Watson Ladd on Wed, 04 Jun 2025 00:52:49 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: finding primes modulo which x^m mod f(x) has a prescribed result
|
- To: Max Alekseyev <maxale@gmail.com>
- Subject: Re: finding primes modulo which x^m mod f(x) has a prescribed result
- From: Watson Ladd <watsonbladd@gmail.com>
- Date: Tue, 3 Jun 2025 15:52:32 -0700
- Cc: Pari Users <pari-users@pari.math.u-bordeaux.fr>
- Delivery-date: Wed, 04 Jun 2025 00:52:49 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=20230601; t=1748991164; x=1749595964; darn=pari.math.u-bordeaux.fr; h=content-transfer-encoding:cc:to:subject:message-id:date:from :in-reply-to:references:mime-version:from:to:cc:subject:date :message-id:reply-to; bh=SE8z0F6SNsFiDAbrkg+PQN8R9mZPjitN5x2mziPKv0E=; b=SHKM1IIGB1mJK5Ydr1FW2EK59WOBkPZVhGRpVQpE1IMNJZO52nWK7QhFTvy8i/rAiL QoeqouzqvGPw/8a8ig9FRQDHaMxqteuWUd8hRZvfYE/hPEyURuAAIvi5KxdZrF+GvcXp VvToBW3UoE9E1mhtvbttUWAoCrLPg7GC/ariqqZTR/l8EIN1jXxGrOqNt4sIehGglH5M o9i1nq0w3J/cXtNl+FYY0bHE+GGhRhf9vqNoB1Te0aNB7NffKhflHp01DqjB0/mr8J1n L/Ca6D5Zcr9bdOmY5bLDTYJHoSDIfbSw0l8udpMI9cm4kGNGxWPkX7bFz6w/fiB0WL0G RReQ==
- In-reply-to: <CAJkPp5MJ5G9y=pGAjnas3-=KsYQKAfoo+-rVPqeS6yX1K-2auA@mail.gmail.com>
- References: <CAJkPp5MJ5G9y=pGAjnas3-=KsYQKAfoo+-rVPqeS6yX1K-2auA@mail.gmail.com>
On Tue, Jun 3, 2025 at 9:03 AM Max Alekseyev <maxale@gmail.com> wrote:
>
> Hello,
>
> Suppose I have a large number m, a quadratic polynomial f(x) and linear polynomial g(x).
> Is there a fast way to find all primes p such that the remainder of division of (x^m - g(x)) by f(x) vanishes modulo p ?
> To give a specific example, let m = 10^10, f(x) = x^2 - 3*x - 3, and g(x) = x - 4.
You are probably best off constructing Z[x]/f(x), going to the
relevant number field (Q adjoin the discriminant) than explicitly
considering the primes that divide the norm of x^m-g(x) as candidates.
It takes a bit of theory to figure out exactly what the next step is,
but shouldn't be that tricky.
Sincerely,
Watson
>
> Thanks,
> Max
>
>
--
Astra mortemque praestare gradatim