cubic sieve faster
|
- To: pari-users <pari-users@pari.math.u-bordeaux.fr>
- Subject: Re: Reimplementing the cubic sieve faster
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Mon, 2 Jun 2025 22:07:30 +0200
- Delivery-date: Mon, 02 Jun 2025 22:07:34 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/simple; d=math.u-bordeaux.fr; s=2022; t=1748894852; bh=FtWYpkhZKspUjLJ2puhDIpT7hUR8lXROzDeHDOtxb1A=; h=Date:From:To:Subject:References:In-Reply-To:From; b=ao88BZ/vAuwJCZazHNzS12sisEf9ODYXVmewF4QBgkqOhWE6Xn03auiSPcKfOwZ1a nK5UU1Anl/XpWeaDPwSZgCFWu0RijcSW6/SMR5H9vNlSFCa8RGP3Ar4BpTDCQ6KWR4 FrlZ0mkPUTchaVaE74kv6L007pl4ln+RyksVoXmQCNrI70RKofoRjaRCYF7SGCI5K1 mxRJRZME18dNe8/VADRRIYhfZcioJAg14NZ1kV6s/t0DEMQDXyQnD8Ag6LdJcGxts+ mWOrYoHA3y6djw1ZCPiRDK6vbuf/1+aXAJYcegwDd2lSc/YRuhDn9EN0+LivMJNsKR Lk/nx9j84Mmj21ssDTu2s0tcJl0uCgra6DpkD0M60mGfZpWo1LNFLHDHZAX8+G2K89 cf3VJTsVa8j976ARqQLxBaSqgtBLxWnA9tZT65TCxYoZ5zFeE6h4aOc93EVUQx/kbp kQGdE6DN8pUAxJA09Kowy0XdLZHiL5EqiA3adQ5kD4loIke5SJ3IeVZ0uqyVoH/Axy Oxmek8s1TJU01VOhLs3GYUzmC25z+Xmje7ipuLwlbkeUrI8CLVkDs7jrGFQ1zwaIfw NnW6TeJywXq3NEG+BxyIbKNK/UYVyCUQHEyyGHKnbN1A1UhxtbWlqemBk3MM3Ipohu d3gPjPWFtVBW+IqrsgHbYS0Y=
- In-reply-to: <09818804-b304-4b7a-883e-cce770d92a2c@laposte.net>
- Mail-followup-to: pari-users <pari-users@pari.math.u-bordeaux.fr>
- References: <65b2713c-fe34-4fb7-9598-0c3c80bc8493@laposte.net> <aD2fYCG_uDpL0ZAY@seventeen> <09818804-b304-4b7a-883e-cce770d92a2c@laposte.net>
On Mon, Jun 02, 2025 at 04:47:53PM +0200, Laël Cellier wrote:
> In my case, p is 255bits large safe prime and I need to solve multiple
> discrete logarithm with such kind of p hence why
> https://www.sciencedirect.com/science/article/pii/S0747717113001703 would be
> relevant.
Well you can just use cado-nfs instead, it can do discrete logarithms too,
and is faster than the cubic sieve.
> Also in the formulas you gave, what’s the factor base ?
All the prime numbers less than B for some B
> What do
> you mean about finding non trivial factorisation since it’s about computing
> a discrete logarithm ?
if you can write
(x+a*y)*(x+b*y)*(x+c*y) = p1*p2*...*pj
then
log(x+a*y)+log(x+b*y)+log(x+c*y) = log(p1)+log(p2)+..+log(pj)
so you have found a relation between the discrete logarithms.
Once you have enough relation you can solve the linear system.
> Is finding relations about computing many value of
> x+y*a ? How to select the values of a ?
Take all the |a| < C with C ~ 2*B^(1/3).
Cheers,
Bill