American Citizen on Wed, 25 Jun 2025 23:18:47 +0200


[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]

Re: question on heightmatrix for algebraic points


Thanks Bill, this is exactly what I need.

On 6/24/25 13:06, Bill Allombert wrote:
On Tue, Jun 24, 2025 at 12:30:16PM -0700, American Citizen wrote:
Hello, all of you, I appreciate your patience, especially Bill's.

I have some questions about heights of algebraic points on an elliptic curve
and the height matrix associated with them.

Let an elliptic curve E be expressed in Weierstrass format.

(1)  E = [0, 0, 0, 100, 0]

One Mordell-Weil basis for E is the point [5,25].

We define 2 algebraic points on E

    p = [1, sqrt(101)] with height ~= 4.69969906449875... using
K1=nfinit(x^2-101) and ellinit(e,K1)
    q = [2, sqrt(208)] with height ~= 2.37364501798303... using
K2=nfinit(x^2-208) and ellinit(e,K2)
You need to construct the compositum of your fields, so that you
have a common field for both.
  Do this:

  ? [P,a,b]=polcompositum(x^2-101,x^2-208,1)[1];
  ? a^2
  %5 = Mod(101,x^4-618*x^2+11449)
  ? b^2
  %6 = Mod(208,x^4-618*x^2+11449)
  ? K=nfinit(P);
  ? E=ellinit([0, 0, 0, 100, 0],K);
  ? p=[1,a]; q=[2,b];
  ? ellheightmatrix(E,[p,q])
  %7 = [9.3993981289975127877576183833519503910,4.701977403289150032E-38;
        4.701977403289150032E-38,4.7472900359660764922371320463865657704]
  ? elladd(E,p,q)
  %8 = [Mod(x^2 - 3, x^4 - 618*x^2 + 11449), Mod(-213/214*x^3 + 345/214*x, x^4 - 618*x^2 + 11449)]

Cheers,
Bill