American Citizen on Wed, 30 Jul 2025 04:01:29 +0200


[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]

Re: question on determining algebraic numbers for rotations in 2d with rational cosines.


I forgot to mention the all important root, it is given as [1] or [2], etc. as the nth root of the polroots() command

They are all given on the row for the particular rational cosine.

On 7/29/25 18:59, American Citizen wrote:
Suppose we place a point on the x-y plane in the Cartesian 2d system. We then rotate this point counterclockwise in such a way that the rotation angle cosine is rational. (the sine may or may not be rational).

My question is specifically, how do we predict these 4 degree equations and their coefficients, depending upon the rational cosines?

Original Point [1/3, 2/5]
Center = [1/2, 1/2]
acos(angle)
point is rotated ccw on the x-y plane.
----------------------------------------------------------------
acos        x-coordinate                      y-coordinate
----------------------------------------------------------------
1/2 | 1800*x^2 - 1500*x + 299 [2] | 600*x^2 - 540*x + 109   [1]
1/3 | 72*x^4 - 6*x^3 + 33*x^2 - 44*x + 9))   [2] | 32*x^4 + 53*x^3 - 56*x^2 - 21*x + 10)) [3]
2/3 | 405*x^2 - 315*x + 59 [2] | 2025*x^2 - 1755*x + 349 [1]
1/4 | 34*x^4 - 52*x^3 - 4*x^2 - 29*x + 23))  [1] | 68*x^4 - 28*x^3 + 27*x^2 - 11*x + 1))  [2]
3/4 | 800*x^2 - 600*x + 109   [2] | 7200*x^2 - 6120*x + 1213  [1]
1/5 | 31*x^4 - 54*x^3 - 37*x^2 - 33*x + 37)) [1] | 46*x^4 + 29*x^3 + 4*x^2 - 53*x + 15))  [2] 2/5 | 61*x^4 - 46*x^3 - 4*x^2 + 25*x - 10))  [2] | 31*x^4 - 27*x^3 + 42*x^2 - 8*x - 1))   [2]
3/5 | [12/25, 23/75] | 25*x - 12 | 75*x - 23
4/5 | [32/75, 8/25] | 75*x - 32 | 25*x - 8
1/6 | 15*x^4 + 49*x^3 + 7*x^2 - 21*x - 1))   [4] | 3*x^4 - 28*x^3 + 51*x^2 - 48*x + 11))  [1]
5/6 | 16200*x^2 - 11700*x + 2063 [2] | 648*x^2 - 540*x + 107   [1]
1/7 | 48*x^4 + 9*x^3 - 63*x^2 + 5*x + 11))   [3] | 8*x^4 + 38*x^3 + 84*x^2 + 25*x - 18))  [2] 2/7 | 29*x^4 + 21*x^3 - 8*x^2 - 14*x + 4))   [2] | 48*x^4 + 24*x^3 - 29*x^2 + 63*x - 18)) [2]
3/7 | 245*x^2 - 210*x + 43 [2] | 11025*x^2 - 10080*x + 2054 [1]
4/7 | 11025*x^2 - 8925*x + 1732  [2] | 3675*x^2 - 3255*x + 652 [1]
5/7 | 11025*x^2 - 8400*x + 1546  [2] | 147*x^2 - 126*x + 25 [1]
6/7 | 1225*x^2 - 875*x + 153  [2] | 11025*x^2 - 9135*x + 1811 [1]
1/8 | 12*x^4 + 9*x^3 + 76*x^2 - 32*x - 10))  [2] | 21*x^4 + 42*x^3 - 4*x^2 + 49*x - 17))  [2]
3/8 | 640*x^2 - 560*x + 117   [2] | 28800*x^2 - 26640*x + 5473 [1]
5/8 | 28800*x^2 - 22800*x + 4337 [2] | 384*x^2 - 336*x + 67 [1]
7/8 | 55*x^4 + 30*x^3 + 19*x^2 + 46*x - 25 [2] | 25*x^4 - 71*x^3 + 28*x - 7 [2] 1/9 | 12*x^4 - 9*x^3 - 28*x^2 + 29*x - 7))   [3] | 38*x^4 + 7*x^3 + 16*x^2 - x - 2))   [2] 2/9 | 51*x^4 - 35*x^3 + 10*x^2 - 25*x + 12)) [1] | 54*x^4 + 23*x^3 - 9*x^2 - 17*x + 5))   [1]
4/9 | 3645*x^2 - 3105*x + 632 [2] | 18225*x^2 - 16605*x + 3376 [1]
5/9 | 18225*x^2 - 14850*x + 2899 [2] | 729*x^2 - 648*x + 130   [1]
7/9 | 18225*x^2 - 13500*x + 2428 [2] | 18225*x^2 - 15390*x + 3049 [1]
8/9 | 18225*x^2 - 12825*x + 2218 [2] | 18225*x^2 - 14985*x + 2974 [1]
1/10 | 25*x^4 + 24*x^3 - 10*x^2 - 21*x + 8)) [2] | 49*x^4 + 10*x^3 - 20*x^2 - 24*x + 9))  [1]
3/10 | 5000*x^2 - 4500*x + 967   [2] | 45000*x^2 - 42300*x + 8803 [1]
7/10 | 45000*x^2 - 34500*x + 6383   [2] | 15000*x^2 - 12900*x + 2561 [1]
9/10 | 5000*x^2 - 3500*x + 603   [2] | 45000*x^2 - 36900*x + 7327 [1]

- Randall

P.S. This will apply in 3d space, when we rotate on a plane.