Bill Allombert on Wed, 04 Jun 2025 12:00:22 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: finding primes modulo which x^m mod f(x) has a prescribed result
|
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Re: finding primes modulo which x^m mod f(x) has a prescribed result
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Wed, 4 Jun 2025 12:00:18 +0200
- Delivery-date: Wed, 04 Jun 2025 12:00:22 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/simple; d=math.u-bordeaux.fr; s=2022; t=1749031220; bh=21g9L3UNhUcEaVs7eQ7k73yXfJObrdNqVUvvHTqYcKI=; h=Date:From:To:Subject:References:In-Reply-To:From; b=VS2mET+8HRMF5kW1FyZH+BHtFpSQFVzMH5EnhdffpqF05D7C/ZaiTq/5stgt7xboH q6/rFSeNrSEjVWhDX8SP/IiLlkSDkth5MLuB0DZW5EGJIjHkS8GUKpaVGw6KZdALca RraJqa8+icwCeEJhaN6ADFST7E0vtenxw2gaymAW9kNhI2bu0HVFoLCv2OYWubDcpS rpOJYxuLX1uTXDMGTJKKFSRFxKdXvt/UtS02Pg7mPno33xYDI2PViD1ba5fENqngGh 9Q1WwLK4OEvgj0RCOuwjwM4mq9880Vj8SUVqjzfbn/+LWxKFPB3sbGos4/4I2bqita 7eK+OvR09KiWnUDUJKwtpRE76tAhYP6CPoN4J2dbaRhy8xIfYKUU2Fp0HmwgqWyEfm iHFV0H0ZvkiCYl2zp8kzFxuIPgpmMoxB425ZZd9SYMMWPrw8x1u+LihIEzulu4oOVZ vHN0C96CmXsZbwwPVDt7towWUC6W+8Ra37pHjc6EzWEn5pgqNJS8ecHKjEkF7CgZPf cVm6PzcaodQTTGicw9f7iYxuqFdgxV4srxUfxD1Ma4UXDOt2UGfwON0u5xoXvdVRTE 1uWZWRRCV1a4WzHmglTBznd9wAZIwl1bofKIAmMdu/kfIJr2VCmY7xicntpvCO33ga Vobwl2RYgorhSUHnjy1BDDS8=
- In-reply-to: <CAJkPp5MJ5G9y=pGAjnas3-=KsYQKAfoo+-rVPqeS6yX1K-2auA@mail.gmail.com>
- Mail-followup-to: pari-users@pari.math.u-bordeaux.fr
- References: <CAJkPp5MJ5G9y=pGAjnas3-=KsYQKAfoo+-rVPqeS6yX1K-2auA@mail.gmail.com>
On Tue, Jun 03, 2025 at 11:55:39AM -0400, Max Alekseyev wrote:
> Hello,
>
> Suppose I have a large number m, a quadratic polynomial f(x) and linear
> polynomial g(x).
> Is there a fast way to find all primes p such that the remainder of
> division of (x^m - g(x)) by f(x) vanishes modulo p ?
> To give a specific example, let m = 10^10, f(x) = x^2 - 3*x - 3, and g(x) =
> x - 4.
For m=10^5, you can do this:
factor(content(Mod(x,x^2 - 3*x - 3)^m-(x - 4)))
%22 = Mat([2,2])
Cheers,
Bill