Code coverage tests

This page documents the degree to which the PARI/GP source code is tested by our public test suite, distributed with the source distribution in directory src/test/. This is measured by the gcov utility; we then process gcov output using the lcov frond-end.

We test a few variants depending on Configure flags on the pari.math.u-bordeaux.fr machine (x86_64 architecture), and agregate them in the final report:

The target is to exceed 90% coverage for all mathematical modules (given that branches depending on DEBUGLEVEL or DEBUGMEM are not covered). This script is run to produce the results below.

LCOV - code coverage report
Current view: top level - basemath - Flx.c (source / functions) Hit Total Coverage
Test: PARI/GP v2.18.1 lcov report (development 30556-bb9f5f8fc8) Lines: 2553 2922 87.4 %
Date: 2025-11-25 09:20:50 Functions: 304 362 84.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /* Copyright (C) 2004  The PARI group.
       2             : 
       3             : This file is part of the PARI/GP package.
       4             : 
       5             : PARI/GP is free software; you can redistribute it and/or modify it under the
       6             : terms of the GNU General Public License as published by the Free Software
       7             : Foundation; either version 2 of the License, or (at your option) any later
       8             : version. It is distributed in the hope that it will be useful, but WITHOUT
       9             : ANY WARRANTY WHATSOEVER.
      10             : 
      11             : Check the License for details. You should have received a copy of it, along
      12             : with the package; see the file 'COPYING'. If not, write to the Free Software
      13             : Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */
      14             : 
      15             : #include "pari.h"
      16             : #include "paripriv.h"
      17             : 
      18             : /* Not so fast arithmetic with polynomials with small coefficients. */
      19             : 
      20             : static GEN
      21   986781924 : get_Flx_red(GEN T, GEN *B)
      22             : {
      23   986781924 :   if (typ(T)!=t_VEC) { *B=NULL; return T; }
      24      656398 :   *B = gel(T,1); return gel(T,2);
      25             : }
      26             : 
      27             : /***********************************************************************/
      28             : /**                              Flx                                  **/
      29             : /***********************************************************************/
      30             : /* Flx objects are defined as follows:
      31             :  * Let l an ulong. An Flx is a t_VECSMALL:
      32             :  * x[0] = codeword
      33             :  * x[1] = evalvarn(variable number)  (signe is not stored).
      34             :  * x[2] = a_0 x[3] = a_1, etc. with 0 <= a_i < l
      35             :  *
      36             :  * signe(x) is not valid. Use degpol(x)>0 instead. */
      37             : /***********************************************************************/
      38             : /**                      Conversion from Flx                          **/
      39             : /***********************************************************************/
      40             : 
      41             : GEN
      42    38195985 : Flx_to_ZX(GEN z)
      43             : {
      44    38195985 :   long i, l = lg(z);
      45    38195985 :   GEN x = cgetg(l,t_POL);
      46   247453815 :   for (i=2; i<l; i++) gel(x,i) = utoi(z[i]);
      47    38182985 :   x[1] = evalsigne(l-2!=0)| z[1]; return x;
      48             : }
      49             : 
      50             : GEN
      51       71328 : Flx_to_FlxX(GEN z, long sv)
      52             : {
      53       71328 :   long i, l = lg(z);
      54       71328 :   GEN x = cgetg(l,t_POL);
      55      278513 :   for (i=2; i<l; i++) gel(x,i) = Fl_to_Flx(z[i], sv);
      56       71328 :   x[1] = evalsigne(l-2!=0)| z[1]; return x;
      57             : }
      58             : 
      59             : /* same as Flx_to_ZX, in place */
      60             : GEN
      61    36394664 : Flx_to_ZX_inplace(GEN z)
      62             : {
      63    36394664 :   long i, l = lg(z);
      64   227106013 :   for (i=2; i<l; i++) gel(z,i) = utoi(z[i]);
      65    36389339 :   settyp(z, t_POL); z[1]=evalsigne(l-2!=0)|z[1]; return z;
      66             : }
      67             : 
      68             : /*Flx_to_Flv=zx_to_zv*/
      69             : GEN
      70    66312699 : Flx_to_Flv(GEN x, long N)
      71             : {
      72    66312699 :   GEN z = cgetg(N+1,t_VECSMALL);
      73    66305660 :   long i, l = lg(x)-1;
      74    66305660 :   x++;
      75   705878433 :   for (i=1; i<l ; i++) z[i]=x[i];
      76   328591243 :   for (   ; i<=N; i++) z[i]=0;
      77    66305660 :   return z;
      78             : }
      79             : 
      80             : /*Flv_to_Flx=zv_to_zx*/
      81             : GEN
      82    25369116 : Flv_to_Flx(GEN x, long sv)
      83             : {
      84    25369116 :   long i, l=lg(x)+1;
      85    25369116 :   GEN z = cgetg(l,t_VECSMALL); z[1]=sv;
      86    25364904 :   x--;
      87   278546593 :   for (i=2; i<l ; i++) z[i]=x[i];
      88    25364904 :   return Flx_renormalize(z,l);
      89             : }
      90             : 
      91             : /*Flm_to_FlxV=zm_to_zxV*/
      92             : GEN
      93        2772 : Flm_to_FlxV(GEN x, long sv)
      94        7455 : { pari_APPLY_type(t_VEC, Flv_to_Flx(gel(x,i), sv)) }
      95             : 
      96             : /*FlxC_to_ZXC=zxC_to_ZXC*/
      97             : GEN
      98      102363 : FlxC_to_ZXC(GEN x)
      99      502097 : { pari_APPLY_type(t_COL, Flx_to_ZX(gel(x,i))) }
     100             : 
     101             : /*FlxC_to_ZXC=zxV_to_ZXV*/
     102             : GEN
     103      606386 : FlxV_to_ZXV(GEN x)
     104     2451992 : { pari_APPLY_type(t_VEC, Flx_to_ZX(gel(x,i))) }
     105             : 
     106             : void
     107     3021306 : FlxV_to_ZXV_inplace(GEN v)
     108             : {
     109             :   long i;
     110     8014331 :   for(i=1;i<lg(v);i++) gel(v,i)= Flx_to_ZX(gel(v,i));
     111     3021216 : }
     112             : 
     113             : /*FlxM_to_ZXM=zxM_to_ZXM*/
     114             : GEN
     115        1894 : FlxM_to_ZXM(GEN x)
     116        5978 : { pari_APPLY_same(FlxC_to_ZXC(gel(x,i))) }
     117             : 
     118             : GEN
     119      394876 : FlxV_to_FlxX(GEN x, long v)
     120             : {
     121      394876 :   long i, l = lg(x)+1;
     122      394876 :   GEN z = cgetg(l,t_POL); z[1] = evalvarn(v);
     123      394876 :   x--;
     124     4961479 :   for (i=2; i<l ; i++) gel(z,i) = gel(x,i);
     125      394876 :   return FlxX_renormalize(z,l);
     126             : }
     127             : 
     128             : GEN
     129           0 : FlxM_to_FlxXV(GEN x, long v)
     130           0 : { pari_APPLY_type(t_COL, FlxV_to_FlxX(gel(x,i), v)) }
     131             : 
     132             : GEN
     133           0 : FlxM_Flx_add_shallow(GEN x, GEN y, ulong p)
     134             : {
     135           0 :   long l = lg(x), i, j;
     136           0 :   GEN z = cgetg(l,t_MAT);
     137             : 
     138           0 :   if (l==1) return z;
     139           0 :   if (l != lgcols(x)) pari_err_OP( "+", x, y);
     140           0 :   for (i=1; i<l; i++)
     141             :   {
     142           0 :     GEN zi = cgetg(l,t_COL), xi = gel(x,i);
     143           0 :     gel(z,i) = zi;
     144           0 :     for (j=1; j<l; j++) gel(zi,j) = gel(xi,j);
     145           0 :     gel(zi,i) = Flx_add(gel(zi,i), y, p);
     146             :   }
     147           0 :   return z;
     148             : }
     149             : 
     150             : /***********************************************************************/
     151             : /**                      Conversion to Flx                            **/
     152             : /***********************************************************************/
     153             : /* Take an integer and return a scalar polynomial mod p,  with evalvarn=vs */
     154             : GEN
     155    21193327 : Fl_to_Flx(ulong x, long sv) { return x? mkvecsmall2(sv, x): pol0_Flx(sv); }
     156             : 
     157             : /* a X^d */
     158             : GEN
     159      939458 : monomial_Flx(ulong a, long d, long vs)
     160             : {
     161             :   GEN P;
     162      939458 :   if (a==0) return pol0_Flx(vs);
     163      939458 :   P = const_vecsmall(d+2, 0);
     164      939464 :   P[1] = vs; P[d+2] = a; return P;
     165             : }
     166             : 
     167             : GEN
     168     7503212 : Z_to_Flx(GEN x, ulong p, long sv)
     169             : {
     170     7503212 :   long u = umodiu(x,p);
     171     7503211 :   return u? mkvecsmall2(sv, u): pol0_Flx(sv);
     172             : }
     173             : 
     174             : /* return x[0 .. dx] mod p as t_VECSMALL. Assume x a t_POL*/
     175             : GEN
     176   170360852 : ZX_to_Flx(GEN x, ulong p)
     177             : {
     178   170360852 :   long i, lx = lg(x);
     179   170360852 :   GEN a = cgetg(lx, t_VECSMALL);
     180   170313217 :   a[1]=((ulong)x[1])&VARNBITS;
     181  1121488663 :   for (i=2; i<lx; i++) a[i] = umodiu(gel(x,i), p);
     182   170329325 :   return Flx_renormalize(a,lx);
     183             : }
     184             : 
     185             : /* return x[0 .. dx] mod p as t_VECSMALL. Assume x a t_POL*/
     186             : GEN
     187     6539138 : zx_to_Flx(GEN x, ulong p)
     188             : {
     189     6539138 :   long i, lx = lg(x);
     190     6539138 :   GEN a = cgetg(lx, t_VECSMALL);
     191     6533600 :   a[1] = x[1];
     192    20124492 :   for (i=2; i<lx; i++) uel(a,i) = umodsu(x[i], p);
     193     6533965 :   return Flx_renormalize(a,lx);
     194             : }
     195             : 
     196             : ulong
     197    63876875 : Rg_to_Fl(GEN x, ulong p)
     198             : {
     199    63876875 :   switch(typ(x))
     200             :   {
     201    39938272 :     case t_INT: return umodiu(x, p);
     202      455746 :     case t_FRAC: {
     203      455746 :       ulong z = umodiu(gel(x,1), p);
     204      455746 :       if (!z) return 0;
     205      446319 :       return Fl_div(z, umodiu(gel(x,2), p), p);
     206             :     }
     207      205955 :     case t_PADIC: return padic_to_Fl(x, p);
     208    23276914 :     case t_INTMOD: {
     209    23276914 :       GEN q = gel(x,1), a = gel(x,2);
     210    23276914 :       if (absequaliu(q, p)) return itou(a);
     211           0 :       if (!dvdiu(q,p)) pari_err_MODULUS("Rg_to_Fl", q, utoipos(p));
     212           0 :       return umodiu(a, p);
     213             :     }
     214           0 :     default: pari_err_TYPE("Rg_to_Fl",x);
     215             :       return 0; /* LCOV_EXCL_LINE */
     216             :   }
     217             : }
     218             : 
     219             : ulong
     220     1704463 : Rg_to_F2(GEN x)
     221             : {
     222     1704463 :   switch(typ(x))
     223             :   {
     224      277534 :     case t_INT: return mpodd(x);
     225           0 :     case t_FRAC:
     226           0 :       if (!mpodd(gel(x,2))) (void)Fl_inv(0,2); /* error */
     227           0 :       return mpodd(gel(x,1));
     228           0 :     case t_PADIC:
     229           0 :       if (!absequaliu(padic_p(x),2)) pari_err_OP("",x, mkintmodu(1,2));
     230           0 :       if (valp(x) < 0) (void)Fl_inv(0,2);
     231           0 :       return valp(x) & 1;
     232     1426929 :     case t_INTMOD: {
     233     1426929 :       GEN q = gel(x,1), a = gel(x,2);
     234     1426929 :       if (mpodd(q)) pari_err_MODULUS("Rg_to_F2", q, gen_2);
     235     1426929 :       return mpodd(a);
     236             :     }
     237           0 :     default: pari_err_TYPE("Rg_to_F2",x);
     238             :       return 0; /* LCOV_EXCL_LINE */
     239             :   }
     240             : }
     241             : 
     242             : GEN
     243     2162743 : RgX_to_Flx(GEN x, ulong p)
     244             : {
     245     2162743 :   long i, lx = lg(x);
     246     2162743 :   GEN a = cgetg(lx, t_VECSMALL);
     247     2162743 :   a[1]=((ulong)x[1])&VARNBITS;
     248    19607959 :   for (i=2; i<lx; i++) a[i] = Rg_to_Fl(gel(x,i), p);
     249     2162743 :   return Flx_renormalize(a,lx);
     250             : }
     251             : 
     252             : GEN
     253           7 : RgXV_to_FlxV(GEN x, ulong p)
     254         175 : { pari_APPLY_type(t_VEC, RgX_to_Flx(gel(x,i), p)) }
     255             : 
     256             : /* If x is a POLMOD, assume modulus is a multiple of T. */
     257             : GEN
     258     3589621 : Rg_to_Flxq(GEN x, GEN T, ulong p)
     259             : {
     260     3589621 :   long ta, tx = typ(x), v = get_Flx_var(T);
     261             :   ulong pi;
     262             :   GEN a, b;
     263     3589621 :   if (is_const_t(tx))
     264             :   {
     265     3329989 :     if (tx == t_FFELT) return FF_to_Flxq(x);
     266     2598981 :     return Fl_to_Flx(Rg_to_Fl(x, p), v);
     267             :   }
     268      259631 :   switch(tx)
     269             :   {
     270        8576 :     case t_POLMOD:
     271        8576 :       b = gel(x,1);
     272        8576 :       a = gel(x,2); ta = typ(a);
     273        8576 :       if (is_const_t(ta)) return Fl_to_Flx(Rg_to_Fl(a, p), v);
     274        8422 :       b = RgX_to_Flx(b, p); if (b[1] != v) break;
     275        8422 :       a = RgX_to_Flx(a, p); if (Flx_equal(b,T)) return a;
     276           0 :       pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
     277           0 :       if (lgpol(Flx_rem_pre(b,T,p,pi))==0) return Flx_rem_pre(a, T, p, pi);
     278           0 :       break;
     279      251055 :     case t_POL:
     280      251055 :       x = RgX_to_Flx(x,p);
     281      251055 :       if (x[1] != v) break;
     282      251055 :       return Flx_rem(x, T, p);
     283           0 :     case t_RFRAC:
     284           0 :       a = Rg_to_Flxq(gel(x,1), T,p);
     285           0 :       b = Rg_to_Flxq(gel(x,2), T,p);
     286           0 :       return Flxq_div(a,b, T,p);
     287             :   }
     288           0 :   pari_err_TYPE("Rg_to_Flxq",x);
     289             :   return NULL; /* LCOV_EXCL_LINE */
     290             : }
     291             : 
     292             : /***********************************************************************/
     293             : /**                   Basic operation on Flx                          **/
     294             : /***********************************************************************/
     295             : /* = zx_renormalize. Similar to normalizepol, in place */
     296             : GEN
     297  2147635892 : Flx_renormalize(GEN /*in place*/ x, long lx)
     298             : {
     299             :   long i;
     300  2396254781 :   for (i = lx-1; i>1; i--)
     301  2300747454 :     if (x[i]) break;
     302  2147635892 :   stackdummy((pari_sp)(x + lg(x)), (pari_sp)(x + i+1));
     303  2146396166 :   setlg(x, i+1); return x;
     304             : }
     305             : 
     306             : GEN
     307     1879111 : Flx_red(GEN z, ulong p)
     308             : {
     309     1879111 :   long i, l = lg(z);
     310     1879111 :   GEN x = cgetg(l, t_VECSMALL);
     311     1878971 :   x[1] = z[1];
     312    33411629 :   for (i=2; i<l; i++) x[i] = uel(z,i)%p;
     313     1878971 :   return Flx_renormalize(x,l);
     314             : }
     315             : 
     316             : int
     317    26928717 : Flx_equal(GEN V, GEN W)
     318             : {
     319    26928717 :   long l = lg(V);
     320    26928717 :   if (lg(W) != l) return 0;
     321    27927946 :   while (--l > 1) /* do not compare variables, V[1] */
     322    26826787 :     if (V[l] != W[l]) return 0;
     323     1101159 :   return 1;
     324             : }
     325             : 
     326             : GEN
     327     2640265 : random_Flx(long d1, long vs, ulong p)
     328             : {
     329     2640265 :   long i, d = d1+2;
     330     2640265 :   GEN y = cgetg(d,t_VECSMALL); y[1] = vs;
     331    18167650 :   for (i=2; i<d; i++) y[i] = random_Fl(p);
     332     2640416 :   return Flx_renormalize(y,d);
     333             : }
     334             : 
     335             : static GEN
     336     7250247 : Flx_addspec(GEN x, GEN y, ulong p, long lx, long ly)
     337             : {
     338             :   long i,lz;
     339             :   GEN z;
     340             : 
     341     7250247 :   if (ly>lx) swapspec(x,y, lx,ly);
     342     7250247 :   lz = lx+2; z = cgetg(lz, t_VECSMALL);
     343   106607358 :   for (i=0; i<ly; i++) z[i+2] = Fl_add(x[i], y[i], p);
     344    90323907 :   for (   ; i<lx; i++) z[i+2] = x[i];
     345     7250247 :   z[1] = 0; return Flx_renormalize(z, lz);
     346             : }
     347             : 
     348             : GEN
     349    64364318 : Flx_add(GEN x, GEN y, ulong p)
     350             : {
     351             :   long i,lz;
     352             :   GEN z;
     353    64364318 :   long lx=lg(x);
     354    64364318 :   long ly=lg(y);
     355    64364318 :   if (ly>lx) swapspec(x,y, lx,ly);
     356    64364318 :   lz = lx; z = cgetg(lz, t_VECSMALL); z[1]=x[1];
     357   583586967 :   for (i=2; i<ly; i++) z[i] = Fl_add(x[i], y[i], p);
     358   128568187 :   for (   ; i<lx; i++) z[i] = x[i];
     359    64339227 :   return Flx_renormalize(z, lz);
     360             : }
     361             : 
     362             : GEN
     363    10006254 : Flx_Fl_add(GEN y, ulong x, ulong p)
     364             : {
     365             :   GEN z;
     366             :   long lz, i;
     367    10006254 :   if (!lgpol(y))
     368      229285 :     return Fl_to_Flx(x,y[1]);
     369     9778083 :   lz=lg(y);
     370     9778083 :   z=cgetg(lz,t_VECSMALL);
     371     9777348 :   z[1]=y[1];
     372     9777348 :   z[2] = Fl_add(y[2],x,p);
     373    47664069 :   for(i=3;i<lz;i++)
     374    37887029 :     z[i] = y[i];
     375     9777040 :   if (lz==3) z = Flx_renormalize(z,lz);
     376     9776939 :   return z;
     377             : }
     378             : 
     379             : static GEN
     380      882139 : Flx_subspec(GEN x, GEN y, ulong p, long lx, long ly)
     381             : {
     382             :   long i,lz;
     383             :   GEN z;
     384             : 
     385      882139 :   if (ly <= lx)
     386             :   {
     387      882158 :     lz = lx+2; z = cgetg(lz, t_VECSMALL);
     388    52429712 :     for (i=0; i<ly; i++) z[i+2] = Fl_sub(x[i],y[i],p);
     389     1432832 :     for (   ; i<lx; i++) z[i+2] = x[i];
     390             :   }
     391             :   else
     392             :   {
     393           0 :     lz = ly+2; z = cgetg(lz, t_VECSMALL);
     394           0 :     for (i=0; i<lx; i++) z[i+2] = Fl_sub(x[i],y[i],p);
     395           0 :     for (   ; i<ly; i++) z[i+2] = Fl_neg(y[i],p);
     396             :   }
     397      881886 :   z[1] = 0; return Flx_renormalize(z, lz);
     398             : }
     399             : 
     400             : GEN
     401   138086354 : Flx_sub(GEN x, GEN y, ulong p)
     402             : {
     403   138086354 :   long i,lz,lx = lg(x), ly = lg(y);
     404             :   GEN z;
     405             : 
     406   138086354 :   if (ly <= lx)
     407             :   {
     408    88077907 :     lz = lx; z = cgetg(lz, t_VECSMALL);
     409   455780914 :     for (i=2; i<ly; i++) z[i] = Fl_sub(x[i],y[i],p);
     410   175504545 :     for (   ; i<lx; i++) z[i] = x[i];
     411             :   }
     412             :   else
     413             :   {
     414    50008447 :     lz = ly; z = cgetg(lz, t_VECSMALL);
     415   261254876 :     for (i=2; i<lx; i++) z[i] = Fl_sub(x[i],y[i],p);
     416   231917319 :     for (   ; i<ly; i++) z[i] = y[i]? (long)(p - y[i]): y[i];
     417             :   }
     418   138075992 :   z[1]=x[1]; return Flx_renormalize(z, lz);
     419             : }
     420             : 
     421             : GEN
     422      151664 : Flx_Fl_sub(GEN y, ulong x, ulong p)
     423             : {
     424             :   GEN z;
     425      151664 :   long lz = lg(y), i;
     426      151664 :   if (lz==2)
     427         513 :     return Fl_to_Flx(Fl_neg(x, p),y[1]);
     428      151151 :   z = cgetg(lz, t_VECSMALL);
     429      151151 :   z[1] = y[1];
     430      151151 :   z[2] = Fl_sub(uel(y,2), x, p);
     431      752666 :   for(i=3; i<lz; i++)
     432      601515 :     z[i] = y[i];
     433      151151 :   if (lz==3) z = Flx_renormalize(z,lz);
     434      151151 :   return z;
     435             : }
     436             : 
     437             : static GEN
     438     2926432 : Flx_negspec(GEN x, ulong p, long l)
     439             : {
     440             :   long i;
     441     2926432 :   GEN z = cgetg(l+2, t_VECSMALL) + 2;
     442    17832584 :   for (i=0; i<l; i++) z[i] = Fl_neg(x[i], p);
     443     2926373 :   return z-2;
     444             : }
     445             : 
     446             : GEN
     447     2926437 : Flx_neg(GEN x, ulong p)
     448             : {
     449     2926437 :   GEN z = Flx_negspec(x+2, p, lgpol(x));
     450     2926542 :   z[1] = x[1];
     451     2926542 :   return z;
     452             : }
     453             : 
     454             : GEN
     455     1777029 : Flx_neg_inplace(GEN x, ulong p)
     456             : {
     457     1777029 :   long i, l = lg(x);
     458    52326165 :   for (i=2; i<l; i++)
     459    50549136 :     if (x[i]) x[i] = p - x[i];
     460     1777029 :   return x;
     461             : }
     462             : 
     463             : GEN
     464     2445177 : Flx_double(GEN y, ulong p)
     465             : {
     466             :   long i, l;
     467     2445177 :   GEN z = cgetg_copy(y, &l); z[1] = y[1];
     468    20335150 :   for(i=2; i<l; i++) z[i] = Fl_double(y[i], p);
     469     2445177 :   return Flx_renormalize(z, l);
     470             : }
     471             : GEN
     472     1049887 : Flx_triple(GEN y, ulong p)
     473             : {
     474             :   long i, l;
     475     1049887 :   GEN z = cgetg_copy(y, &l); z[1] = y[1];
     476     8278717 :   for(i=2; i<l; i++) z[i] = Fl_triple(y[i], p);
     477     1049887 :   return Flx_renormalize(z, l);
     478             : }
     479             : 
     480             : GEN
     481    18134170 : Flx_Fl_mul_pre(GEN y, ulong x, ulong p, ulong pi)
     482             : {
     483             :   GEN z;
     484             :   long i, l;
     485    18134170 :   if (!x) return pol0_Flx(y[1]);
     486    17400655 :   z = cgetg_copy(y, &l); z[1] = y[1];
     487    17400504 :   if (pi==0)
     488             :   {
     489    15190897 :     if (HIGHWORD(x | p))
     490           0 :       for(i=2; i<l; i++) z[i] = Fl_mul(uel(y,i), x, p);
     491             :     else
     492    89677738 :       for(i=2; i<l; i++) z[i] = (uel(y,i) * x) % p;
     493             :   } else
     494    18083918 :       for(i=2; i<l; i++) z[i] = Fl_mul_pre(uel(y,i), x, p, pi);
     495    17400892 :   return Flx_renormalize(z, l);
     496             : }
     497             : 
     498             : GEN
     499     7201719 : Flx_Fl_mul(GEN x, ulong y, ulong p)
     500     7201719 : { return Flx_Fl_mul_pre(x, y, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
     501             : 
     502             : GEN
     503           0 : Flx_convol(GEN x, GEN y, ulong p)
     504             : {
     505           0 :   long lx = lg(x), ly = lg(y), i;
     506             :   GEN z;
     507           0 :   if (lx < ly) swapspec(x,y, lx,ly);
     508           0 :   z = cgetg(ly,t_VECSMALL); z[1] = x[1];
     509           0 :   for (i=2; i<ly; i++) uel(z,i) = Fl_mul(uel(x,i),uel(y,i), p);
     510           0 :   return Flx_renormalize(z, ly);
     511             : }
     512             : 
     513             : GEN
     514    12007730 : Flx_Fl_mul_to_monic(GEN y, ulong x, ulong p)
     515             : {
     516             :   GEN z;
     517             :   long i, l;
     518    12007730 :   z = cgetg_copy(y, &l); z[1] = y[1];
     519    12004101 :   if (HIGHWORD(x | p))
     520     5385345 :     for(i=2; i<l-1; i++) z[i] = Fl_mul(y[i], x, p);
     521             :   else
     522    27026587 :     for(i=2; i<l-1; i++) z[i] = (y[i] * x) % p;
     523    12004097 :   z[l-1] = 1; return z;
     524             : }
     525             : 
     526             : /* Return a*x^n if n>=0 and a\x^(-n) if n<0 */
     527             : GEN
     528    27256933 : Flx_shift(GEN a, long n)
     529             : {
     530    27256933 :   long i, l = lg(a);
     531             :   GEN  b;
     532    27256933 :   if (l==2 || !n) return Flx_copy(a);
     533    26912202 :   if (l+n<=2) return pol0_Flx(a[1]);
     534    26696947 :   b = cgetg(l+n, t_VECSMALL);
     535    26695168 :   b[1] = a[1];
     536    26695168 :   if (n < 0)
     537    73556698 :     for (i=2-n; i<l; i++) b[i+n] = a[i];
     538             :   else
     539             :   {
     540    52147945 :     for (i=0; i<n; i++) b[2+i] = 0;
     541   148547648 :     for (i=2; i<l; i++) b[i+n] = a[i];
     542             :   }
     543    26695168 :   return b;
     544             : }
     545             : 
     546             : GEN
     547    63840720 : Flx_normalize(GEN z, ulong p)
     548             : {
     549    63840720 :   long l = lg(z)-1;
     550    63840720 :   ulong p1 = z[l]; /* leading term */
     551    63840720 :   if (p1 == 1) return z;
     552    11983370 :   return Flx_Fl_mul_to_monic(z, Fl_inv(p1,p), p);
     553             : }
     554             : 
     555             : /* return (x * X^d) + y. Assume d > 0, shallow if x == 0*/
     556             : static GEN
     557     3724819 : Flx_addshift(GEN x, GEN y, ulong p, long d)
     558             : {
     559     3724819 :   GEN xd,yd,zd = (GEN)avma;
     560     3724819 :   long a,lz,ny = lgpol(y), nx = lgpol(x);
     561     3724819 :   long vs = x[1];
     562     3724819 :   if (nx == 0) return y;
     563     3722976 :   x += 2; y += 2; a = ny-d;
     564     3722976 :   if (a <= 0)
     565             :   {
     566       85099 :     lz = (a>nx)? ny+2: nx+d+2;
     567       85099 :     (void)new_chunk(lz); xd = x+nx; yd = y+ny;
     568     1732405 :     while (xd > x) *--zd = *--xd;
     569       85099 :     x = zd + a;
     570      164579 :     while (zd > x) *--zd = 0;
     571             :   }
     572             :   else
     573             :   {
     574     3637877 :     xd = new_chunk(d); yd = y+d;
     575     3637877 :     x = Flx_addspec(x,yd,p, nx,a);
     576     3637877 :     lz = (a>nx)? ny+2: lg(x)+d;
     577   132727937 :     x += 2; while (xd > x) *--zd = *--xd;
     578             :   }
     579    60411380 :   while (yd > y) *--zd = *--yd;
     580     3722976 :   *--zd = vs;
     581     3722976 :   *--zd = evaltyp(t_VECSMALL) | evallg(lz); return zd;
     582             : }
     583             : 
     584             : /* shift polynomial + GC; do not set evalvarn*/
     585             : static GEN
     586   631535656 : Flx_shiftip(pari_sp av, GEN x, long v)
     587             : {
     588   631535656 :   long i, lx = lg(x), ly;
     589             :   GEN y;
     590   631535656 :   if (!v || lx==2) return gc_leaf(av, x);
     591   176445291 :   ly = lx + v; /* result length */
     592   176445291 :   (void)new_chunk(ly); /* check that result fits */
     593   176341575 :   x += lx; y = (GEN)av;
     594  1244636786 :   for (i = 2; i<lx; i++) *--y = *--x;
     595   707734172 :   for (i = 0; i< v; i++) *--y = 0;
     596   176341575 :   y -= 2; y[0] = evaltyp(t_VECSMALL) | evallg(ly);
     597   176458013 :   return gc_const((pari_sp)y, y);
     598             : }
     599             : 
     600             : static long
     601  2322278137 : get_Fl_threshold(ulong p, long mul, long mul2)
     602             : {
     603  2322278137 :   return SMALL_ULONG(p) ? mul: mul2;
     604             : }
     605             : 
     606             : #define BITS_IN_QUARTULONG (BITS_IN_HALFULONG >> 1)
     607             : #define QUARTMASK ((1UL<<BITS_IN_QUARTULONG)-1UL)
     608             : #define LLQUARTWORD(x) ((x) & QUARTMASK)
     609             : #define HLQUARTWORD(x) (((x) >> BITS_IN_QUARTULONG) & QUARTMASK)
     610             : #define LHQUARTWORD(x) (((x) >> (2*BITS_IN_QUARTULONG)) & QUARTMASK)
     611             : #define HHQUARTWORD(x) (((x) >> (3*BITS_IN_QUARTULONG)) & QUARTMASK)
     612             : INLINE long
     613     8358695 : maxbitcoeffpol(ulong p, long n)
     614             : {
     615     8358695 :   GEN z = muliu(sqru(p - 1), n);
     616     8356444 :   long b = expi(z) + 1;
     617             :   /* only do expensive bit-packing if it saves at least 1 limb */
     618     8357205 :   if (b <= BITS_IN_QUARTULONG)
     619             :   {
     620      873005 :     if (nbits2nlong(n*b) == (n + 3)>>2)
     621      107039 :       b = BITS_IN_QUARTULONG;
     622             :   }
     623     7484200 :   else if (b <= BITS_IN_HALFULONG)
     624             :   {
     625     1548618 :     if (nbits2nlong(n*b) == (n + 1)>>1)
     626        5809 :       b = BITS_IN_HALFULONG;
     627             :   }
     628             :   else
     629             :   {
     630     5935582 :     long l = lgefint(z) - 2;
     631     5935582 :     if (nbits2nlong(n*b) == n*l)
     632      305784 :       b = l*BITS_IN_LONG;
     633             :   }
     634     8357076 :   return b;
     635             : }
     636             : 
     637             : INLINE ulong
     638  3367439324 : Flx_mullimb_ok(GEN x, GEN y, ulong p, long a, long b)
     639             : { /* Assume OK_ULONG*/
     640  3367439324 :   ulong p1 = 0;
     641             :   long i;
     642 15960425276 :   for (i=a; i<b; i++)
     643 12592985952 :     if (y[i])
     644             :     {
     645 10599040532 :       p1 += y[i] * x[-i];
     646 10599040532 :       if (p1 & HIGHBIT) p1 %= p;
     647             :     }
     648  3367439324 :   return p1 % p;
     649             : }
     650             : 
     651             : INLINE ulong
     652  1189521705 : Flx_mullimb(GEN x, GEN y, ulong p, ulong pi, long a, long b)
     653             : {
     654  1189521705 :   ulong p1 = 0;
     655             :   long i;
     656  3763871466 :   for (i=a; i<b; i++)
     657  2574860420 :     if (y[i])
     658  2533253818 :       p1 = Fl_addmul_pre(p1, y[i], x[-i], p, pi);
     659  1189011046 :   return p1;
     660             : }
     661             : 
     662             : /* assume nx >= ny > 0 */
     663             : static GEN
     664   344480500 : Flx_mulspec_basecase(GEN x, GEN y, ulong p, ulong pi, long nx, long ny)
     665             : {
     666             :   long i,lz,nz;
     667             :   GEN z;
     668             : 
     669   344480500 :   lz = nx+ny+1; nz = lz-2;
     670   344480500 :   z = cgetg(lz, t_VECSMALL) + 2; /* x:y:z [i] = term of degree i */
     671   344262074 :   if (!pi)
     672             :   {
     673  1132871538 :     for (i=0; i<ny; i++)z[i] = Flx_mullimb_ok(x+i,y,p,0,i+1);
     674   733202221 :     for (  ; i<nx; i++) z[i] = Flx_mullimb_ok(x+i,y,p,0,ny);
     675   881181623 :     for (  ; i<nz; i++) z[i] = Flx_mullimb_ok(x+i,y,p,i-nx+1,ny);
     676             :   }
     677             :   else
     678             :   {
     679   322797734 :     for (i=0; i<ny; i++)z[i] = Flx_mullimb(x+i,y,p,pi,0,i+1);
     680   222227419 :     for (  ; i<nx; i++) z[i] = Flx_mullimb(x+i,y,p,pi,0,ny);
     681   231593959 :     for (  ; i<nz; i++) z[i] = Flx_mullimb(x+i,y,p,pi,i-nx+1,ny);
     682             :   }
     683   344033194 :   z -= 2; return Flx_renormalize(z, lz);
     684             : }
     685             : 
     686             : static GEN
     687       12215 : int_to_Flx(GEN z, ulong p)
     688             : {
     689       12215 :   long i, l = lgefint(z);
     690       12215 :   GEN x = cgetg(l, t_VECSMALL);
     691     1047253 :   for (i=2; i<l; i++) x[i] = uel(z,i)%p;
     692       12212 :   return Flx_renormalize(x, l);
     693             : }
     694             : 
     695             : INLINE GEN
     696       10146 : Flx_mulspec_mulii(GEN a, GEN b, ulong p, long na, long nb)
     697             : {
     698       10146 :   GEN z=muliispec(a,b,na,nb);
     699       10147 :   return int_to_Flx(z,p);
     700             : }
     701             : 
     702             : static GEN
     703      330361 : Flx_to_int_halfspec(GEN a, long na)
     704             : {
     705             :   long j;
     706      330361 :   long n = (na+1)>>1UL;
     707      330361 :   GEN V = cgetipos(2+n);
     708             :   GEN w;
     709     1126179 :   for (w = int_LSW(V), j=0; j+1<na; j+=2, w=int_nextW(w))
     710      795818 :     *w = a[j]|(a[j+1]<<BITS_IN_HALFULONG);
     711      330361 :   if (j<na)
     712      206638 :     *w = a[j];
     713      330361 :   return V;
     714             : }
     715             : 
     716             : static GEN
     717      335184 : int_to_Flx_half(GEN z, ulong p)
     718             : {
     719             :   long i;
     720      335184 :   long lx = (lgefint(z)-2)*2+2;
     721      335184 :   GEN w, x = cgetg(lx, t_VECSMALL);
     722     1520014 :   for (w = int_LSW(z), i=2; i<lx; i+=2, w=int_nextW(w))
     723             :   {
     724     1184830 :     x[i]   = LOWWORD((ulong)*w)%p;
     725     1184830 :     x[i+1] = HIGHWORD((ulong)*w)%p;
     726             :   }
     727      335184 :   return Flx_renormalize(x, lx);
     728             : }
     729             : 
     730             : static GEN
     731        5484 : Flx_mulspec_halfmulii(GEN a, GEN b, ulong p, long na, long nb)
     732             : {
     733        5484 :   GEN A = Flx_to_int_halfspec(a,na);
     734        5484 :   GEN B = Flx_to_int_halfspec(b,nb);
     735        5484 :   GEN z = mulii(A,B);
     736        5484 :   return int_to_Flx_half(z,p);
     737             : }
     738             : 
     739             : static GEN
     740      203882 : Flx_to_int_quartspec(GEN a, long na)
     741             : {
     742             :   long j;
     743      203882 :   long n = (na+3)>>2UL;
     744      203882 :   GEN V = cgetipos(2+n);
     745             :   GEN w;
     746     4364633 :   for (w = int_LSW(V), j=0; j+3<na; j+=4, w=int_nextW(w))
     747     4160751 :     *w = a[j]|(a[j+1]<<BITS_IN_QUARTULONG)|(a[j+2]<<(2*BITS_IN_QUARTULONG))|(a[j+3]<<(3*BITS_IN_QUARTULONG));
     748      203882 :   switch (na-j)
     749             :   {
     750      115846 :   case 3:
     751      115846 :     *w = a[j]|(a[j+1]<<BITS_IN_QUARTULONG)|(a[j+2]<<(2*BITS_IN_QUARTULONG));
     752      115846 :     break;
     753       34292 :   case 2:
     754       34292 :     *w = a[j]|(a[j+1]<<BITS_IN_QUARTULONG);
     755       34292 :     break;
     756       27334 :   case 1:
     757       27334 :     *w = a[j];
     758       27334 :     break;
     759       26411 :   case 0:
     760       26411 :     break;
     761             :   }
     762      203882 :   return V;
     763             : }
     764             : 
     765             : static GEN
     766      107040 : int_to_Flx_quart(GEN z, ulong p)
     767             : {
     768             :   long i;
     769      107040 :   long lx = (lgefint(z)-2)*4+2;
     770      107040 :   GEN w, x = cgetg(lx, t_VECSMALL);
     771     4860014 :   for (w = int_LSW(z), i=2; i<lx; i+=4, w=int_nextW(w))
     772             :   {
     773     4752974 :     x[i]   = LLQUARTWORD((ulong)*w)%p;
     774     4752974 :     x[i+1] = HLQUARTWORD((ulong)*w)%p;
     775     4752974 :     x[i+2] = LHQUARTWORD((ulong)*w)%p;
     776     4752974 :     x[i+3] = HHQUARTWORD((ulong)*w)%p;
     777             :   }
     778      107040 :   return Flx_renormalize(x, lx);
     779             : }
     780             : 
     781             : static GEN
     782       96842 : Flx_mulspec_quartmulii(GEN a, GEN b, ulong p, long na, long nb)
     783             : {
     784       96842 :   GEN A = Flx_to_int_quartspec(a,na);
     785       96843 :   GEN B = Flx_to_int_quartspec(b,nb);
     786       96843 :   GEN z = mulii(A,B);
     787       96843 :   return int_to_Flx_quart(z,p);
     788             : }
     789             : 
     790             : /*Eval x in 2^(k*BIL) in linear time, k==2 or 3*/
     791             : static GEN
     792      579005 : Flx_eval2BILspec(GEN x, long k, long l)
     793             : {
     794      579005 :   long i, lz = k*l, ki;
     795      579005 :   GEN pz = cgetipos(2+lz);
     796    16208751 :   for (i=0; i < lz; i++)
     797    15629746 :     *int_W(pz,i) = 0UL;
     798     8393878 :   for (i=0, ki=0; i<l; i++, ki+=k)
     799     7814873 :     *int_W(pz,ki) = x[i];
     800      579005 :   return int_normalize(pz,0);
     801             : }
     802             : 
     803             : static GEN
     804      296499 : Z_mod2BIL_Flx_2(GEN x, long d, ulong p)
     805             : {
     806      296499 :   long i, offset, lm = lgefint(x)-2, l = d+3;
     807      296499 :   ulong pi = get_Fl_red(p);
     808      296499 :   GEN pol = cgetg(l, t_VECSMALL);
     809      296499 :   pol[1] = 0;
     810     7934330 :   for (i=0, offset=0; offset+1 < lm; i++, offset += 2)
     811     7637831 :     pol[i+2] = remll_pre(*int_W(x,offset+1), *int_W(x,offset), p, pi);
     812      296499 :   if (offset < lm)
     813      223628 :     pol[i+2] = (*int_W(x,offset)) % p;
     814      296499 :   return Flx_renormalize(pol,l);
     815             : }
     816             : 
     817             : static GEN
     818           0 : Z_mod2BIL_Flx_3(GEN x, long d, ulong p)
     819             : {
     820           0 :   long i, offset, lm = lgefint(x)-2, l = d+3;
     821           0 :   ulong pi = get_Fl_red(p);
     822           0 :   GEN pol = cgetg(l, t_VECSMALL);
     823           0 :   pol[1] = 0;
     824           0 :   for (i=0, offset=0; offset+2 < lm; i++, offset += 3)
     825           0 :     pol[i+2] = remlll_pre(*int_W(x,offset+2), *int_W(x,offset+1),
     826           0 :                           *int_W(x,offset), p, pi);
     827           0 :   if (offset+1 < lm)
     828           0 :     pol[i+2] = remll_pre(*int_W(x,offset+1), *int_W(x,offset), p, pi);
     829           0 :   else if (offset < lm)
     830           0 :     pol[i+2] = (*int_W(x,offset)) % p;
     831           0 :   return Flx_renormalize(pol,l);
     832             : }
     833             : 
     834             : static GEN
     835      293569 : Z_mod2BIL_Flx(GEN x, long bs, long d, ulong p)
     836             : {
     837      293569 :   return bs==2 ? Z_mod2BIL_Flx_2(x, d, p): Z_mod2BIL_Flx_3(x, d, p);
     838             : }
     839             : 
     840             : static GEN
     841      282047 : Flx_mulspec_mulii_inflate(GEN x, GEN y, long N, ulong p, long nx, long ny)
     842             : {
     843      282047 :   pari_sp av = avma;
     844      282047 :   GEN z = mulii(Flx_eval2BILspec(x,N,nx), Flx_eval2BILspec(y,N,ny));
     845      282047 :   return gc_upto(av, Z_mod2BIL_Flx(z, N, nx+ny-2, p));
     846             : }
     847             : 
     848             : static GEN
     849    20685718 : kron_pack_Flx_spec_bits(GEN x, long b, long l) {
     850             :   GEN y;
     851             :   long i;
     852    20685718 :   if (l == 0)
     853     3417050 :     return gen_0;
     854    17268668 :   y = cgetg(l + 1, t_VECSMALL);
     855   806293460 :   for(i = 1; i <= l; i++)
     856   789029133 :     y[i] = x[l - i];
     857    17264327 :   return nv_fromdigits_2k(y, b);
     858             : }
     859             : 
     860             : /* assume b < BITS_IN_LONG */
     861             : static GEN
     862     5549547 : kron_unpack_Flx_bits_narrow(GEN z, long b, ulong p) {
     863     5549547 :   GEN v = binary_2k_nv(z, b), x;
     864     5549610 :   long i, l = lg(v) + 1;
     865     5549610 :   x = cgetg(l, t_VECSMALL);
     866   614516376 :   for (i = 2; i < l; i++)
     867   608966655 :     x[i] = v[l - i] % p;
     868     5549721 :   return Flx_renormalize(x, l);
     869             : }
     870             : 
     871             : static GEN
     872     5595676 : kron_unpack_Flx_bits_wide(GEN z, long b, ulong p, ulong pi) {
     873     5595676 :   GEN v = binary_2k(z, b), x, y;
     874     5596431 :   long i, l = lg(v) + 1, ly;
     875     5596431 :   x = cgetg(l, t_VECSMALL);
     876   232259495 :   for (i = 2; i < l; i++) {
     877   226667152 :     y = gel(v, l - i);
     878   226667152 :     ly = lgefint(y);
     879   226667152 :     switch (ly) {
     880     6277676 :     case 2: x[i] = 0; break;
     881    29562034 :     case 3: x[i] = *int_W_lg(y, 0, ly) % p; break;
     882   174837056 :     case 4: x[i] = remll_pre(*int_W_lg(y, 1, ly), *int_W_lg(y, 0, ly), p, pi); break;
     883    31981499 :     case 5: x[i] = remlll_pre(*int_W_lg(y, 2, ly), *int_W_lg(y, 1, ly),
     884    15990386 :                               *int_W_lg(y, 0, ly), p, pi); break;
     885           0 :     default: x[i] = umodiu(gel(v, l - i), p);
     886             :     }
     887             :   }
     888     5592343 :   return Flx_renormalize(x, l);
     889             : }
     890             : 
     891             : static GEN
     892     7247033 : Flx_mulspec_Kronecker(GEN A, GEN B, long b, ulong p, long lA, long lB)
     893             : {
     894             :   GEN C, D;
     895     7247033 :   pari_sp av = avma;
     896     7247033 :   A =  kron_pack_Flx_spec_bits(A, b, lA);
     897     7252271 :   B =  kron_pack_Flx_spec_bits(B, b, lB);
     898     7252290 :   C = gc_INT(av, mulii(A, B));
     899     7250415 :   if (b < BITS_IN_LONG)
     900     2031850 :     D =  kron_unpack_Flx_bits_narrow(C, b, p);
     901             :   else
     902             :   {
     903     5218565 :     ulong pi = get_Fl_red(p);
     904     5217634 :     D = kron_unpack_Flx_bits_wide(C, b, p, pi);
     905             :   }
     906     7248050 :   return D;
     907             : }
     908             : 
     909             : static GEN
     910      690499 : Flx_sqrspec_Kronecker(GEN A, long b, ulong p, long lA)
     911             : {
     912             :   GEN C, D;
     913      690499 :   A =  kron_pack_Flx_spec_bits(A, b, lA);
     914      690587 :   C = sqri(A);
     915      690608 :   if (b < BITS_IN_LONG)
     916      477136 :     D =  kron_unpack_Flx_bits_narrow(C, b, p);
     917             :   else
     918             :   {
     919      213472 :     ulong pi = get_Fl_red(p);
     920      213468 :     D = kron_unpack_Flx_bits_wide(C, b, p, pi);
     921             :   }
     922      690583 :   return D;
     923             : }
     924             : 
     925             : /* fast product (Karatsuba) of polynomials a,b. These are not real GENs, a+2,
     926             :  * b+2 were sent instead. na, nb = number of terms of a, b.
     927             :  * Only c, c0, c1, c2 are genuine GEN.
     928             :  */
     929             : static GEN
     930   381724616 : Flx_mulspec(GEN a, GEN b, ulong p, ulong pi, long na, long nb)
     931             : {
     932             :   GEN a0,c,c0;
     933   381724616 :   long n0, n0a, i, v = 0;
     934             :   pari_sp av;
     935             : 
     936   486917226 :   while (na && !a[0]) { a++; na--; v++; }
     937   567981860 :   while (nb && !b[0]) { b++; nb--; v++; }
     938   381724616 :   if (na < nb) swapspec(a,b, na,nb);
     939   381724616 :   if (!nb) return pol0_Flx(0);
     940             : 
     941   353491848 :   av = avma;
     942   353491848 :   if (nb >= get_Fl_threshold(p, Flx_MUL_MULII_LIMIT, Flx_MUL2_MULII_LIMIT))
     943             :   {
     944     7644267 :     long m = maxbitcoeffpol(p,nb);
     945     7641306 :     switch (m)
     946             :     {
     947       96842 :     case BITS_IN_QUARTULONG:
     948       96842 :       return Flx_shiftip(av,Flx_mulspec_quartmulii(a,b,p,na,nb), v);
     949        5484 :     case BITS_IN_HALFULONG:
     950        5484 :       return Flx_shiftip(av,Flx_mulspec_halfmulii(a,b,p,na,nb), v);
     951       10146 :     case BITS_IN_LONG:
     952       10146 :       return Flx_shiftip(av,Flx_mulspec_mulii(a,b,p,na,nb), v);
     953      282047 :     case 2*BITS_IN_LONG:
     954      282047 :       return Flx_shiftip(av,Flx_mulspec_mulii_inflate(a,b,2,p,na,nb), v);
     955           0 :     case 3*BITS_IN_LONG:
     956           0 :       return Flx_shiftip(av,Flx_mulspec_mulii_inflate(a,b,3,p,na,nb), v);
     957     7246787 :     default:
     958     7246787 :       return Flx_shiftip(av,Flx_mulspec_Kronecker(a,b,m,p,na,nb), v);
     959             :     }
     960             :   }
     961   346220331 :   if (nb < get_Fl_threshold(p, Flx_MUL_KARATSUBA_LIMIT, Flx_MUL2_KARATSUBA_LIMIT))
     962   344407426 :     return Flx_shiftip(av,Flx_mulspec_basecase(a,b,p,pi,na,nb), v);
     963     1831147 :   i=(na>>1); n0=na-i; na=i;
     964     1831147 :   a0=a+n0; n0a=n0;
     965     2598960 :   while (n0a && !a[n0a-1]) n0a--;
     966             : 
     967     1831147 :   if (nb > n0)
     968             :   {
     969             :     GEN b0,c1,c2;
     970             :     long n0b;
     971             : 
     972     1777029 :     nb -= n0; b0 = b+n0; n0b = n0;
     973     2857236 :     while (n0b && !b[n0b-1]) n0b--;
     974     1777029 :     c =  Flx_mulspec(a,b,p,pi,n0a,n0b);
     975     1777029 :     c0 = Flx_mulspec(a0,b0,p,pi,na,nb);
     976             : 
     977     1777029 :     c2 = Flx_addspec(a0,a,p,na,n0a);
     978     1777029 :     c1 = Flx_addspec(b0,b,p,nb,n0b);
     979             : 
     980     1777029 :     c1 = Flx_mul_pre(c1,c2,p,pi);
     981     1777029 :     c2 = Flx_add(c0,c,p);
     982             : 
     983     1777029 :     c2 = Flx_neg_inplace(c2,p);
     984     1777029 :     c2 = Flx_add(c1,c2,p);
     985     1777029 :     c0 = Flx_addshift(c0,c2 ,p, n0);
     986             :   }
     987             :   else
     988             :   {
     989       54118 :     c  = Flx_mulspec(a,b,p,pi,n0a,nb);
     990       54118 :     c0 = Flx_mulspec(a0,b,p,pi,na,nb);
     991             :   }
     992     1831147 :   c0 = Flx_addshift(c0,c,p,n0);
     993     1831147 :   return Flx_shiftip(av,c0, v);
     994             : }
     995             : 
     996             : GEN
     997   376151906 : Flx_mul_pre(GEN x, GEN y, ulong p, ulong pi)
     998             : {
     999   376151906 :   GEN z = Flx_mulspec(x+2,y+2,p, pi, lgpol(x),lgpol(y));
    1000   376336997 :   z[1] = x[1]; return z;
    1001             : }
    1002             : GEN
    1003    27729962 : Flx_mul(GEN x, GEN y, ulong p)
    1004    27729962 : { return Flx_mul_pre(x, y, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    1005             : 
    1006             : static GEN
    1007   278821700 : Flx_sqrspec_basecase(GEN x, ulong p, ulong pi, long nx)
    1008             : {
    1009             :   long i, lz, nz;
    1010             :   ulong p1;
    1011             :   GEN z;
    1012             : 
    1013   278821700 :   if (!nx) return pol0_Flx(0);
    1014   278821700 :   lz = (nx << 1) + 1, nz = lz-2;
    1015   278821700 :   z = cgetg(lz, t_VECSMALL) + 2;
    1016   278245777 :   if (!pi)
    1017             :   {
    1018   213776127 :     z[0] = x[0]*x[0]%p;
    1019   915588252 :     for (i=1; i<nx; i++)
    1020             :     {
    1021   702167199 :       p1 = Flx_mullimb_ok(x+i,x,p,0, (i+1)>>1);
    1022   701812125 :       p1 <<= 1;
    1023   701812125 :       if ((i&1) == 0) p1 += x[i>>1] * x[i>>1];
    1024   701812125 :       z[i] = p1 % p;
    1025             :     }
    1026   919815149 :     for (  ; i<nz; i++)
    1027             :     {
    1028   705512813 :       p1 = Flx_mullimb_ok(x+i,x,p,i-nx+1, (i+1)>>1);
    1029   706394096 :       p1 <<= 1;
    1030   706394096 :       if ((i&1) == 0) p1 += x[i>>1] * x[i>>1];
    1031   706394096 :       z[i] = p1 % p;
    1032             :     }
    1033             :   }
    1034             :   else
    1035             :   {
    1036    64469650 :     z[0] = Fl_sqr_pre(x[0], p, pi);
    1037   413698410 :     for (i=1; i<nx; i++)
    1038             :     {
    1039   349387813 :       p1 = Flx_mullimb(x+i,x,p,pi,0, (i+1)>>1);
    1040   349521299 :       p1 = Fl_add(p1, p1, p);
    1041   349128825 :       if ((i&1) == 0) p1 = Fl_add(p1, Fl_sqr_pre(x[i>>1], p, pi), p);
    1042   349249064 :       z[i] = p1;
    1043             :     }
    1044   413578801 :     for (  ; i<nz; i++)
    1045             :     {
    1046   349196763 :       p1 = Flx_mullimb(x+i,x,p,pi,i-nx+1, (i+1)>>1);
    1047   349956719 :       p1 = Fl_add(p1, p1, p);
    1048   349616607 :       if ((i&1) == 0) p1 = Fl_add(p1, Fl_sqr_pre(x[i>>1], p, pi), p);
    1049   349268204 :       z[i] = p1;
    1050             :     }
    1051             :   }
    1052   278684374 :   z -= 2; return Flx_renormalize(z, lz);
    1053             : }
    1054             : 
    1055             : static GEN
    1056        2069 : Flx_sqrspec_sqri(GEN a, ulong p, long na)
    1057             : {
    1058        2069 :   GEN z=sqrispec(a,na);
    1059        2068 :   return int_to_Flx(z,p);
    1060             : }
    1061             : 
    1062             : static GEN
    1063         325 : Flx_sqrspec_halfsqri(GEN a, ulong p, long na)
    1064             : {
    1065         325 :   GEN z = sqri(Flx_to_int_halfspec(a,na));
    1066         325 :   return int_to_Flx_half(z,p);
    1067             : }
    1068             : 
    1069             : static GEN
    1070       10197 : Flx_sqrspec_quartsqri(GEN a, ulong p, long na)
    1071             : {
    1072       10197 :   GEN z = sqri(Flx_to_int_quartspec(a,na));
    1073       10197 :   return int_to_Flx_quart(z,p);
    1074             : }
    1075             : 
    1076             : static GEN
    1077       11522 : Flx_sqrspec_sqri_inflate(GEN x, long N, ulong p, long nx)
    1078             : {
    1079       11522 :   pari_sp av = avma;
    1080       11522 :   GEN  z = sqri(Flx_eval2BILspec(x,N,nx));
    1081       11522 :   return gc_upto(av, Z_mod2BIL_Flx(z, N, (nx-1)*2, p));
    1082             : }
    1083             : 
    1084             : static GEN
    1085   278552768 : Flx_sqrspec(GEN a, ulong p, ulong pi, long na)
    1086             : {
    1087             :   GEN a0, c, c0;
    1088   278552768 :   long n0, n0a, i, v = 0, m;
    1089             :   pari_sp av;
    1090             : 
    1091   400441096 :   while (na && !a[0]) { a++; na--; v += 2; }
    1092   278552768 :   if (!na) return pol0_Flx(0);
    1093             : 
    1094   278307908 :   av = avma;
    1095   278307908 :   if (na >= get_Fl_threshold(p, Flx_SQR_SQRI_LIMIT, Flx_SQR2_SQRI_LIMIT))
    1096             :   {
    1097      714597 :     m = maxbitcoeffpol(p,na);
    1098      714608 :     switch(m)
    1099             :     {
    1100       10197 :     case BITS_IN_QUARTULONG:
    1101       10197 :       return Flx_shiftip(av, Flx_sqrspec_quartsqri(a,p,na), v);
    1102         325 :     case BITS_IN_HALFULONG:
    1103         325 :       return Flx_shiftip(av, Flx_sqrspec_halfsqri(a,p,na), v);
    1104        2069 :     case BITS_IN_LONG:
    1105        2069 :       return Flx_shiftip(av, Flx_sqrspec_sqri(a,p,na), v);
    1106       11522 :     case 2*BITS_IN_LONG:
    1107       11522 :       return Flx_shiftip(av, Flx_sqrspec_sqri_inflate(a,2,p,na), v);
    1108           0 :     case 3*BITS_IN_LONG:
    1109           0 :       return Flx_shiftip(av, Flx_sqrspec_sqri_inflate(a,3,p,na), v);
    1110      690495 :     default:
    1111      690495 :       return Flx_shiftip(av, Flx_sqrspec_Kronecker(a,m,p,na), v);
    1112             :     }
    1113             :   }
    1114   278237411 :   if (na < get_Fl_threshold(p, Flx_SQR_KARATSUBA_LIMIT, Flx_SQR2_KARATSUBA_LIMIT))
    1115   278260497 :     return Flx_shiftip(av, Flx_sqrspec_basecase(a,p,pi,na), v);
    1116       58331 :   i=(na>>1); n0=na-i; na=i;
    1117       58331 :   a0=a+n0; n0a=n0;
    1118       73073 :   while (n0a && !a[n0a-1]) n0a--;
    1119             : 
    1120       58331 :   c = Flx_sqrspec(a,p,pi,n0a);
    1121       58331 :   c0= Flx_sqrspec(a0,p,pi,na);
    1122       58331 :   if (p == 2) n0 *= 2;
    1123             :   else
    1124             :   {
    1125       58312 :     GEN c1, t = Flx_addspec(a0,a,p,na,n0a);
    1126       58312 :     t = Flx_sqr_pre(t,p,pi);
    1127       58312 :     c1= Flx_add(c0,c, p);
    1128       58312 :     c1= Flx_sub(t, c1, p);
    1129       58312 :     c0 = Flx_addshift(c0,c1,p,n0);
    1130             :   }
    1131       58331 :   c0 = Flx_addshift(c0,c,p,n0);
    1132       58331 :   return Flx_shiftip(av,c0,v);
    1133             : }
    1134             : 
    1135             : GEN
    1136   278259859 : Flx_sqr_pre(GEN x, ulong p, ulong pi)
    1137             : {
    1138   278259859 :   GEN z = Flx_sqrspec(x+2,p, pi, lgpol(x));
    1139   279839154 :   z[1] = x[1]; return z;
    1140             : }
    1141             : GEN
    1142      354916 : Flx_sqr(GEN x, ulong p)
    1143      354916 : { return Flx_sqr_pre(x, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    1144             : 
    1145             : GEN
    1146        3915 : Flx_powu_pre(GEN x, ulong n, ulong p, ulong pi)
    1147             : {
    1148        3915 :   GEN y = pol1_Flx(x[1]), z;
    1149             :   ulong m;
    1150        3915 :   if (n == 0) return y;
    1151        3915 :   m = n; z = x;
    1152             :   for (;;)
    1153             :   {
    1154       12693 :     if (m&1UL) y = Flx_mul_pre(y,z, p, pi);
    1155       12695 :     m >>= 1; if (!m) return y;
    1156        8780 :     z = Flx_sqr_pre(z, p, pi);
    1157             :   }
    1158             : }
    1159             : GEN
    1160           0 : Flx_powu(GEN x, ulong n, ulong p)
    1161             : {
    1162           0 :   if (n == 0) return pol1_Flx(x[1]);
    1163           0 :   return Flx_powu_pre(x, n, p, SMALL_ULONG(p)? 0: get_Fl_red(p));
    1164             : }
    1165             : 
    1166             : GEN
    1167       14047 : Flx_halve(GEN y, ulong p)
    1168             : {
    1169             :   GEN z;
    1170             :   long i, l;
    1171       14047 :   z = cgetg_copy(y, &l); z[1] = y[1];
    1172       58609 :   for(i=2; i<l; i++) uel(z,i) = Fl_halve(uel(y,i), p);
    1173       14047 :   return z;
    1174             : }
    1175             : 
    1176             : static GEN
    1177     7243996 : Flx_recipspec(GEN x, long l, long n)
    1178             : {
    1179             :   long i;
    1180     7243996 :   GEN z=cgetg(n+2,t_VECSMALL)+2;
    1181   113345448 :   for(i=0; i<l; i++)
    1182   106103010 :     z[n-i-1] = x[i];
    1183    15858859 :   for(   ; i<n; i++)
    1184     8616421 :     z[n-i-1] = 0;
    1185     7242438 :   return Flx_renormalize(z-2,n+2);
    1186             : }
    1187             : 
    1188             : GEN
    1189           0 : Flx_recip(GEN x)
    1190             : {
    1191           0 :   GEN z=Flx_recipspec(x+2,lgpol(x),lgpol(x));
    1192           0 :   z[1]=x[1];
    1193           0 :   return z;
    1194             : }
    1195             : 
    1196             : /* Return P(x * h) */
    1197             : GEN
    1198           0 : Flx_unscale(GEN P, ulong h, ulong p)
    1199             : {
    1200             :   long i, l;
    1201           0 :   ulong hi = 1UL;
    1202           0 :   GEN Q = cgetg_copy(P, &l);
    1203           0 :   Q[1] = P[1];
    1204           0 :   if (l == 2) return Q;
    1205           0 :   uel(Q,2) = uel(P,2);
    1206           0 :   for (i=3; i<l; i++)
    1207             :   {
    1208           0 :     hi = Fl_mul(hi, h ,p);
    1209           0 :     uel(Q,i) = Fl_mul(uel(P,i), hi, p);
    1210             :   }
    1211           0 :   return Q;
    1212             : }
    1213             : /* Return h^degpol(P) P(x / h) */
    1214             : GEN
    1215        1117 : Flx_rescale(GEN P, ulong h, ulong p)
    1216             : {
    1217        1117 :   long i, l = lg(P);
    1218        1117 :   GEN Q = cgetg(l,t_VECSMALL);
    1219        1117 :   ulong hi = h;
    1220        1117 :   Q[l-1] = P[l-1];
    1221       12538 :   for (i=l-2; i>=2; i--)
    1222             :   {
    1223       12538 :     Q[i] = Fl_mul(P[i], hi, p);
    1224       12538 :     if (i == 2) break;
    1225       11421 :     hi = Fl_mul(hi,h, p);
    1226             :   }
    1227        1117 :   Q[1] = P[1]; return Q;
    1228             : }
    1229             : 
    1230             : /* x/polrecip(P)+O(x^n); allow pi = 0 */
    1231             : static GEN
    1232      134277 : Flx_invBarrett_basecase(GEN T, ulong p, ulong pi)
    1233             : {
    1234      134277 :   long i, l=lg(T)-1, lr=l-1, k;
    1235      134277 :   GEN r=cgetg(lr,t_VECSMALL); r[1] = T[1];
    1236      134277 :   r[2] = 1;
    1237      134277 :   if (!pi)
    1238      768031 :     for (i=3;i<lr;i++)
    1239             :     {
    1240      760982 :       ulong u = uel(T, l-i+2);
    1241    45653640 :       for (k=3; k<i; k++)
    1242    44892658 :         { u += uel(T,l-i+k) * uel(r, k); if (u & HIGHBIT) u %= p; }
    1243      760982 :       r[i] = Fl_neg(u % p, p);
    1244             :     }
    1245             :   else
    1246     2110533 :     for (i=3;i<lr;i++)
    1247             :     {
    1248     1983306 :       ulong u = Fl_neg(uel(T,l-i+2), p);
    1249    59548138 :       for (k=3; k<i; k++)
    1250             :       {
    1251    57564833 :         ulong t = Fl_neg(uel(T,l-i+k), p);
    1252    57564833 :         u = Fl_addmul_pre(u, t, uel(r,k), p, pi);
    1253             :       }
    1254     1983305 :       r[i] = u;
    1255             :     }
    1256      134276 :   return Flx_renormalize(r,lr);
    1257             : }
    1258             : 
    1259             : /* Return new lgpol */
    1260             : static long
    1261     2101993 : Flx_lgrenormalizespec(GEN x, long lx)
    1262             : {
    1263             :   long i;
    1264     7450338 :   for (i = lx-1; i>=0; i--)
    1265     7449560 :     if (x[i]) break;
    1266     2101993 :   return i+1;
    1267             : }
    1268             : /* allow pi = 0 */
    1269             : static GEN
    1270       23160 : Flx_invBarrett_Newton(GEN T, ulong p, ulong pi)
    1271             : {
    1272       23160 :   long nold, lx, lz, lq, l = degpol(T), lQ;
    1273       23160 :   GEN q, y, z, x = zero_zv(l+1) + 2;
    1274       23161 :   ulong mask = quadratic_prec_mask(l-2); /* assume l > 2 */
    1275             :   pari_sp av;
    1276             : 
    1277       23161 :   y = T+2;
    1278       23161 :   q = Flx_recipspec(y,l+1,l+1); lQ = lgpol(q); q+=2;
    1279       23161 :   av = avma;
    1280             :   /* We work on _spec_ Flx's, all the l[xzq12] below are lgpol's */
    1281             : 
    1282             :   /* initialize */
    1283       23161 :   x[0] = Fl_inv(q[0], p);
    1284       23161 :   if (lQ>1 && q[1])
    1285        5109 :   {
    1286        5109 :     ulong u = q[1];
    1287        5109 :     if (x[0] != 1) u = Fl_mul(u, Fl_sqr(x[0],p), p);
    1288        5109 :     x[1] = p - u; lx = 2;
    1289             :   }
    1290             :   else
    1291       18052 :     lx = 1;
    1292       23161 :   nold = 1;
    1293      159201 :   for (; mask > 1; set_avma(av))
    1294             :   { /* set x -= x(x*q - 1) + O(t^(nnew + 1)), knowing x*q = 1 + O(t^(nold+1)) */
    1295      136049 :     long i, lnew, nnew = nold << 1;
    1296             : 
    1297      136049 :     if (mask & 1) nnew--;
    1298      136049 :     mask >>= 1;
    1299             : 
    1300      136049 :     lnew = nnew + 1;
    1301      136049 :     lq = Flx_lgrenormalizespec(q, minss(lQ, lnew));
    1302      136056 :     z = Flx_mulspec(x, q, p, pi, lx, lq); /* FIXME: high product */
    1303      136041 :     lz = lgpol(z); if (lz > lnew) lz = lnew;
    1304      136040 :     z += 2;
    1305             :     /* subtract 1 [=>first nold words are 0]: renormalize so that z(0) != 0 */
    1306      298863 :     for (i = nold; i < lz; i++) if (z[i]) break;
    1307      136040 :     nold = nnew;
    1308      136040 :     if (i >= lz) continue; /* z-1 = 0(t^(nnew + 1)) */
    1309             : 
    1310             :     /* z + i represents (x*q - 1) / t^i */
    1311      100989 :     lz = Flx_lgrenormalizespec (z+i, lz-i);
    1312      100991 :     z = Flx_mulspec(x, z+i, p, pi, lx, lz); /* FIXME: low product */
    1313      100991 :     lz = lgpol(z); z += 2;
    1314      100991 :     if (lz > lnew-i) lz = Flx_lgrenormalizespec(z, lnew-i);
    1315             : 
    1316      100990 :     lx = lz+ i;
    1317      100990 :     y  = x + i; /* x -= z * t^i, in place */
    1318      999771 :     for (i = 0; i < lz; i++) y[i] = Fl_neg(z[i], p);
    1319             :   }
    1320       23160 :   x -= 2; setlg(x, lx + 2); x[1] = T[1];
    1321       23160 :   return x;
    1322             : }
    1323             : 
    1324             : /* allow pi = 0 */
    1325             : static GEN
    1326      158713 : Flx_invBarrett_pre(GEN T, ulong p, ulong pi)
    1327             : {
    1328      158713 :   pari_sp ltop = avma;
    1329      158713 :   long l = lgpol(T);
    1330             :   GEN r;
    1331      158713 :   if (l < 3) return pol0_Flx(T[1]);
    1332      157437 :   if (l < get_Fl_threshold(p, Flx_INVBARRETT_LIMIT, Flx_INVBARRETT2_LIMIT))
    1333             :   {
    1334      134277 :     ulong c = T[l+1];
    1335      134277 :     if (c != 1)
    1336             :     {
    1337       98118 :       ulong ci = Fl_inv(c,p);
    1338       98118 :       T = Flx_Fl_mul_pre(T, ci, p, pi);
    1339       98118 :       r = Flx_invBarrett_basecase(T, p, pi);
    1340       98118 :       r = Flx_Fl_mul_pre(r, ci, p, pi);
    1341             :     }
    1342             :     else
    1343       36159 :       r = Flx_invBarrett_basecase(T, p, pi);
    1344             :   }
    1345             :   else
    1346       23160 :     r = Flx_invBarrett_Newton(T, p, pi);
    1347      157437 :   return gc_leaf(ltop, r);
    1348             : }
    1349             : GEN
    1350           0 : Flx_invBarrett(GEN T, ulong p)
    1351           0 : { return Flx_invBarrett_pre(T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    1352             : 
    1353             : /* allow pi = 0 */
    1354             : GEN
    1355    97006009 : Flx_get_red_pre(GEN T, ulong p, ulong pi)
    1356             : {
    1357    97006009 :   if (typ(T)!=t_VECSMALL
    1358    96969605 :     || lgpol(T) < get_Fl_threshold(p, Flx_BARRETT_LIMIT,
    1359             :                                        Flx_BARRETT2_LIMIT))
    1360    96990318 :     return T;
    1361        7626 :   retmkvec2(Flx_invBarrett_pre(T, p, pi),T);
    1362             : }
    1363             : GEN
    1364    14443274 : Flx_get_red(GEN T, ulong p)
    1365             : {
    1366    14443274 :   if (typ(T)!=t_VECSMALL
    1367    14443179 :     || lgpol(T) < get_Fl_threshold(p, Flx_BARRETT_LIMIT,
    1368             :                                        Flx_BARRETT2_LIMIT))
    1369    14437462 :     return T;
    1370        5194 :   retmkvec2(Flx_invBarrett_pre(T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)),T);
    1371             : }
    1372             : 
    1373             : /* separate from Flx_divrem for maximal speed. */
    1374             : static GEN
    1375   799810212 : Flx_rem_basecase(GEN x, GEN y, ulong p, ulong pi)
    1376             : {
    1377             :   pari_sp av;
    1378             :   GEN z, c;
    1379             :   long dx,dy,dy1,dz,i,j;
    1380             :   ulong p1,inv;
    1381   799810212 :   long vs=x[1];
    1382             : 
    1383   799810212 :   dy = degpol(y); if (!dy) return pol0_Flx(x[1]);
    1384   763467877 :   dx = degpol(x);
    1385   763264031 :   dz = dx-dy; if (dz < 0) return Flx_copy(x);
    1386   763264031 :   x += 2; y += 2;
    1387   763264031 :   inv = y[dy];
    1388   763264031 :   if (inv != 1UL) inv = Fl_inv(inv,p);
    1389   916074047 :   for (dy1=dy-1; dy1>=0 && !y[dy1]; dy1--);
    1390             : 
    1391   765136746 :   c = cgetg(dy+3, t_VECSMALL); c[1]=vs; c += 2; av=avma;
    1392   763530903 :   z = cgetg(dz+3, t_VECSMALL); z[1]=vs; z += 2;
    1393             : 
    1394   761576930 :   if (!pi)
    1395             :   {
    1396   479835160 :     z[dz] = (inv*x[dx]) % p;
    1397  1802145527 :     for (i=dx-1; i>=dy; --i)
    1398             :     {
    1399  1322310367 :       p1 = p - x[i]; /* compute -p1 instead of p1 (pb with ulongs otherwise) */
    1400 10448866680 :       for (j=i-dy1; j<=i && j<=dz; j++)
    1401             :       {
    1402  9126556313 :         p1 += z[j]*y[i-j];
    1403  9126556313 :         if (p1 & HIGHBIT) p1 %= p;
    1404             :       }
    1405  1322310367 :       p1 %= p;
    1406  1322310367 :       z[i-dy] = p1? ((p - p1)*inv) % p: 0;
    1407             :     }
    1408  3277253962 :     for (i=0; i<dy; i++)
    1409             :     {
    1410  2798742502 :       p1 = z[0]*y[i];
    1411 14414377826 :       for (j=maxss(1,i-dy1); j<=i && j<=dz; j++)
    1412             :       {
    1413 11615635324 :         p1 += z[j]*y[i-j];
    1414 11615635324 :         if (p1 & HIGHBIT) p1 %= p;
    1415             :       }
    1416  2798890393 :       c[i] = Fl_sub(x[i], p1%p, p);
    1417             :     }
    1418             :   }
    1419             :   else
    1420             :   {
    1421   281741770 :     z[dz] = Fl_mul_pre(inv, x[dx], p, pi);
    1422   862002951 :     for (i=dx-1; i>=dy; --i)
    1423             :     {
    1424   578475707 :       p1 = p - x[i]; /* compute -p1 instead of p1 (pb with ulongs otherwise) */
    1425  2402974158 :       for (j=i-dy1; j<=i && j<=dz; j++)
    1426  1822019217 :         p1 = Fl_addmul_pre(p1, z[j], y[i - j], p, pi);
    1427   580954941 :       z[i-dy] = p1? Fl_mul_pre(p - p1, inv, p, pi): 0;
    1428             :     }
    1429  2041606999 :     for (i=0; i<dy; i++)
    1430             :     {
    1431  1758302900 :       p1 = Fl_mul_pre(z[0],y[i],p,pi);
    1432  4735880796 :       for (j=maxss(1,i-dy1); j<=i && j<=dz; j++)
    1433  2966428332 :         p1 = Fl_addmul_pre(p1, z[j], y[i - j], p, pi);
    1434  1744416960 :       c[i] = Fl_sub(x[i], p1, p);
    1435             :     }
    1436             :   }
    1437   930832409 :   i = dy-1; while (i>=0 && !c[i]) i--;
    1438   761815559 :   set_avma(av); return Flx_renormalize(c-2, i+3);
    1439             : }
    1440             : 
    1441             : /* as FpX_divrem but working only on ulong types.
    1442             :  * if relevant, *pr is the last object on stack */
    1443             : static GEN
    1444    62086754 : Flx_divrem_basecase(GEN x, GEN y, ulong p, ulong pi, GEN *pr)
    1445             : {
    1446             :   GEN z,q,c;
    1447             :   long dx,dy,dy1,dz,i,j;
    1448             :   ulong p1,inv;
    1449    62086754 :   long sv=x[1];
    1450             : 
    1451    62086754 :   dy = degpol(y);
    1452    62084812 :   if (dy<0) pari_err_INV("Flx_divrem",y);
    1453    62085009 :   if (pr == ONLY_REM) return Flx_rem_basecase(x, y, p, pi);
    1454    62084611 :   if (!dy)
    1455             :   {
    1456     7142814 :     if (pr && pr != ONLY_DIVIDES) *pr = pol0_Flx(sv);
    1457     7142771 :     if (y[2] == 1UL) return Flx_copy(x);
    1458     5129975 :     return Flx_Fl_mul_pre(x, Fl_inv(y[2], p), p, pi);
    1459             :   }
    1460    54941797 :   dx = degpol(x);
    1461    54944688 :   dz = dx-dy;
    1462    54944688 :   if (dz < 0)
    1463             :   {
    1464     1054257 :     q = pol0_Flx(sv);
    1465     1054255 :     if (pr && pr != ONLY_DIVIDES) *pr = Flx_copy(x);
    1466     1054255 :     return q;
    1467             :   }
    1468    53890431 :   x += 2;
    1469    53890431 :   y += 2;
    1470    53890431 :   z = cgetg(dz + 3, t_VECSMALL); z[1] = sv; z += 2;
    1471    53888633 :   inv = uel(y, dy);
    1472    53888633 :   if (inv != 1UL) inv = Fl_inv(inv,p);
    1473    79192530 :   for (dy1=dy-1; dy1>=0 && !y[dy1]; dy1--);
    1474             : 
    1475    53892095 :   if (SMALL_ULONG(p))
    1476             :   {
    1477    52011006 :     z[dz] = (inv*x[dx]) % p;
    1478   131943093 :     for (i=dx-1; i>=dy; --i)
    1479             :     {
    1480    79932087 :       p1 = p - x[i]; /* compute -p1 instead of p1 (pb with ulongs otherwise) */
    1481   258444771 :       for (j=i-dy1; j<=i && j<=dz; j++)
    1482             :       {
    1483   178512684 :         p1 += z[j]*y[i-j];
    1484   178512684 :         if (p1 & HIGHBIT) p1 %= p;
    1485             :       }
    1486    79932087 :       p1 %= p;
    1487    79932087 :       z[i-dy] = p1? (long) ((p - p1)*inv) % p: 0;
    1488             :     }
    1489             :   }
    1490             :   else
    1491             :   {
    1492     1881089 :     z[dz] = Fl_mul(inv, x[dx], p);
    1493     9254659 :     for (i=dx-1; i>=dy; --i)
    1494             :     { /* compute -p1 instead of p1 (pb with ulongs otherwise) */
    1495     7373246 :       p1 = p - uel(x,i);
    1496    26383310 :       for (j=i-dy1; j<=i && j<=dz; j++)
    1497    19010068 :         p1 = Fl_add(p1, Fl_mul(z[j],y[i-j],p), p);
    1498     7373242 :       z[i-dy] = p1? Fl_mul(p - p1, inv, p): 0;
    1499             :     }
    1500             :   }
    1501    53892419 :   q = Flx_renormalize(z-2, dz+3);
    1502    53891250 :   if (!pr) return q;
    1503             : 
    1504    26496893 :   c = cgetg(dy + 3, t_VECSMALL); c[1] = sv; c += 2;
    1505    26498999 :   if (SMALL_ULONG(p))
    1506             :   {
    1507   228283135 :     for (i=0; i<dy; i++)
    1508             :     {
    1509   203426888 :       p1 = (ulong)z[0]*y[i];
    1510   477745303 :       for (j=maxss(1,i-dy1); j<=i && j<=dz; j++)
    1511             :       {
    1512   274318415 :         p1 += (ulong)z[j]*y[i-j];
    1513   274318415 :         if (p1 & HIGHBIT) p1 %= p;
    1514             :       }
    1515   203426647 :       c[i] = Fl_sub(x[i], p1%p, p);
    1516             :     }
    1517             :   }
    1518             :   else
    1519             :   {
    1520    15958161 :     for (i=0; i<dy; i++)
    1521             :     {
    1522    14316257 :       p1 = Fl_mul(z[0],y[i],p);
    1523    50063595 :       for (j=maxss(1,i-dy1); j<=i && j<=dz; j++)
    1524    35747337 :         p1 = Fl_add(p1, Fl_mul(z[j],y[i-j],p), p);
    1525    14316257 :       c[i] = Fl_sub(x[i], p1, p);
    1526             :     }
    1527             :   }
    1528    35707784 :   i=dy-1; while (i>=0 && !c[i]) i--;
    1529    26498151 :   c = Flx_renormalize(c-2, i+3);
    1530    26498766 :   if (pr == ONLY_DIVIDES)
    1531         462 :   { if (lg(c) != 2) return NULL; }
    1532             :   else
    1533    26498304 :     *pr = c;
    1534    26498619 :   return q;
    1535             : }
    1536             : 
    1537             : /* Compute x mod T where 2 <= degpol(T) <= l+1 <= 2*(degpol(T)-1)
    1538             :  * and mg is the Barrett inverse of T. */
    1539             : static GEN
    1540      889783 : Flx_divrem_Barrettspec(GEN x, long l, GEN mg, GEN T, ulong p, ulong pi, GEN *pr)
    1541             : {
    1542             :   GEN q, r;
    1543      889783 :   long lt = degpol(T); /*We discard the leading term*/
    1544             :   long ld, lm, lT, lmg;
    1545      889736 :   ld = l-lt;
    1546      889736 :   lm = minss(ld, lgpol(mg));
    1547      890026 :   lT  = Flx_lgrenormalizespec(T+2,lt);
    1548      890176 :   lmg = Flx_lgrenormalizespec(mg+2,lm);
    1549      890095 :   q = Flx_recipspec(x+lt,ld,ld);               /* q = rec(x)      lz<=ld*/
    1550      889230 :   q = Flx_mulspec(q+2,mg+2,p,pi,lgpol(q),lmg); /* q = rec(x) * mg lz<=ld+lm*/
    1551      890069 :   q = Flx_recipspec(q+2,minss(ld,lgpol(q)),ld);/* q = rec (rec(x) * mg) lz<=ld*/
    1552      889083 :   if (!pr) return q;
    1553      881389 :   r = Flx_mulspec(q+2,T+2,p,pi,lgpol(q),lT);   /* r = q*pol      lz<=ld+lt*/
    1554      882288 :   r = Flx_subspec(x,r+2,p,lt,minss(lt,lgpol(r)));/* r = x - q*pol lz<=lt */
    1555      882184 :   if (pr == ONLY_REM) return r;
    1556      428106 :   *pr = r; return q;
    1557             : }
    1558             : 
    1559             : static GEN
    1560      589174 : Flx_divrem_Barrett(GEN x, GEN mg, GEN T, ulong p, ulong pi, GEN *pr)
    1561             : {
    1562      589174 :   GEN q = NULL, r = Flx_copy(x);
    1563      589197 :   long l = lgpol(x), lt = degpol(T), lm = 2*lt-1, v = T[1];
    1564             :   long i;
    1565      589197 :   if (l <= lt)
    1566             :   {
    1567           0 :     if (pr == ONLY_REM) return Flx_copy(x);
    1568           0 :     if (pr == ONLY_DIVIDES) return lgpol(x)? NULL: pol0_Flx(v);
    1569           0 :     if (pr) *pr = Flx_copy(x);
    1570           0 :     return pol0_Flx(v);
    1571             :   }
    1572      589197 :   if (lt <= 1)
    1573        1276 :     return Flx_divrem_basecase(x,T,p,pi,pr);
    1574      587921 :   if (pr != ONLY_REM && l>lm)
    1575       28910 :   { q = zero_zv(l-lt+1); q[1] = T[1]; }
    1576      891403 :   while (l>lm)
    1577             :   {
    1578      303537 :     GEN zr, zq = Flx_divrem_Barrettspec(r+2+l-lm,lm,mg,T,p,pi,&zr);
    1579      303549 :     long lz = lgpol(zr);
    1580      303482 :     if (pr != ONLY_REM)
    1581             :     {
    1582       57950 :       long lq = lgpol(zq);
    1583      883186 :       for(i=0; i<lq; i++) q[2+l-lm+i] = zq[2+i];
    1584             :     }
    1585     4412043 :     for(i=0; i<lz; i++)   r[2+l-lm+i] = zr[2+i];
    1586      303482 :     l = l-lm+lz;
    1587             :   }
    1588      587866 :   if (pr == ONLY_REM)
    1589             :   {
    1590      454134 :     if (l > lt)
    1591      454092 :       r = Flx_divrem_Barrettspec(r+2,l,mg,T,p,pi,ONLY_REM);
    1592             :     else
    1593          42 :       r = Flx_renormalize(r, l+2);
    1594      454119 :     r[1] = v; return r;
    1595             :   }
    1596      133732 :   if (l > lt)
    1597             :   {
    1598      132206 :     GEN zq = Flx_divrem_Barrettspec(r+2,l,mg,T,p,pi, pr ? &r: NULL);
    1599      132206 :     if (!q) q = zq;
    1600             :     else
    1601             :     {
    1602       27330 :       long lq = lgpol(zq);
    1603      159759 :       for(i=0; i<lq; i++) q[2+i] = zq[2+i];
    1604             :     }
    1605             :   }
    1606        1526 :   else if (pr)
    1607        1541 :     r = Flx_renormalize(r, l+2);
    1608      133732 :   q[1] = v; q = Flx_renormalize(q, lg(q));
    1609      133786 :   if (pr == ONLY_DIVIDES) return lgpol(r)? NULL: q;
    1610      133786 :   if (pr) { r[1] = v; *pr = r; }
    1611      133786 :   return q;
    1612             : }
    1613             : 
    1614             : /* allow pi = 0 (SMALL_ULONG) */
    1615             : GEN
    1616    79442965 : Flx_divrem_pre(GEN x, GEN T, ulong p, ulong pi, GEN *pr)
    1617             : {
    1618             :   GEN B, y;
    1619             :   long dy, dx, d;
    1620    79442965 :   if (pr==ONLY_REM) return Flx_rem_pre(x, T, p, pi);
    1621    62211318 :   y = get_Flx_red(T, &B);
    1622    62223159 :   dy = degpol(y); dx = degpol(x); d = dx-dy;
    1623    62218932 :   if (!B && d+3 < get_Fl_threshold(p, Flx_DIVREM_BARRETT_LIMIT,Flx_DIVREM2_BARRETT_LIMIT))
    1624    62084490 :     return Flx_divrem_basecase(x,y,p,pi,pr);
    1625             :   else
    1626             :   {
    1627      134664 :     pari_sp av = avma;
    1628      134664 :     GEN mg = B? B: Flx_invBarrett_pre(y, p, pi);
    1629      134664 :     GEN q1 = Flx_divrem_Barrett(x,mg,y,p,pi,pr);
    1630      134664 :     if (!q1) return gc_NULL(av);
    1631      134664 :     if (!pr || pr==ONLY_DIVIDES) return gc_leaf(av, q1);
    1632      126400 :     return gc_all(av, 2, &q1, pr);
    1633             :   }
    1634             : }
    1635             : GEN
    1636    30324120 : Flx_divrem(GEN x, GEN T, ulong p, GEN *pr)
    1637    30324120 : { return Flx_divrem_pre(x, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p), pr); }
    1638             : 
    1639             : GEN
    1640   923012026 : Flx_rem_pre(GEN x, GEN T, ulong p, ulong pi)
    1641             : {
    1642   923012026 :   GEN B, y = get_Flx_red(T, &B);
    1643   922839152 :   long d = degpol(x) - degpol(y);
    1644   922584298 :   if (d < 0) return Flx_copy(x);
    1645   800185449 :   if (!B && d+3 < get_Fl_threshold(p, Flx_REM_BARRETT_LIMIT,Flx_REM2_BARRETT_LIMIT))
    1646   799582541 :     return Flx_rem_basecase(x,y,p, pi);
    1647             :   else
    1648             :   {
    1649      454511 :     pari_sp av=avma;
    1650      454511 :     GEN mg = B ? B: Flx_invBarrett_pre(y, p, pi);
    1651      454511 :     GEN r  = Flx_divrem_Barrett(x, mg, y, p, pi, ONLY_REM);
    1652      454518 :     return gc_leaf(av, r);
    1653             :   }
    1654             : }
    1655             : GEN
    1656    42095028 : Flx_rem(GEN x, GEN T, ulong p)
    1657    42095028 : { return Flx_rem_pre(x, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    1658             : 
    1659             : /* reduce T mod (X^n - 1, p). Shallow function */
    1660             : GEN
    1661     5057363 : Flx_mod_Xnm1(GEN T, ulong n, ulong p)
    1662             : {
    1663     5057363 :   long i, j, L = lg(T), l = n+2;
    1664             :   GEN S;
    1665     5057363 :   if (L <= l || n & ~LGBITS) return T;
    1666        3534 :   S = cgetg(l, t_VECSMALL);
    1667        3534 :   S[1] = T[1];
    1668       15112 :   for (i = 2; i < l; i++) S[i] = T[i];
    1669        9770 :   for (j = 2; i < L; i++) {
    1670        6236 :     S[j] = Fl_add(S[j], T[i], p);
    1671        6236 :     if (++j == l) j = 2;
    1672             :   }
    1673        3534 :   return Flx_renormalize(S, l);
    1674             : }
    1675             : /* reduce T mod (X^n + 1, p). Shallow function */
    1676             : GEN
    1677       31654 : Flx_mod_Xn1(GEN T, ulong n, ulong p)
    1678             : {
    1679       31654 :   long i, j, L = lg(T), l = n+2, s = -1;
    1680             :   GEN S;
    1681       31654 :   if (L <= l || n & ~LGBITS) return T;
    1682        2745 :   S = cgetg(l, t_VECSMALL);
    1683        2745 :   S[1] = T[1];
    1684       12047 :   for (i = 2; i < l; i++) S[i] = T[i];
    1685        7282 :   for (j = 2; i < L; i++) {
    1686        4537 :     S[j] = s==-1 ? Fl_sub(S[j], T[i], p): Fl_add(S[j], T[i], p);
    1687        4537 :     if (++j == l) { j = 2; s = -s; }
    1688             :   }
    1689        2745 :   return Flx_renormalize(S, l);
    1690             : }
    1691             : 
    1692             : struct _Flxq {
    1693             :   GEN aut, T;
    1694             :   ulong p, pi;
    1695             : };
    1696             : /* allow pi = 0 */
    1697             : static void
    1698    69384069 : set_Flxq_pre(struct _Flxq *D, GEN T, ulong p, ulong pi)
    1699             : {
    1700    69384069 :   D->p = p;
    1701    69384069 :   D->pi = pi;
    1702    69384069 :   D->T = Flx_get_red_pre(T, p, pi);
    1703    69380315 : }
    1704             : static void
    1705       66764 : set_Flxq(struct _Flxq *D, GEN T, ulong p)
    1706       66764 : { set_Flxq_pre(D, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    1707             : 
    1708             : struct _Flx {
    1709             :   long v;
    1710             :   ulong p, pi;
    1711             : };
    1712             : 
    1713             : static GEN
    1714           0 : _Flx_divrem(void * E, GEN x, GEN y, GEN *r)
    1715             : {
    1716           0 :   struct _Flx *D = (struct _Flx*) E;
    1717           0 :   return Flx_divrem_pre(x, y, D->p, D->pi, r);
    1718             : }
    1719             : static GEN
    1720       38600 : _Flx_add(void * E, GEN x, GEN y) {
    1721       38600 :   struct _Flx *D = (struct _Flx*) E;
    1722       38600 :   return Flx_add(x, y, D->p);
    1723             : }
    1724             : static GEN
    1725    11010673 : _Flx_mul(void *E, GEN x, GEN y) {
    1726    11010673 :   struct _Flx *D = (struct _Flx*) E;
    1727    11010673 :   return Flx_mul_pre(x, y, D->p, D->pi);
    1728             : }
    1729             : static GEN
    1730           0 : _Flx_sqr(void *E, GEN x) {
    1731           0 :   struct _Flx *D = (struct _Flx*) E;
    1732           0 :   return Flx_sqr_pre(x, D->p, D->pi);
    1733             : }
    1734             : 
    1735             : static struct bb_ring Flx_ring = { _Flx_add,_Flx_mul,_Flx_sqr };
    1736             : 
    1737             : GEN
    1738           0 : Flx_digits(GEN x, GEN T, ulong p)
    1739             : {
    1740             :   struct _Flx D;
    1741           0 :   long d = degpol(T), n = (lgpol(x)+d-1)/d;
    1742           0 :   D.p = p; D.pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    1743           0 :   return gen_digits(x,T,n,(void *)&D, &Flx_ring, _Flx_divrem);
    1744             : }
    1745             : 
    1746             : GEN
    1747           0 : FlxV_Flx_fromdigits(GEN x, GEN T, ulong p)
    1748             : {
    1749             :   struct _Flx D;
    1750           0 :   D.p = p; D.pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    1751           0 :   return gen_fromdigits(x,T,(void *)&D, &Flx_ring);
    1752             : }
    1753             : 
    1754             : long
    1755     4493533 : Flx_val(GEN x)
    1756             : {
    1757     4493533 :   long i, l=lg(x);
    1758     4493533 :   if (l==2)  return LONG_MAX;
    1759     4502627 :   for (i=2; i<l && x[i]==0; i++) /*empty*/;
    1760     4493533 :   return i-2;
    1761             : }
    1762             : long
    1763    27449196 : Flx_valrem(GEN x, GEN *Z)
    1764             : {
    1765    27449196 :   long v, i, l=lg(x);
    1766             :   GEN y;
    1767    27449196 :   if (l==2) { *Z = Flx_copy(x); return LONG_MAX; }
    1768    29625428 :   for (i=2; i<l && x[i]==0; i++) /*empty*/;
    1769    27449196 :   v = i-2;
    1770    27449196 :   if (v == 0) { *Z = x; return 0; }
    1771     1021121 :   l -= v;
    1772     1021121 :   y = cgetg(l, t_VECSMALL); y[1] = x[1];
    1773     2626573 :   for (i=2; i<l; i++) y[i] = x[i+v];
    1774     1023423 :   *Z = y; return v;
    1775             : }
    1776             : 
    1777             : GEN
    1778    22942262 : Flx_deriv(GEN z, ulong p)
    1779             : {
    1780    22942262 :   long i,l = lg(z)-1;
    1781             :   GEN x;
    1782    22942262 :   if (l < 2) l = 2;
    1783    22942262 :   x = cgetg(l, t_VECSMALL); x[1] = z[1]; z++;
    1784    22940830 :   if (HIGHWORD(l | p))
    1785    62866188 :     for (i=2; i<l; i++) x[i] = Fl_mul((ulong)i-1, z[i], p);
    1786             :   else
    1787    87690361 :     for (i=2; i<l; i++) x[i] = ((i-1) * z[i]) % p;
    1788    22940474 :   return Flx_renormalize(x,l);
    1789             : }
    1790             : 
    1791             : static GEN
    1792      422795 : Flx_integXn(GEN x, long n, ulong p)
    1793             : {
    1794      422795 :   long i, lx = lg(x);
    1795             :   GEN y;
    1796      422795 :   if (lx == 2) return Flx_copy(x);
    1797      412986 :   y = cgetg(lx, t_VECSMALL); y[1] = x[1];
    1798     2096870 :   for (i=2; i<lx; i++)
    1799             :   {
    1800     1683547 :     ulong xi = uel(x,i);
    1801     1683547 :     if (xi == 0)
    1802       13345 :       uel(y,i) = 0;
    1803             :     else
    1804             :     {
    1805     1670202 :       ulong j = n+i-1;
    1806     1670202 :       ulong d = ugcd(j, xi);
    1807     1670127 :       if (d==1)
    1808     1018415 :         uel(y,i) = Fl_div(xi, j, p);
    1809             :       else
    1810      651712 :         uel(y,i) = Fl_div(xi/d, j/d, p);
    1811             :     }
    1812             :   }
    1813      413323 :   return Flx_renormalize(y, lx);;
    1814             : }
    1815             : 
    1816             : GEN
    1817           0 : Flx_integ(GEN x, ulong p)
    1818             : {
    1819           0 :   long i, lx = lg(x);
    1820             :   GEN y;
    1821           0 :   if (lx == 2) return Flx_copy(x);
    1822           0 :   y = cgetg(lx+1, t_VECSMALL); y[1] = x[1];
    1823           0 :   uel(y,2) = 0;
    1824           0 :   for (i=3; i<=lx; i++)
    1825           0 :     uel(y,i) = uel(x,i-1) ? Fl_div(uel(x,i-1), (i-2)%p, p): 0UL;
    1826           0 :   return Flx_renormalize(y, lx+1);;
    1827             : }
    1828             : 
    1829             : /* assume p prime */
    1830             : GEN
    1831       14448 : Flx_diff1(GEN P, ulong p)
    1832             : {
    1833       14448 :   return Flx_sub(Flx_translate1(P, p), P, p);
    1834             : }
    1835             : 
    1836             : GEN
    1837      419602 : Flx_deflate(GEN x0, long d)
    1838             : {
    1839             :   GEN z, y, x;
    1840      419602 :   long i,id, dy, dx = degpol(x0);
    1841      419602 :   if (d == 1 || dx <= 0) return Flx_copy(x0);
    1842      356130 :   dy = dx/d;
    1843      356130 :   y = cgetg(dy+3, t_VECSMALL); y[1] = x0[1];
    1844      356128 :   z = y + 2;
    1845      356128 :   x = x0+ 2;
    1846     1155436 :   for (i=id=0; i<=dy; i++,id+=d) z[i] = x[id];
    1847      356128 :   return y;
    1848             : }
    1849             : 
    1850             : GEN
    1851      160265 : Flx_inflate(GEN x0, long d)
    1852             : {
    1853      160265 :   long i, id, dy, dx = degpol(x0);
    1854      160262 :   GEN x = x0 + 2, z, y;
    1855      160262 :   if (dx <= 0) return Flx_copy(x0);
    1856      159205 :   dy = dx*d;
    1857      159205 :   y = cgetg(dy+3, t_VECSMALL); y[1] = x0[1];
    1858      159206 :   z = y + 2;
    1859     8807429 :   for (i=0; i<=dy; i++) z[i] = 0;
    1860     4284336 :   for (i=id=0; i<=dx; i++,id+=d) z[id] = x[i];
    1861      159206 :   return y;
    1862             : }
    1863             : 
    1864             : /* write p(X) = a_0(X^k) + X*a_1(X^k) + ... + X^(k-1)*a_{k-1}(X^k) */
    1865             : GEN
    1866      147326 : Flx_splitting(GEN p, long k)
    1867             : {
    1868      147326 :   long n = degpol(p), v = p[1], m, i, j, l;
    1869             :   GEN r;
    1870             : 
    1871      147325 :   m = n/k;
    1872      147325 :   r = cgetg(k+1,t_VEC);
    1873      679280 :   for(i=1; i<=k; i++)
    1874             :   {
    1875      531961 :     gel(r,i) = cgetg(m+3, t_VECSMALL);
    1876      531955 :     mael(r,i,1) = v;
    1877             :   }
    1878     4458438 :   for (j=1, i=0, l=2; i<=n; i++)
    1879             :   {
    1880     4311119 :     mael(r,j,l) = p[2+i];
    1881     4311119 :     if (j==k) { j=1; l++; } else j++;
    1882             :   }
    1883      679280 :   for(i=1; i<=k; i++)
    1884      531970 :     gel(r,i) = Flx_renormalize(gel(r,i),i<j?l+1:l);
    1885      147310 :   return r;
    1886             : }
    1887             : 
    1888             : /* ux + vy */
    1889             : static GEN
    1890      415784 : Flx_addmulmul(GEN u, GEN v, GEN x, GEN y, ulong p, ulong pi)
    1891      415784 : { return Flx_add(Flx_mul_pre(u,x, p,pi), Flx_mul_pre(v,y, p,pi), p); }
    1892             : 
    1893             : static GEN
    1894       26000 : FlxM_Flx_mul2(GEN M, GEN x, GEN y, ulong p, ulong pi)
    1895             : {
    1896       26000 :   GEN res = cgetg(3, t_COL);
    1897       25999 :   gel(res, 1) = Flx_addmulmul(gcoeff(M,1,1), gcoeff(M,1,2), x, y, p, pi);
    1898       25999 :   gel(res, 2) = Flx_addmulmul(gcoeff(M,2,1), gcoeff(M,2,2), x, y, p, pi);
    1899       26000 :   return res;
    1900             : }
    1901             : 
    1902             : #if 0
    1903             : static GEN
    1904             : FlxM_mul2_old(GEN M, GEN N, ulong p)
    1905             : {
    1906             :   GEN res = cgetg(3, t_MAT);
    1907             :   gel(res, 1) = FlxM_Flx_mul2(M,gcoeff(N,1,1),gcoeff(N,2,1),p);
    1908             :   gel(res, 2) = FlxM_Flx_mul2(M,gcoeff(N,1,2),gcoeff(N,2,2),p);
    1909             :   return res;
    1910             : }
    1911             : #endif
    1912             : /* A,B are 2x2 matrices, Flx entries. Return A x B using Strassen 7M formula */
    1913             : static GEN
    1914        7099 : FlxM_mul2(GEN A, GEN B, ulong p, ulong pi)
    1915             : {
    1916        7099 :   GEN A11=gcoeff(A,1,1),A12=gcoeff(A,1,2), B11=gcoeff(B,1,1),B12=gcoeff(B,1,2);
    1917        7099 :   GEN A21=gcoeff(A,2,1),A22=gcoeff(A,2,2), B21=gcoeff(B,2,1),B22=gcoeff(B,2,2);
    1918        7099 :   GEN M1 = Flx_mul_pre(Flx_add(A11,A22, p), Flx_add(B11,B22, p), p, pi);
    1919        7099 :   GEN M2 = Flx_mul_pre(Flx_add(A21,A22, p), B11, p, pi);
    1920        7099 :   GEN M3 = Flx_mul_pre(A11, Flx_sub(B12,B22, p), p, pi);
    1921        7099 :   GEN M4 = Flx_mul_pre(A22, Flx_sub(B21,B11, p), p, pi);
    1922        7099 :   GEN M5 = Flx_mul_pre(Flx_add(A11,A12, p), B22, p, pi);
    1923        7099 :   GEN M6 = Flx_mul_pre(Flx_sub(A21,A11, p), Flx_add(B11,B12, p), p, pi);
    1924        7099 :   GEN M7 = Flx_mul_pre(Flx_sub(A12,A22, p), Flx_add(B21,B22, p), p, pi);
    1925        7099 :   GEN T1 = Flx_add(M1,M4, p), T2 = Flx_sub(M7,M5, p);
    1926        7099 :   GEN T3 = Flx_sub(M1,M2, p), T4 = Flx_add(M3,M6, p);
    1927        7099 :   retmkmat22(Flx_add(T1,T2, p), Flx_add(M3,M5, p),
    1928             :              Flx_add(M2,M4, p), Flx_add(T3,T4, p));
    1929             : }
    1930             : 
    1931             : /* Return [0,1;1,-q]*M */
    1932             : static GEN
    1933        6927 : Flx_FlxM_qmul(GEN q, GEN M, ulong p, ulong pi)
    1934             : {
    1935        6927 :   GEN u = Flx_mul_pre(gcoeff(M,2,1), q, p, pi);
    1936        6927 :   GEN v = Flx_mul_pre(gcoeff(M,2,2), q, p, pi);
    1937        6927 :   retmkmat22(gcoeff(M,2,1), gcoeff(M,2,2),
    1938             :     Flx_sub(gcoeff(M,1,1), u, p), Flx_sub(gcoeff(M,1,2), v, p));
    1939             : }
    1940             : 
    1941             : static GEN
    1942         911 : matid2_FlxM(long v)
    1943         911 : { retmkmat22(pol1_Flx(v),pol0_Flx(v),pol0_Flx(v),pol1_Flx(v)); }
    1944             : 
    1945             : static GEN
    1946          13 : matJ2_FlxM(long v)
    1947          13 : { retmkmat22(pol0_Flx(v),pol1_Flx(v),pol1_Flx(v),pol0_Flx(v)); }
    1948             : 
    1949             : struct Flx_res
    1950             : {
    1951             :    ulong res, lc;
    1952             :    long deg0, deg1, off;
    1953             : };
    1954             : 
    1955             : INLINE void
    1956        9405 : Flx_halfres_update_pre(long da, long db, long dr, ulong p, ulong pi, struct Flx_res *res)
    1957             : {
    1958        9405 :   if (dr >= 0)
    1959             :   {
    1960        9405 :     if (res->lc != 1)
    1961             :     {
    1962        7596 :       if (pi)
    1963             :       {
    1964        3127 :         res->lc  = Fl_powu_pre(res->lc, da - dr, p, pi);
    1965        3127 :         res->res = Fl_mul_pre(res->res, res->lc, p, pi);
    1966             :       } else
    1967             :       {
    1968        4469 :         res->lc  = Fl_powu(res->lc, da - dr, p);
    1969        4469 :         res->res = Fl_mul(res->res, res->lc, p);
    1970             :       }
    1971             :     }
    1972        9405 :     if (both_odd(da + res->off, db + res->off))
    1973          63 :       res->res = Fl_neg(res->res, p);
    1974             :   } else
    1975             :   {
    1976           0 :     if (db == 0)
    1977             :     {
    1978           0 :       if (res->lc != 1)
    1979             :       {
    1980           0 :         if (pi)
    1981             :         {
    1982           0 :           res->lc  = Fl_powu_pre(res->lc, da, p, pi);
    1983           0 :           res->res = Fl_mul_pre(res->res, res->lc, p, pi);
    1984             :         } else
    1985             :         {
    1986           0 :           res->lc  = Fl_powu(res->lc, da, p);
    1987           0 :           res->res = Fl_mul(res->res, res->lc, p);
    1988             :         }
    1989             :       }
    1990             :     } else
    1991           0 :       res->res = 0;
    1992             :   }
    1993        9405 : }
    1994             : 
    1995             : static GEN
    1996     1131486 : Flx_halfres_basecase(GEN a, GEN b, ulong p, ulong pi, GEN *pa, GEN *pb, struct Flx_res *res)
    1997             : {
    1998     1131486 :   pari_sp av = avma;
    1999             :   GEN u, u1, v, v1, M;
    2000     1131486 :   long vx = a[1], n = lgpol(a)>>1;
    2001     1131499 :   u1 = v = pol0_Flx(vx);
    2002     1131497 :   u = v1 = pol1_Flx(vx);
    2003     6912090 :   while (lgpol(b)>n)
    2004             :   {
    2005             :     GEN r, q;
    2006     5780612 :     q = Flx_divrem_pre(a,b,p,pi, &r);
    2007     5780609 :     if (res)
    2008             :     {
    2009        8362 :       long da = degpol(a), db=degpol(b), dr = degpol(r);
    2010        8362 :       res->lc = b[db+2];
    2011        8362 :       if (dr >= n)
    2012        7133 :         Flx_halfres_update_pre(da, db, dr, p, pi, res);
    2013             :       else
    2014             :       {
    2015        1229 :         res->deg0 = da;
    2016        1229 :         res->deg1 = db;
    2017             :       }
    2018             :     }
    2019     5780609 :     a = b; b = r; swap(u,u1); swap(v,v1);
    2020     5780609 :     u1 = Flx_sub(u1, Flx_mul(u, q, p), p);
    2021     5780544 :     v1 = Flx_sub(v1, Flx_mul(v, q, p), p);
    2022     5780589 :     if (gc_needed(av,2))
    2023             :     {
    2024           0 :       if (DEBUGMEM>1) pari_warn(warnmem,"Flx_halfgcd (d = %ld)",degpol(b));
    2025           0 :       (void)gc_all(av,6, &a,&b,&u1,&v1,&u,&v);
    2026             :     }
    2027             :   }
    2028     1131339 :   M = mkmat22(u,v,u1,v1); *pa = a; *pb = b;
    2029     1131472 :   return gc_all(av,3, &M, pa, pb);
    2030             : }
    2031             : 
    2032             : static GEN Flx_halfres_i(GEN x, GEN y, ulong p, ulong pi, GEN *a, GEN *b, struct Flx_res *res);
    2033             : 
    2034             : static GEN
    2035       19964 : Flx_halfres_split(GEN x, GEN y, ulong p, ulong pi, GEN *a, GEN *b, struct Flx_res *res)
    2036             : {
    2037       19964 :   pari_sp av = avma;
    2038             :   GEN R, S, T, V1, V2;
    2039             :   GEN x1, y1, r, q;
    2040       19964 :   long l = lgpol(x), n = l>>1, k;
    2041       19964 :   if (lgpol(y) <= n)
    2042         871 :     { *a = Flx_copy(x); *b = Flx_copy(y); return matid2_FlxM(x[1]); }
    2043       19093 :   if (res)
    2044             :   {
    2045        3263 :      res->lc = Flx_lead(y);
    2046        3263 :      res->deg0 -= n;
    2047        3263 :      res->deg1 -= n;
    2048        3263 :      res->off += n;
    2049             :   }
    2050       19093 :   R = Flx_halfres_i(Flx_shift(x,-n),Flx_shift(y,-n),p,pi,a,b,res);
    2051       19092 :   if (res)
    2052             :   {
    2053        3262 :     res->off -= n;
    2054        3262 :     res->deg0 += n;
    2055        3262 :     res->deg1 += n;
    2056             :   }
    2057       19092 :   V1 = FlxM_Flx_mul2(R, Flxn_red(x,n), Flxn_red(y,n), p, pi);
    2058       19093 :   x1 = Flx_add(Flx_shift(*a,n), gel(V1,1), p);
    2059       19093 :   y1 = Flx_add(Flx_shift(*b,n), gel(V1,2), p);
    2060       19092 :   if (lgpol(y1) <= n)
    2061       12185 :     { *a = x1; *b = y1; return gc_all(av, 3, &R, a, b); }
    2062        6907 :   k = 2*n-degpol(y1);
    2063        6907 :   q = Flx_divrem_pre(x1, y1, p, pi, &r);
    2064        6907 :   if (res)
    2065             :   {
    2066        1043 :     long dx1 = degpol(x1), dy1 = degpol(y1), dr = degpol(r);
    2067        1043 :     if (dy1 < degpol(y))
    2068         185 :       Flx_halfres_update_pre(res->deg0, res->deg1, dy1, p, pi, res);
    2069        1043 :     res->lc = uel(y1, dy1+2);
    2070        1043 :     res->deg0 = dx1;
    2071        1043 :     res->deg1 = dy1;
    2072        1043 :     if (dr >= n)
    2073             :     {
    2074        1043 :       Flx_halfres_update_pre(dx1, dy1, dr, p, pi, res);
    2075        1043 :       res->deg0 = dy1;
    2076        1043 :       res->deg1 = dr;
    2077             :     }
    2078        1043 :     res->deg0 -= k;
    2079        1043 :     res->deg1 -= k;
    2080        1043 :     res->off += k;
    2081             :   }
    2082        6907 :   S = Flx_halfres_i(Flx_shift(y1,-k), Flx_shift(r,-k), p, pi, a, b, res);
    2083        6907 :   if (res)
    2084             :   {
    2085        1043 :     res->deg0 += k;
    2086        1043 :     res->deg1 += k;
    2087        1043 :     res->off -= k;
    2088             :   }
    2089        6907 :   T = FlxM_mul2(S, Flx_FlxM_qmul(q, R, p,pi), p, pi);
    2090        6907 :   V2 = FlxM_Flx_mul2(S, Flxn_red(y1,k), Flxn_red(r,k), p, pi);
    2091        6907 :   *a = Flx_add(Flx_shift(*a,k), gel(V2,1), p);
    2092        6907 :   *b = Flx_add(Flx_shift(*b,k), gel(V2,2), p);
    2093        6907 :   return gc_all(av, 3, &T, a, b);
    2094             : }
    2095             : 
    2096             : static GEN
    2097     1151466 : Flx_halfres_i(GEN x, GEN y, ulong p, ulong pi, GEN *a, GEN *b, struct Flx_res *res)
    2098             : {
    2099     1151466 :   if (lgpol(x) < get_Fl_threshold(p, Flx_HALFGCD_LIMIT, Flx_HALFGCD2_LIMIT))
    2100     1131499 :     return Flx_halfres_basecase(x, y, p, pi, a, b, res);
    2101       19964 :   return Flx_halfres_split(x, y, p, pi, a, b, res);
    2102             : }
    2103             : 
    2104             : static GEN
    2105     1124423 : Flx_halfgcd_all_i(GEN x, GEN y, ulong p, ulong pi, GEN *pa, GEN *pb)
    2106             : {
    2107             :   GEN a, b, R;
    2108     1124423 :   R = Flx_halfres_i(x, y, p, pi, &a, &b, NULL);
    2109     1124428 :   if (pa) *pa = a;
    2110     1124428 :   if (pb) *pb = b;
    2111     1124428 :   return R;
    2112             : }
    2113             : 
    2114             : /* Return M in GL_2(Fl[X]) such that:
    2115             : if [a',b']~=M*[a,b]~ then degpol(a')>= (lgpol(a)>>1) >degpol(b')
    2116             : */
    2117             : 
    2118             : GEN
    2119     1124426 : Flx_halfgcd_all_pre(GEN x, GEN y, ulong p, ulong pi, GEN *a, GEN *b)
    2120             : {
    2121             :   pari_sp av;
    2122             :   GEN R, q ,r;
    2123     1124426 :   long lx = lgpol(x), ly = lgpol(y);
    2124     1124422 :   if (!lx)
    2125             :   {
    2126           0 :     if (a) *a = Flx_copy(y);
    2127           0 :     if (b) *b = Flx_copy(x);
    2128           0 :     return matJ2_FlxM(x[1]);
    2129             :   }
    2130     1124422 :   if (ly < lx) return Flx_halfgcd_all_i(x, y, p, pi, a, b);
    2131        8030 :   av = avma;
    2132        8030 :   q = Flx_divrem(y,x,p,&r);
    2133        8030 :   R = Flx_halfgcd_all_i(x, r, p, pi, a, b);
    2134        8030 :   gcoeff(R,1,1) = Flx_sub(gcoeff(R,1,1), Flx_mul_pre(q,gcoeff(R,1,2), p,pi), p);
    2135        8030 :   gcoeff(R,2,1) = Flx_sub(gcoeff(R,2,1), Flx_mul_pre(q,gcoeff(R,2,2), p,pi), p);
    2136        8030 :   return !a && b ? gc_all(av, 2, &R, b): gc_all(av, 1+!!a+!!b, &R, a, b);
    2137             : }
    2138             : 
    2139             : GEN
    2140         154 : Flx_halfgcd_all(GEN x, GEN y, ulong p, GEN *a, GEN *b)
    2141         154 : { return Flx_halfgcd_all_pre(x, y, p, SMALL_ULONG(p)? 0: get_Fl_red(p), a, b); }
    2142             : 
    2143             : GEN
    2144      871236 : Flx_halfgcd_pre(GEN x, GEN y, ulong p, ulong pi)
    2145      871236 : { return Flx_halfgcd_all_pre(x, y, p, pi, NULL, NULL); }
    2146             : 
    2147             : GEN
    2148           0 : Flx_halfgcd(GEN x, GEN y, ulong p)
    2149           0 : { return Flx_halfgcd_pre(x, y, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    2150             : 
    2151             : /*Do not garbage collect*/
    2152             : static GEN
    2153    84948317 : Flx_gcd_basecase(GEN a, GEN b, ulong p, ulong pi)
    2154             : {
    2155    84948317 :   pari_sp av = avma;
    2156    84948317 :   ulong iter = 0;
    2157    84948317 :   if (lg(b) > lg(a)) swap(a, b);
    2158   292289784 :   while (lgpol(b))
    2159             :   {
    2160   206890705 :     GEN c = Flx_rem_pre(a,b,p,pi);
    2161   207341467 :     iter++; a = b; b = c;
    2162   207341467 :     if (gc_needed(av,2))
    2163             :     {
    2164           0 :       if (DEBUGMEM>1) pari_warn(warnmem,"Flx_gcd (d = %ld)",degpol(c));
    2165           0 :       (void)gc_all(av,2, &a,&b);
    2166             :     }
    2167             :   }
    2168    84890635 :   return iter < 2 ? Flx_copy(a) : a;
    2169             : }
    2170             : 
    2171             : GEN
    2172    86603873 : Flx_gcd_pre(GEN x, GEN y, ulong p, ulong pi)
    2173             : {
    2174    86603873 :   pari_sp av = avma;
    2175             :   long lim;
    2176    86603873 :   if (!lgpol(x)) return Flx_copy(y);
    2177    84947156 :   lim = get_Fl_threshold(p, Flx_GCD_LIMIT, Flx_GCD2_LIMIT);
    2178    84954884 :   while (lgpol(y) >= lim)
    2179             :   {
    2180         229 :     if (lgpol(y)<=(lgpol(x)>>1))
    2181             :     {
    2182           0 :       GEN r = Flx_rem_pre(x, y, p, pi);
    2183           0 :       x = y; y = r;
    2184             :     }
    2185         229 :     (void) Flx_halfgcd_all_pre(x, y, p, pi, &x, &y);
    2186         229 :     if (gc_needed(av,2))
    2187             :     {
    2188           0 :       if (DEBUGMEM>1) pari_warn(warnmem,"Flx_gcd (y = %ld)",degpol(y));
    2189           0 :       (void)gc_all(av,2,&x,&y);
    2190             :     }
    2191             :   }
    2192    84944278 :   return gc_leaf(av, Flx_gcd_basecase(x,y,p,pi));
    2193             : }
    2194             : GEN
    2195    34224735 : Flx_gcd(GEN x, GEN y, ulong p)
    2196    34224735 : { return Flx_gcd_pre(x, y, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    2197             : 
    2198             : int
    2199     9165433 : Flx_is_squarefree(GEN z, ulong p)
    2200             : {
    2201     9165433 :   pari_sp av = avma;
    2202     9165433 :   GEN d = Flx_gcd(z, Flx_deriv(z,p) , p);
    2203     9165303 :   return gc_bool(av, degpol(d) == 0);
    2204             : }
    2205             : 
    2206             : static long
    2207      126540 : Flx_is_smooth_squarefree(GEN f, long r, ulong p, ulong pi)
    2208             : {
    2209      126540 :   pari_sp av = avma;
    2210             :   long i;
    2211      126540 :   GEN sx = polx_Flx(f[1]), a = sx;
    2212      533262 :   for(i=1;;i++)
    2213             :   {
    2214      533262 :     if (degpol(f)<=r) return gc_long(av,1);
    2215      511438 :     a = Flxq_powu_pre(Flx_rem_pre(a,f,p,pi), p, f, p, pi);
    2216      511795 :     if (Flx_equal(a, sx)) return gc_long(av,1);
    2217      508200 :     if (i==r) return gc_long(av,0);
    2218      406760 :     f = Flx_div_pre(f, Flx_gcd_pre(Flx_sub(a,sx,p),f,p,pi),p,pi);
    2219             :   }
    2220             : }
    2221             : 
    2222             : static long
    2223        8143 : Flx_is_l_pow(GEN x, ulong p)
    2224             : {
    2225        8143 :   ulong i, lx = lgpol(x);
    2226       16302 :   for (i=1; i<lx; i++)
    2227       14624 :     if (x[i+2] && i%p) return 0;
    2228        1678 :   return 1;
    2229             : }
    2230             : 
    2231             : int
    2232      126587 : Flx_is_smooth_pre(GEN g, long r, ulong p, ulong pi)
    2233             : {
    2234             :   while (1)
    2235        8144 :   {
    2236      126587 :     GEN f = Flx_gcd_pre(g, Flx_deriv(g, p), p, pi);
    2237      126355 :     if (!Flx_is_smooth_squarefree(Flx_div_pre(g, f, p, pi), r, p, pi))
    2238      101451 :       return 0;
    2239       25109 :     if (degpol(f)==0) return 1;
    2240        8134 :     g = Flx_is_l_pow(f,p) ? Flx_deflate(f, p): f;
    2241             :   }
    2242             : }
    2243             : int
    2244       74256 : Flx_is_smooth(GEN g, long r, ulong p)
    2245       74256 : { return Flx_is_smooth_pre(g, r, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    2246             : 
    2247             : static GEN
    2248     6266105 : Flx_extgcd_basecase(GEN a, GEN b, ulong p, ulong pi, GEN *ptu, GEN *ptv)
    2249             : {
    2250     6266105 :   pari_sp av=avma;
    2251             :   GEN u,v,u1,v1;
    2252     6266105 :   long vx = a[1];
    2253     6266105 :   v = pol0_Flx(vx); v1 = pol1_Flx(vx);
    2254     6265969 :   if (ptu) { u = pol1_Flx(vx); u1 = pol0_Flx(vx); }
    2255    27997870 :   while (lgpol(b))
    2256             :   {
    2257    21730876 :     GEN r, q = Flx_divrem_pre(a,b,p,pi, &r);
    2258    21732001 :     a = b; b = r;
    2259    21732001 :     if (ptu)
    2260             :     {
    2261     2421133 :       swap(u,u1);
    2262     2421133 :       u1 = Flx_sub(u1, Flx_mul_pre(u, q, p, pi), p);
    2263             :     }
    2264    21732015 :     swap(v,v1);
    2265    21732015 :     v1 = Flx_sub(v1, Flx_mul_pre(v, q, p, pi), p);
    2266    21731911 :     if (gc_needed(av,2))
    2267             :     {
    2268           0 :       if (DEBUGMEM>1) pari_warn(warnmem,"Flx_extgcd (d = %ld)",degpol(a));
    2269           0 :       (void)gc_all(av,ptu ? 6: 4, &a,&b,&v,&v1,&u,&u1);
    2270             :     }
    2271             :   }
    2272     6265871 :   if (ptu) *ptu = u;
    2273     6265871 :   *ptv = v;
    2274     6265871 :   return a;
    2275             : }
    2276             : 
    2277             : static GEN
    2278      146433 : Flx_extgcd_halfgcd(GEN x, GEN y, ulong p, ulong pi, GEN *ptu, GEN *ptv)
    2279             : {
    2280             :   GEN u, v;
    2281      146433 :   long lim = get_Fl_threshold(p, Flx_EXTGCD_LIMIT, Flx_EXTGCD2_LIMIT);
    2282      146433 :   GEN V = cgetg(expu(lgpol(y))+2,t_VEC);
    2283      146433 :   long i, n = 0, vs = x[1];
    2284      398202 :   while (lgpol(y) >= lim)
    2285             :   {
    2286      251773 :     if (lgpol(y)<=(lgpol(x)>>1))
    2287             :     {
    2288          26 :       GEN r, q = Flx_divrem_pre(x, y, p, pi, &r);
    2289          26 :       x = y; y = r;
    2290          26 :       gel(V,++n) = mkmat22(pol0_Flx(vs),pol1_Flx(vs),pol1_Flx(vs),Flx_neg(q,p));
    2291             :     } else
    2292      251745 :       gel(V,++n) = Flx_halfgcd_all_pre(x, y, p, pi, &x, &y);
    2293             :   }
    2294      146427 :   y = Flx_extgcd_basecase(x,y,p,pi,&u,&v);
    2295      251765 :   for (i = n; i>1; i--)
    2296             :   {
    2297      105341 :     GEN R = gel(V,i);
    2298      105341 :     GEN u1 = Flx_addmulmul(u, v, gcoeff(R,1,1), gcoeff(R,2,1), p, pi);
    2299      105341 :     GEN v1 = Flx_addmulmul(u, v, gcoeff(R,1,2), gcoeff(R,2,2), p, pi);
    2300      105340 :     u = u1; v = v1;
    2301             :   }
    2302             :   {
    2303      146424 :     GEN R = gel(V,1);
    2304      146424 :     if (ptu)
    2305        6574 :       *ptu = Flx_addmulmul(u, v, gcoeff(R,1,1), gcoeff(R,2,1), p, pi);
    2306      146424 :     *ptv   = Flx_addmulmul(u, v, gcoeff(R,1,2), gcoeff(R,2,2), p, pi);
    2307             :   }
    2308      146427 :   return y;
    2309             : }
    2310             : 
    2311             : /* x and y in Z[X], return lift(gcd(x mod p, y mod p)). Set u and v st
    2312             :  * ux + vy = gcd (mod p) */
    2313             : GEN
    2314     6266113 : Flx_extgcd_pre(GEN x, GEN y, ulong p, ulong pi, GEN *ptu, GEN *ptv)
    2315             : {
    2316     6266113 :   pari_sp av = avma;
    2317             :   GEN d;
    2318     6266113 :   long lim = get_Fl_threshold(p, Flx_EXTGCD_LIMIT, Flx_EXTGCD2_LIMIT);
    2319     6266111 :   if (lgpol(y) >= lim)
    2320      146433 :     d = Flx_extgcd_halfgcd(x, y, p, pi, ptu, ptv);
    2321             :   else
    2322     6119669 :     d = Flx_extgcd_basecase(x, y, p, pi, ptu, ptv);
    2323     6265874 :   return gc_all(av, ptu?3:2, &d, ptv, ptu);
    2324             : }
    2325             : GEN
    2326      851872 : Flx_extgcd(GEN x, GEN y, ulong p, GEN *ptu, GEN *ptv)
    2327      851872 : { return Flx_extgcd_pre(x, y, p, SMALL_ULONG(p)? 0: get_Fl_red(p), ptu, ptv); }
    2328             : 
    2329             : static GEN
    2330        1044 : Flx_halfres_pre(GEN x, GEN y, ulong p, ulong pi, GEN *a, GEN *b, ulong *r)
    2331             : {
    2332             :   struct Flx_res res;
    2333             :   GEN R;
    2334             :   long dB;
    2335             : 
    2336        1044 :   res.res  = *r;
    2337        1044 :   res.lc   = Flx_lead(y);
    2338        1044 :   res.deg0 = degpol(x);
    2339        1044 :   res.deg1 = degpol(y);
    2340        1044 :   res.off = 0;
    2341        1044 :   R = Flx_halfres_i(x, y, p, pi, a, b, &res);
    2342        1044 :   dB = degpol(*b);
    2343        1044 :   if (dB < degpol(y))
    2344        1044 :     Flx_halfres_update_pre(res.deg0, res.deg1, dB, p, pi, &res);
    2345        1044 :   *r = res.res;
    2346        1044 :   return R;
    2347             : }
    2348             : 
    2349             : static ulong
    2350    14610914 : Flx_resultant_basecase_pre(GEN a, GEN b, ulong p, ulong pi)
    2351             : {
    2352             :   pari_sp av;
    2353             :   long da,db,dc;
    2354    14610914 :   ulong lb, res = 1UL;
    2355             :   GEN c;
    2356             : 
    2357    14610914 :   da = degpol(a);
    2358    14610809 :   db = degpol(b);
    2359    14611063 :   if (db > da)
    2360             :   {
    2361           0 :     swapspec(a,b, da,db);
    2362           0 :     if (both_odd(da,db)) res = p-res;
    2363             :   }
    2364    14611063 :   else if (!da) return 1; /* = res * a[2] ^ db, since 0 <= db <= da = 0 */
    2365    14611063 :   av = avma;
    2366   119619151 :   while (db)
    2367             :   {
    2368   105029429 :     lb = b[db+2];
    2369   105029429 :     c = Flx_rem_pre(a,b, p,pi);
    2370   104681607 :     a = b; b = c; dc = degpol(c);
    2371   104658760 :     if (dc < 0) return gc_long(av,0);
    2372             : 
    2373   104651234 :     if (both_odd(da,db)) res = p - res;
    2374   104628543 :     if (lb != 1) res = Fl_mul(res, Fl_powu_pre(lb, da - dc, p, pi), p);
    2375   105007738 :     if (gc_needed(av,2))
    2376             :     {
    2377           0 :       if (DEBUGMEM>1) pari_warn(warnmem,"Flx_resultant (da = %ld)",da);
    2378           0 :       (void)gc_all(av,2, &a,&b);
    2379             :     }
    2380   105008088 :     da = db; /* = degpol(a) */
    2381   105008088 :     db = dc; /* = degpol(b) */
    2382             :   }
    2383    14589722 :   return gc_ulong(av, Fl_mul(res, Fl_powu_pre(b[2], da, p, pi), p));
    2384             : }
    2385             : 
    2386             : ulong
    2387    14612885 : Flx_resultant_pre(GEN x, GEN y, ulong p, ulong pi)
    2388             : {
    2389    14612885 :   pari_sp av = avma;
    2390             :   long lim;
    2391    14612885 :   ulong res = 1;
    2392    14612885 :   long dx = degpol(x), dy = degpol(y);
    2393    14612494 :   if (dx < 0 || dy < 0) return 0;
    2394    14611038 :   if (dx < dy)
    2395             :   {
    2396     1066131 :     swap(x,y);
    2397     1066131 :     if (both_odd(dx, dy))
    2398        1906 :       res = Fl_neg(res, p);
    2399             :   }
    2400    14611037 :   lim = get_Fl_threshold(p, Flx_GCD_LIMIT, Flx_GCD2_LIMIT);
    2401    14611902 :   while (lgpol(y) >= lim)
    2402             :   {
    2403         852 :     if (lgpol(y)<=(lgpol(x)>>1))
    2404             :     {
    2405           0 :       GEN r = Flx_rem_pre(x, y, p, pi);
    2406           0 :       long dx = degpol(x), dy = degpol(y), dr = degpol(r);
    2407           0 :       ulong ly = y[dy+2];
    2408           0 :       if (ly != 1) res = Fl_mul(res, Fl_powu_pre(ly, dx - dr, p, pi), p);
    2409           0 :       if (both_odd(dx, dy))
    2410           0 :         res = Fl_neg(res, p);
    2411           0 :       x = y; y = r;
    2412             :     }
    2413         852 :     (void) Flx_halfres_pre(x, y, p, pi, &x, &y, &res);
    2414         852 :     if (gc_needed(av,2))
    2415             :     {
    2416           0 :       if (DEBUGMEM>1) pari_warn(warnmem,"Flx_res (y = %ld)",degpol(y));
    2417           0 :       (void)gc_all(av,2,&x,&y);
    2418             :     }
    2419             :   }
    2420    14610934 :   return gc_ulong(av, Fl_mul(res, Flx_resultant_basecase_pre(x, y, p, pi), p));
    2421             : }
    2422             : 
    2423             : ulong
    2424     4727391 : Flx_resultant(GEN a, GEN b, ulong p)
    2425     4727391 : { return Flx_resultant_pre(a, b, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    2426             : 
    2427             : /* If resultant is 0, *ptU and *ptV are not set */
    2428             : static ulong
    2429          53 : Flx_extresultant_basecase(GEN a, GEN b, ulong p, ulong pi, GEN *ptU, GEN *ptV)
    2430             : {
    2431          53 :   GEN z,q,u,v, x = a, y = b;
    2432          53 :   ulong lb, res = 1UL;
    2433          53 :   pari_sp av = avma;
    2434             :   long dx, dy, dz;
    2435          53 :   long vs = a[1];
    2436             : 
    2437          53 :   u = pol0_Flx(vs);
    2438          53 :   v = pol1_Flx(vs); /* v = 1 */
    2439          53 :   dx = degpol(x);
    2440          53 :   dy = degpol(y);
    2441         764 :   while (dy)
    2442             :   { /* b u = x (a), b v = y (a) */
    2443         711 :     lb = y[dy+2];
    2444         711 :     q = Flx_divrem_pre(x,y, p, pi, &z);
    2445         711 :     x = y; y = z; /* (x,y) = (y, x - q y) */
    2446         711 :     dz = degpol(z); if (dz < 0) return gc_ulong(av,0);
    2447         711 :     z = Flx_sub(u, Flx_mul_pre(q,v, p, pi), p);
    2448         711 :     u = v; v = z; /* (u,v) = (v, u - q v) */
    2449             : 
    2450         711 :     if (both_odd(dx,dy)) res = p - res;
    2451         711 :     if (lb != 1) res = Fl_mul(res, Fl_powu_pre(lb, dx-dz, p, pi), p);
    2452         711 :     dx = dy; /* = degpol(x) */
    2453         711 :     dy = dz; /* = degpol(y) */
    2454             :   }
    2455          53 :   res = Fl_mul(res, Fl_powu_pre(y[2], dx, p, pi), p);
    2456          53 :   lb = Fl_mul(res, Fl_inv(y[2],p), p);
    2457          53 :   v = gc_leaf(av, Flx_Fl_mul_pre(v, lb, p, pi));
    2458          53 :   av = avma;
    2459          53 :   u = Flx_sub(Fl_to_Flx(res,vs), Flx_mul_pre(b,v,p,pi), p);
    2460          53 :   u = gc_leaf(av, Flx_div_pre(u,a,p,pi)); /* = (res - b v) / a */
    2461          53 :   *ptU = u;
    2462          53 :   *ptV = v; return res;
    2463             : }
    2464             : 
    2465             : ulong
    2466          53 : Flx_extresultant_pre(GEN x, GEN y, ulong p, ulong pi, GEN *ptU, GEN *ptV)
    2467             : {
    2468          53 :   pari_sp av=avma;
    2469             :   GEN u, v, R;
    2470          53 :   long lim = get_Fl_threshold(p, Flx_EXTGCD_LIMIT, Flx_EXTGCD2_LIMIT);
    2471          53 :   ulong res = 1, res1;
    2472          53 :   long dx = degpol(x), dy = degpol(y);
    2473          53 :   if (dy > dx)
    2474             :   {
    2475          13 :     swap(x,y); lswap(dx,dy);
    2476          13 :     if (both_odd(dx,dy)) res = p-res;
    2477          13 :     R = matJ2_FlxM(x[1]);
    2478          40 :   } else R = matid2_FlxM(x[1]);
    2479          53 :   if (dy < 0) return 0;
    2480         245 :   while (lgpol(y) >= lim)
    2481             :   {
    2482             :     GEN M;
    2483         192 :     if (lgpol(y)<=(lgpol(x)>>1))
    2484             :     {
    2485          20 :       GEN r, q = Flx_divrem_pre(x, y, p, pi, &r);
    2486          20 :       long dx = degpol(x), dy = degpol(y), dr = degpol(r);
    2487          20 :       ulong ly = y[dy+2];
    2488          20 :       if (ly != 1) res = Fl_mul(res, Fl_powu_pre(ly, dx - dr, p, pi), p);
    2489          20 :       if (both_odd(dx, dy))
    2490           0 :         res = Fl_neg(res, p);
    2491          20 :       x = y; y = r;
    2492          20 :       R = Flx_FlxM_qmul(q, R, p,pi);
    2493             :     }
    2494         192 :     M = Flx_halfres_pre(x, y, p, pi, &x, &y, &res);
    2495         192 :     if (!res) return gc_ulong(av, 0);
    2496         192 :     R = FlxM_mul2(M, R, p, pi);
    2497         192 :     (void)gc_all(av,3,&x,&y,&R);
    2498             :   }
    2499          53 :   res1 = Flx_extresultant_basecase(x,y,p,pi,&u,&v);
    2500          53 :   if (!res1) return gc_ulong(av, 0);
    2501          53 :   *ptU = Flx_Fl_mul_pre(Flx_addmulmul(u, v, gcoeff(R,1,1), gcoeff(R,2,1), p, pi), res, p, pi);
    2502          53 :   *ptV = Flx_Fl_mul_pre(Flx_addmulmul(u, v, gcoeff(R,1,2), gcoeff(R,2,2), p, pi), res, p, pi);
    2503          53 :   (void)gc_all(av, 2, ptU, ptV);
    2504          53 :   return Fl_mul(res1,res,p);
    2505             : }
    2506             : 
    2507             : ulong
    2508          53 : Flx_extresultant(GEN a, GEN b, ulong p, GEN *ptU, GEN *ptV)
    2509          53 : { return Flx_extresultant_pre(a, b, p, SMALL_ULONG(p)? 0: get_Fl_red(p), ptU, ptV); }
    2510             : 
    2511             : /* allow pi = 0 (SMALL_ULONG) */
    2512             : ulong
    2513    48598429 : Flx_eval_powers_pre(GEN x, GEN y, ulong p, ulong pi)
    2514             : {
    2515    48598429 :   ulong l0, l1, h0, h1, v1,  i = 1, lx = lg(x)-1;
    2516             : 
    2517    48598429 :   if (lx == 1) return 0;
    2518    45538922 :   x++;
    2519    45538922 :   if (pi)
    2520             :   {
    2521             :     LOCAL_OVERFLOW;
    2522             :     LOCAL_HIREMAINDER;
    2523    45476376 :     l1 = mulll(uel(x,i), uel(y,i)); h1 = hiremainder; v1 = 0;
    2524   115316303 :     while (++i < lx)
    2525             :     {
    2526    69839927 :       l0 = mulll(uel(x,i), uel(y,i)); h0 = hiremainder;
    2527    69839927 :       l1 = addll(l0, l1); h1 = addllx(h0, h1); v1 += overflow;
    2528             :     }
    2529       81325 :     return v1? remlll_pre(v1, h1, l1, p, pi)
    2530    45557701 :              : remll_pre(h1, l1, p, pi);
    2531             :   }
    2532             :   else
    2533             :   {
    2534       62546 :     l1 = x[i] * y[i];
    2535    30921034 :     while (++i < lx) { l1 += x[i] * y[i]; if (l1 & HIGHBIT) l1 %= p; }
    2536       62546 :     return l1 % p;
    2537             :   }
    2538             : }
    2539             : 
    2540             : /* allow pi = 0 (SMALL_ULONG) */
    2541             : ulong
    2542   136287178 : Flx_eval_pre(GEN x, ulong y, ulong p, ulong pi)
    2543             : {
    2544   136287178 :   long i, n = degpol(x);
    2545             :   ulong t;
    2546   136285500 :   if (n <= 0) return n? 0: x[2];
    2547    39402411 :   if (n > 15)
    2548             :   {
    2549      180187 :     pari_sp av = avma;
    2550      180187 :     GEN v = Fl_powers_pre(y, n, p, pi);
    2551      180194 :     return gc_ulong(av, Flx_eval_powers_pre(x, v, p, pi));
    2552             :   }
    2553    39222224 :   i = n+2; t = x[i];
    2554    39222224 :   if (pi)
    2555             :   {
    2556   135936128 :     for (i--; i>=2; i--) t = Fl_addmul_pre(uel(x, i), t, y, p, pi);
    2557    38100350 :     return t;
    2558             :   }
    2559     2735561 :   for (i--; i>=2; i--) t = (t * y + x[i]) % p;
    2560     1132227 :   return t %= p;
    2561             : }
    2562             : ulong
    2563    20368803 : Flx_eval(GEN x, ulong y, ulong p)
    2564    20368803 : { return Flx_eval_pre(x, y, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    2565             : 
    2566             : ulong
    2567        3304 : Flv_prod_pre(GEN x, ulong p, ulong pi)
    2568             : {
    2569        3304 :   pari_sp ltop = avma;
    2570             :   GEN v;
    2571        3304 :   long i,k,lx = lg(x);
    2572        3304 :   if (lx == 1) return 1UL;
    2573        3304 :   if (lx == 2) return uel(x,1);
    2574        2863 :   v = cgetg(1+(lx << 1), t_VECSMALL);
    2575        2863 :   k = 1;
    2576       26955 :   for (i=1; i<lx-1; i+=2)
    2577       24092 :     uel(v,k++) = Fl_mul_pre(uel(x,i), uel(x,i+1), p, pi);
    2578        2863 :   if (i < lx) uel(v,k++) = uel(x,i);
    2579       12836 :   while (k > 2)
    2580             :   {
    2581        9973 :     lx = k; k = 1;
    2582       34065 :     for (i=1; i<lx-1; i+=2)
    2583       24092 :       uel(v,k++) = Fl_mul_pre(uel(v,i), uel(v,i+1), p, pi);
    2584        9973 :     if (i < lx) uel(v,k++) = uel(v,i);
    2585             :   }
    2586        2863 :   return gc_ulong(ltop, uel(v,1));
    2587             : }
    2588             : 
    2589             : ulong
    2590           0 : Flv_prod(GEN v, ulong p)
    2591             : {
    2592           0 :   return Flv_prod_pre(v, p, get_Fl_red(p));
    2593             : }
    2594             : 
    2595             : GEN
    2596           0 : FlxV_prod(GEN V, ulong p)
    2597             : {
    2598             :   struct _Flx D;
    2599           0 :   D.p = p; D.pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    2600           0 :   return gen_product(V, (void *)&D, &_Flx_mul);
    2601             : }
    2602             : 
    2603             : static GEN
    2604           0 : _Flx_pow(void* E, GEN x, GEN y)
    2605           0 : { struct _Flx *D = (struct _Flx *)E; return Flx_powu(x, itou(y), D->p); }
    2606             : static GEN
    2607           0 : _Flx_one(void *E)
    2608           0 : { struct _Flx *D = (struct _Flx *)E; return pol1_Flx(D->v); }
    2609             : 
    2610             : GEN
    2611           0 : FlxV_factorback(GEN f, GEN e, ulong p, long v)
    2612             : {
    2613             :   struct _Flx D;
    2614           0 :   D.p = p; D.v = v;
    2615           0 :   D.pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    2616           0 :   return gen_factorback(f, e, (void *)&D, &_Flx_mul, &_Flx_pow, &_Flx_one);
    2617             : }
    2618             : 
    2619             : /* compute prod (x - a[i]) */
    2620             : GEN
    2621      795669 : Flv_roots_to_pol(GEN a, ulong p, long vs)
    2622             : {
    2623             :   struct _Flx D;
    2624      795669 :   long i,k,lx = lg(a);
    2625             :   GEN p1;
    2626      795669 :   if (lx == 1) return pol1_Flx(vs);
    2627      795669 :   p1 = cgetg(lx, t_VEC);
    2628    12542519 :   for (k=1,i=1; i<lx-1; i+=2)
    2629    11745302 :     gel(p1,k++) = mkvecsmall4(vs, Fl_mul(a[i], a[i+1], p),
    2630    11747135 :                               Fl_neg(Fl_add(a[i],a[i+1],p),p), 1);
    2631      795384 :   if (i < lx)
    2632       64187 :     gel(p1,k++) = mkvecsmall3(vs, Fl_neg(a[i],p), 1);
    2633      795382 :   D.p = p; D.pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    2634      795378 :   setlg(p1, k); return gen_product(p1, (void *)&D, _Flx_mul);
    2635             : }
    2636             : 
    2637             : /* set v[i] = w[i]^{-1}; may be called with w = v, suitable for "large" p */
    2638             : INLINE void
    2639    21407521 : Flv_inv_pre_indir(GEN w, GEN v, ulong p, ulong pi)
    2640             : {
    2641    21407521 :   pari_sp av = avma;
    2642    21407521 :   long n = lg(w), i;
    2643             :   ulong u;
    2644             :   GEN c;
    2645             : 
    2646    21407521 :   if (n == 1) return;
    2647    21407521 :   c = cgetg(n, t_VECSMALL); c[1] = w[1];
    2648    90569000 :   for (i = 2; i < n; ++i) c[i] = Fl_mul_pre(w[i], c[i-1], p, pi);
    2649    21530809 :   i = n-1; u = Fl_inv(c[i], p);
    2650    90920039 :   for ( ; i > 1; --i)
    2651             :   {
    2652    69324072 :     ulong t = Fl_mul_pre(u, c[i-1], p, pi);
    2653    69253098 :     u = Fl_mul_pre(u, w[i], p, pi); v[i] = t;
    2654             :   }
    2655    21595967 :   v[1] = u; set_avma(av);
    2656             : }
    2657             : 
    2658             : void
    2659    19680828 : Flv_inv_pre_inplace(GEN v, ulong p, ulong pi) { Flv_inv_pre_indir(v,v, p, pi); }
    2660             : 
    2661             : GEN
    2662       10048 : Flv_inv_pre(GEN w, ulong p, ulong pi)
    2663       10048 : { GEN v = cgetg(lg(w), t_VECSMALL); Flv_inv_pre_indir(w, v, p, pi); return v; }
    2664             : 
    2665             : /* set v[i] = w[i]^{-1}; may be called with w = v, suitable for SMALL_ULONG p */
    2666             : INLINE void
    2667       51282 : Flv_inv_indir(GEN w, GEN v, ulong p)
    2668             : {
    2669       51282 :   pari_sp av = avma;
    2670       51282 :   long n = lg(w), i;
    2671             :   ulong u;
    2672             :   GEN c;
    2673             : 
    2674       51282 :   if (n == 1) return;
    2675       51282 :   c = cgetg(n, t_VECSMALL); c[1] = w[1];
    2676     1755462 :   for (i = 2; i < n; ++i) c[i] = Fl_mul(w[i], c[i-1], p);
    2677       51292 :   i = n-1; u = Fl_inv(c[i], p);
    2678     1755504 :   for ( ; i > 1; --i)
    2679             :   {
    2680     1704220 :     ulong t = Fl_mul(u, c[i-1], p);
    2681     1704213 :     u = Fl_mul(u, w[i], p); v[i] = t;
    2682             :   }
    2683       51284 :   v[1] = u; set_avma(av);
    2684             : }
    2685             : static void
    2686     1756262 : Flv_inv_i(GEN v, GEN w, ulong p)
    2687             : {
    2688     1756262 :   if (SMALL_ULONG(p)) Flv_inv_indir(w, v, p);
    2689     1704980 :   else Flv_inv_pre_indir(w, v, p, get_Fl_red(p));
    2690     1756264 : }
    2691             : void
    2692       12017 : Flv_inv_inplace(GEN v, ulong p) { Flv_inv_i(v, v, p); }
    2693             : GEN
    2694     1744250 : Flv_inv(GEN w, ulong p)
    2695     1744250 : { GEN v = cgetg(lg(w), t_VECSMALL); Flv_inv_i(v, w, p); return v; }
    2696             : 
    2697             : GEN
    2698    34745368 : Flx_div_by_X_x(GEN a, ulong x, ulong p, ulong *rem)
    2699             : {
    2700    34745368 :   long l = lg(a), i;
    2701             :   GEN a0, z0, z;
    2702    34745368 :   if (l <= 3)
    2703             :   {
    2704           0 :     if (rem) *rem = l == 2? 0: a[2];
    2705           0 :     return zero_Flx(a[1]);
    2706             :   }
    2707    34745368 :   z = cgetg(l-1,t_VECSMALL); z[1] = a[1];
    2708    34603101 :   a0 = a + l-1;
    2709    34603101 :   z0 = z + l-2; *z0 = *a0--;
    2710    34603101 :   if (SMALL_ULONG(p))
    2711             :   {
    2712    84389774 :     for (i=l-3; i>1; i--) /* z[i] = (a[i+1] + x*z[i+1]) % p */
    2713             :     {
    2714    62209188 :       ulong t = (*a0-- + x *  *z0--) % p;
    2715    62209188 :       *z0 = (long)t;
    2716             :     }
    2717    22180586 :     if (rem) *rem = (*a0 + x *  *z0) % p;
    2718             :   }
    2719             :   else
    2720             :   {
    2721    48834992 :     for (i=l-3; i>1; i--)
    2722             :     {
    2723    36389395 :       ulong t = Fl_add((ulong)*a0--, Fl_mul(x, *z0--, p), p);
    2724    36412477 :       *z0 = (long)t;
    2725             :     }
    2726    12445597 :     if (rem) *rem = Fl_add((ulong)*a0, Fl_mul(x, *z0, p), p);
    2727             :   }
    2728    34634247 :   return z;
    2729             : }
    2730             : 
    2731             : /* xa, ya = t_VECSMALL */
    2732             : static GEN
    2733     1745438 : Flv_producttree(GEN xa, GEN s, ulong p, ulong pi, long vs)
    2734             : {
    2735     1745438 :   long n = lg(xa)-1;
    2736     1745438 :   long m = n==1 ? 1: expu(n-1)+1;
    2737     1745437 :   long i, j, k, ls = lg(s);
    2738     1745437 :   GEN T = cgetg(m+1, t_VEC);
    2739     1745432 :   GEN t = cgetg(ls, t_VEC);
    2740    11590013 :   for (j=1, k=1; j<ls; k+=s[j++])
    2741     9844455 :     gel(t, j) = s[j] == 1 ?
    2742     9844583 :              mkvecsmall3(vs, Fl_neg(xa[k], p), 1):
    2743     3275997 :              mkvecsmall4(vs, Fl_mul(xa[k], xa[k+1], p),
    2744     3276000 :                  Fl_neg(Fl_add(xa[k],xa[k+1],p),p), 1);
    2745     1745430 :   gel(T,1) = t;
    2746     4766761 :   for (i=2; i<=m; i++)
    2747             :   {
    2748     3021387 :     GEN u = gel(T, i-1);
    2749     3021387 :     long n = lg(u)-1;
    2750     3021387 :     GEN t = cgetg(((n+1)>>1)+1, t_VEC);
    2751    11119491 :     for (j=1, k=1; k<n; j++, k+=2)
    2752     8098160 :       gel(t, j) = Flx_mul_pre(gel(u, k), gel(u, k+1), p, pi);
    2753     3021331 :     gel(T, i) = t;
    2754             :   }
    2755     1745374 :   return T;
    2756             : }
    2757             : 
    2758             : static GEN
    2759     1785566 : Flx_Flv_multieval_tree(GEN P, GEN xa, GEN T, ulong p, ulong pi)
    2760             : {
    2761             :   long i,j,k;
    2762     1785566 :   long m = lg(T)-1;
    2763     1785566 :   GEN R = cgetg(lg(xa), t_VECSMALL);
    2764     1785560 :   GEN Tp = cgetg(m+1, t_VEC), t;
    2765     1785554 :   gel(Tp, m) = mkvec(P);
    2766     4991566 :   for (i=m-1; i>=1; i--)
    2767             :   {
    2768     3206005 :     GEN u = gel(T, i), v = gel(Tp, i+1);
    2769     3206005 :     long n = lg(u)-1;
    2770     3206005 :     t = cgetg(n+1, t_VEC);
    2771    12331290 :     for (j=1, k=1; k<n; j++, k+=2)
    2772             :     {
    2773     9125310 :       gel(t, k)   = Flx_rem_pre(gel(v, j), gel(u, k), p, pi);
    2774     9125361 :       gel(t, k+1) = Flx_rem_pre(gel(v, j), gel(u, k+1), p, pi);
    2775             :     }
    2776     3205980 :     gel(Tp, i) = t;
    2777             :   }
    2778             :   {
    2779     1785561 :     GEN u = gel(T, i+1), v = gel(Tp, i+1);
    2780     1785561 :     long n = lg(u)-1;
    2781    12699390 :     for (j=1, k=1; j<=n; j++)
    2782             :     {
    2783    10913799 :       long c, d = degpol(gel(u,j));
    2784    25352480 :       for (c=1; c<=d; c++, k++) R[k] = Flx_eval_pre(gel(v, j), xa[k], p, pi);
    2785             :     }
    2786     1785591 :     return gc_const((pari_sp)R, R);
    2787             :   }
    2788             : }
    2789             : 
    2790             : static GEN
    2791     2539798 : FlvV_polint_tree(GEN T, GEN R, GEN s, GEN xa, GEN ya, ulong p, ulong pi, long vs)
    2792             : {
    2793     2539798 :   pari_sp av = avma;
    2794     2539798 :   long m = lg(T)-1;
    2795     2539798 :   long i, j, k, ls = lg(s);
    2796     2539798 :   GEN Tp = cgetg(m+1, t_VEC);
    2797     2539429 :   GEN t = cgetg(ls, t_VEC);
    2798    29416901 :   for (j=1, k=1; j<ls; k+=s[j++])
    2799    26877629 :     if (s[j]==2)
    2800             :     {
    2801     8929627 :       ulong a = Fl_mul(ya[k], R[k], p);
    2802     8929119 :       ulong b = Fl_mul(ya[k+1], R[k+1], p);
    2803     8934575 :       gel(t, j) = mkvecsmall3(vs, Fl_neg(Fl_add(Fl_mul(xa[k], b, p ),
    2804     8929479 :                   Fl_mul(xa[k+1], a, p), p), p), Fl_add(a, b, p));
    2805     8933452 :       gel(t, j) = Flx_renormalize(gel(t, j), 4);
    2806             :     }
    2807             :     else
    2808    17948002 :       gel(t, j) = Fl_to_Flx(Fl_mul(ya[k], R[k], p), vs);
    2809     2539272 :   gel(Tp, 1) = t;
    2810     8986322 :   for (i=2; i<=m; i++)
    2811             :   {
    2812     6447020 :     GEN u = gel(T, i-1);
    2813     6447020 :     GEN t = cgetg(lg(gel(T,i)), t_VEC);
    2814     6443896 :     GEN v = gel(Tp, i-1);
    2815     6443896 :     long n = lg(v)-1;
    2816    30732362 :     for (j=1, k=1; k<n; j++, k+=2)
    2817    24280451 :       gel(t, j) = Flx_add(Flx_mul_pre(gel(u, k), gel(v, k+1), p, pi),
    2818    24285312 :                           Flx_mul_pre(gel(u, k+1), gel(v, k), p, pi), p);
    2819     6447050 :     gel(Tp, i) = t;
    2820             :   }
    2821     2539302 :   return gc_leaf(av, gmael(Tp,m,1));
    2822             : }
    2823             : 
    2824             : GEN
    2825           0 : Flx_Flv_multieval(GEN P, GEN xa, ulong p)
    2826             : {
    2827           0 :   pari_sp av = avma;
    2828           0 :   GEN s = producttree_scheme(lg(xa)-1);
    2829           0 :   ulong pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    2830           0 :   GEN T = Flv_producttree(xa, s, p, pi, P[1]);
    2831           0 :   return gc_leaf(av, Flx_Flv_multieval_tree(P, xa, T, p, pi));
    2832             : }
    2833             : 
    2834             : static GEN
    2835        2457 : FlxV_Flv_multieval_tree(GEN x, GEN xa, GEN T, ulong p, ulong pi)
    2836       45045 : { pari_APPLY_same(Flx_Flv_multieval_tree(gel(x,i), xa, T, p, pi)) }
    2837             : 
    2838             : GEN
    2839        2457 : FlxV_Flv_multieval(GEN P, GEN xa, ulong p)
    2840             : {
    2841        2457 :   pari_sp av = avma;
    2842        2457 :   GEN s = producttree_scheme(lg(xa)-1);
    2843        2457 :   ulong pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    2844        2457 :   GEN T = Flv_producttree(xa, s, p, pi, P[1]);
    2845        2457 :   return gc_upto(av, FlxV_Flv_multieval_tree(P, xa, T, p, pi));
    2846             : }
    2847             : 
    2848             : GEN
    2849     1486274 : Flv_polint(GEN xa, GEN ya, ulong p, long vs)
    2850             : {
    2851     1486274 :   pari_sp av = avma;
    2852     1486274 :   GEN s = producttree_scheme(lg(xa)-1);
    2853     1486279 :   ulong pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    2854     1486278 :   GEN T = Flv_producttree(xa, s, p, pi, vs);
    2855     1486278 :   long m = lg(T)-1;
    2856     1486278 :   GEN P = Flx_deriv(gmael(T, m, 1), p);
    2857     1486277 :   GEN R = Flv_inv(Flx_Flv_multieval_tree(P, xa, T, p, pi), p);
    2858     1486273 :   return gc_leaf(av, FlvV_polint_tree(T, R, s, xa, ya, p, pi, vs));
    2859             : }
    2860             : 
    2861             : GEN
    2862      103258 : Flv_Flm_polint(GEN xa, GEN ya, ulong p, long vs)
    2863             : {
    2864      103258 :   pari_sp av = avma;
    2865      103258 :   GEN s = producttree_scheme(lg(xa)-1);
    2866      103258 :   ulong pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    2867      103258 :   GEN T = Flv_producttree(xa, s, p, pi, vs);
    2868      103259 :   long i, m = lg(T)-1, l = lg(ya)-1;
    2869      103259 :   GEN P = Flx_deriv(gmael(T, m, 1), p);
    2870      103259 :   GEN R = Flv_inv(Flx_Flv_multieval_tree(P, xa, T, p, pi), p);
    2871      103256 :   GEN M = cgetg(l+1, t_VEC);
    2872     1156653 :   for (i=1; i<=l; i++)
    2873     1053398 :     gel(M,i) = FlvV_polint_tree(T, R, s, xa, gel(ya,i), p, pi, vs);
    2874      103255 :   return gc_upto(av, M);
    2875             : }
    2876             : 
    2877             : GEN
    2878      153445 : Flv_invVandermonde(GEN L, ulong den, ulong p)
    2879             : {
    2880      153445 :   pari_sp av = avma;
    2881      153445 :   long i, n = lg(L);
    2882             :   GEN M, R;
    2883      153445 :   GEN s = producttree_scheme(n-1);
    2884      153445 :   ulong pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    2885      153445 :   GEN tree = Flv_producttree(L, s, p, pi, 0);
    2886      153445 :   long m = lg(tree)-1;
    2887      153445 :   GEN T = gmael(tree, m, 1);
    2888      153445 :   R = Flv_inv(Flx_Flv_multieval_tree(Flx_deriv(T, p), L, tree, p, pi), p);
    2889      153445 :   if (den!=1) R = Flv_Fl_mul(R, den, p);
    2890      153445 :   M = cgetg(n, t_MAT);
    2891      603585 :   for (i = 1; i < n; i++)
    2892             :   {
    2893      450140 :     GEN P = Flx_Fl_mul(Flx_div_by_X_x(T, uel(L,i), p, NULL), uel(R,i), p);
    2894      450140 :     gel(M,i) = Flx_to_Flv(P, n-1);
    2895             :   }
    2896      153445 :   return gc_GEN(av, M);
    2897             : }
    2898             : 
    2899             : /***********************************************************************/
    2900             : /**                               Flxq                                **/
    2901             : /***********************************************************************/
    2902             : /* Flxq objects are Flx modulo another Flx called q. */
    2903             : 
    2904             : /* Product of y and x in Z/pZ[X]/(T), as t_VECSMALL. */
    2905             : GEN
    2906   188655689 : Flxq_mul_pre(GEN x,GEN y,GEN T,ulong p,ulong pi)
    2907   188655689 : { return Flx_rem_pre(Flx_mul_pre(x,y,p,pi),T,p,pi); }
    2908             : GEN
    2909    13164147 : Flxq_mul(GEN x,GEN y,GEN T,ulong p)
    2910    13164147 : { return Flxq_mul_pre(x,y,T,p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    2911             : 
    2912             : GEN
    2913   277317823 : Flxq_sqr_pre(GEN x,GEN T,ulong p,ulong pi)
    2914   277317823 : { return Flx_rem_pre(Flx_sqr_pre(x, p,pi), T, p,pi); }
    2915             : /* Square of y in Z/pZ[X]/(T), as t_VECSMALL. */
    2916             : GEN
    2917     2763118 : Flxq_sqr(GEN x,GEN T,ulong p)
    2918     2763118 : { return Flxq_sqr_pre(x,T,p,SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    2919             : 
    2920             : static GEN
    2921     1270700 : _Flxq_red(void *E, GEN x)
    2922     1270700 : { struct _Flxq *s = (struct _Flxq *)E;
    2923     1270700 :   return Flx_rem_pre(x, s->T, s->p, s->pi); }
    2924             : #if 0
    2925             : static GEN
    2926             : _Flxq_add(void *E, GEN x, GEN y)
    2927             : { struct _Flxq *s = (struct _Flxq *)E;
    2928             :   return Flx_add(x,y,s->p); }
    2929             : static GEN
    2930             : _Flxq_sub(void *E, GEN x, GEN y)
    2931             : { struct _Flxq *s = (struct _Flxq *)E;
    2932             :   return Flx_sub(x,y,s->p); }
    2933             : #endif
    2934             : static GEN
    2935   269451224 : _Flxq_sqr(void *data, GEN x)
    2936             : {
    2937   269451224 :   struct _Flxq *D = (struct _Flxq*)data;
    2938   269451224 :   return Flxq_sqr_pre(x, D->T, D->p, D->pi);
    2939             : }
    2940             : static GEN
    2941   147625721 : _Flxq_mul(void *data, GEN x, GEN y)
    2942             : {
    2943   147625721 :   struct _Flxq *D = (struct _Flxq*)data;
    2944   147625721 :   return Flxq_mul_pre(x,y, D->T, D->p, D->pi);
    2945             : }
    2946             : static GEN
    2947    22345651 : _Flxq_one(void *data)
    2948             : {
    2949    22345651 :   struct _Flxq *D = (struct _Flxq*)data;
    2950    22345651 :   return pol1_Flx(get_Flx_var(D->T));
    2951             : }
    2952             : 
    2953             : static GEN
    2954    23042300 : _Flxq_powu_i(struct _Flxq *D, GEN x, ulong n)
    2955    23042300 : { return gen_powu_i(x, n, (void*)D, &_Flxq_sqr, &_Flxq_mul); }
    2956             : static GEN
    2957          68 : _Flxq_powu(struct _Flxq *D, GEN x, ulong n)
    2958          68 : { pari_sp av = avma; return gc_leaf(av, _Flxq_powu_i(D, x, n)); }
    2959             : /* n-Power of x in Z/pZ[X]/(T), as t_VECSMALL. */
    2960             : GEN
    2961    24291916 : Flxq_powu_pre(GEN x, ulong n, GEN T, ulong p, ulong pi)
    2962             : {
    2963             :   pari_sp av;
    2964             :   struct _Flxq D;
    2965    24291916 :   switch(n)
    2966             :   {
    2967           0 :     case 0: return pol1_Flx(get_Flx_var(T));
    2968      277633 :     case 1: return Flx_copy(x);
    2969      972469 :     case 2: return Flxq_sqr_pre(x, T, p, pi);
    2970             :   }
    2971    23041814 :   av = avma; set_Flxq_pre(&D, T, p, pi);
    2972    23041709 :   return gc_leaf(av, _Flxq_powu_i(&D, x, n));
    2973             : }
    2974             : GEN
    2975      488198 : Flxq_powu(GEN x, ulong n, GEN T, ulong p)
    2976      488198 : { return Flxq_powu_pre(x, n, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    2977             : 
    2978             : /* n-Power of x in Z/pZ[X]/(T), as t_VECSMALL. */
    2979             : GEN
    2980    23450613 : Flxq_pow_pre(GEN x, GEN n, GEN T, ulong p, ulong pi)
    2981             : {
    2982    23450613 :   pari_sp av = avma;
    2983             :   struct _Flxq D;
    2984             :   GEN y;
    2985    23450613 :   long s = signe(n);
    2986    23450613 :   if (!s) return pol1_Flx(get_Flx_var(T));
    2987    23372918 :   if (s < 0) x = Flxq_inv_pre(x,T,p,pi);
    2988    23372918 :   if (is_pm1(n)) return s < 0 ? x : Flx_copy(x);
    2989    22851675 :   set_Flxq_pre(&D, T, p, pi);
    2990    22851696 :   y = gen_pow_i(x, n, (void*)&D, &_Flxq_sqr, &_Flxq_mul);
    2991    22851629 :   return gc_leaf(av, y);
    2992             : }
    2993             : GEN
    2994      945679 : Flxq_pow(GEN x, GEN n, GEN T, ulong p)
    2995      945679 : { return Flxq_pow_pre(x, n, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    2996             : 
    2997             : GEN
    2998          28 : Flxq_pow_init_pre(GEN x, GEN n, long k, GEN T, ulong p, ulong pi)
    2999             : {
    3000          28 :   struct _Flxq D; set_Flxq_pre(&D, T, p, pi);
    3001          28 :   return gen_pow_init(x, n, k, (void*)&D, &_Flxq_sqr, &_Flxq_mul);
    3002             : }
    3003             : GEN
    3004           0 : Flxq_pow_init(GEN x, GEN n, long k, GEN T, ulong p)
    3005           0 : { return Flxq_pow_init_pre(x, n, k, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3006             : 
    3007             : GEN
    3008        4393 : Flxq_pow_table_pre(GEN R, GEN n, GEN T, ulong p, ulong pi)
    3009             : {
    3010        4393 :   struct _Flxq D; set_Flxq_pre(&D, T, p, pi);
    3011        4393 :   return gen_pow_table(R, n, (void*)&D, &_Flxq_one, &_Flxq_mul);
    3012             : }
    3013             : GEN
    3014           0 : Flxq_pow_table(GEN R, GEN n, GEN T, ulong p)
    3015           0 : { return Flxq_pow_table_pre(R, n, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3016             : 
    3017             : /* Inverse of x in Z/lZ[X]/(T) or NULL if inverse doesn't exist
    3018             :  * not stack clean. */
    3019             : GEN
    3020     5414255 : Flxq_invsafe_pre(GEN x, GEN T, ulong p, ulong pi)
    3021             : {
    3022     5414255 :   GEN V, z = Flx_extgcd_pre(get_Flx_mod(T), x, p, pi, NULL, &V);
    3023             :   ulong iz;
    3024     5414232 :   if (degpol(z)) return NULL;
    3025     5413563 :   iz = Fl_inv(uel(z,2), p);
    3026     5413572 :   return Flx_Fl_mul_pre(V, iz, p, pi);
    3027             : }
    3028             : GEN
    3029      669320 : Flxq_invsafe(GEN x, GEN T, ulong p)
    3030      669320 : { return Flxq_invsafe_pre(x, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3031             : 
    3032             : GEN
    3033     4273223 : Flxq_inv_pre(GEN x, GEN T, ulong p, ulong pi)
    3034             : {
    3035     4273223 :   pari_sp av=avma;
    3036     4273223 :   GEN U = Flxq_invsafe_pre(x, T, p, pi);
    3037     4273093 :   if (!U) pari_err_INV("Flxq_inv",Flx_to_ZX(x));
    3038     4273079 :   return gc_leaf(av, U);
    3039             : }
    3040             : GEN
    3041      327066 : Flxq_inv(GEN x, GEN T, ulong p)
    3042      327066 : { return Flxq_inv_pre(x, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3043             : 
    3044             : GEN
    3045     2417764 : Flxq_div_pre(GEN x, GEN y, GEN T, ulong p, ulong pi)
    3046             : {
    3047     2417764 :   pari_sp av = avma;
    3048     2417764 :   return gc_leaf(av, Flxq_mul_pre(x,Flxq_inv_pre(y,T,p,pi),T,p,pi));
    3049             : }
    3050             : GEN
    3051      237864 : Flxq_div(GEN x, GEN y, GEN T, ulong p)
    3052      237864 : { return Flxq_div_pre(x, y, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3053             : 
    3054             : GEN
    3055    22344438 : Flxq_powers_pre(GEN x, long l, GEN T, ulong p, ulong pi)
    3056             : {
    3057    22344438 :   int use_sqr = 2*degpol(x) >= get_Flx_degree(T);
    3058    22341806 :   struct _Flxq D; set_Flxq_pre(&D, T, p, pi);
    3059    22340488 :   return gen_powers(x, l, use_sqr, (void*)&D, &_Flxq_sqr, &_Flxq_mul, &_Flxq_one);
    3060             : }
    3061             : GEN
    3062      231725 : Flxq_powers(GEN x, long l, GEN T, ulong p)
    3063      231725 : { return Flxq_powers_pre(x, l, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3064             : 
    3065             : GEN
    3066      171061 : Flxq_matrix_pow_pre(GEN y, long n, long m, GEN P, ulong l, ulong li)
    3067      171061 : { return FlxV_to_Flm(Flxq_powers_pre(y,m-1,P,l,li),n); }
    3068             : GEN
    3069         399 : Flxq_matrix_pow(GEN y, long n, long m, GEN P, ulong l)
    3070         399 : { return Flxq_matrix_pow_pre(y, n, m, P, l, SMALL_ULONG(l)? 0: get_Fl_red(l)); }
    3071             : 
    3072             : GEN
    3073    13768973 : Flx_Frobenius_pre(GEN T, ulong p, ulong pi)
    3074    13768973 : { return Flxq_powu_pre(polx_Flx(get_Flx_var(T)), p, T, p, pi); }
    3075             : GEN
    3076       86100 : Flx_Frobenius(GEN T, ulong p)
    3077       86100 : { return Flx_Frobenius_pre(T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3078             : 
    3079             : GEN
    3080       86772 : Flx_matFrobenius_pre(GEN T, ulong p, ulong pi)
    3081             : {
    3082       86772 :   long n = get_Flx_degree(T);
    3083       86772 :   return Flxq_matrix_pow_pre(Flx_Frobenius_pre(T, p, pi), n, n, T, p, pi);
    3084             : }
    3085             : GEN
    3086           0 : Flx_matFrobenius(GEN T, ulong p)
    3087           0 : { return Flx_matFrobenius_pre(T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3088             : 
    3089             : static GEN
    3090    12902741 : Flx_blocks_Flm(GEN P, long n, long m)
    3091             : {
    3092    12902741 :   GEN z = cgetg(m+1,t_MAT);
    3093    12902509 :   long i,j, k=2, l = lg(P);
    3094    36905728 :   for(i=1; i<=m; i++)
    3095             :   {
    3096    24006751 :     GEN zi = cgetg(n+1,t_VECSMALL);
    3097    24003219 :     gel(z,i) = zi;
    3098   111216346 :     for(j=1; j<=n; j++)
    3099    87213127 :       uel(zi, j) = k==l ? 0 : uel(P,k++);
    3100             :   }
    3101    12898977 :   return z;
    3102             : }
    3103             : 
    3104             : GEN
    3105      517097 : Flx_blocks(GEN P, long n, long m)
    3106             : {
    3107      517097 :   GEN z = cgetg(m+1,t_VEC);
    3108      516852 :   long i,j, k=2, l = lg(P);
    3109     1549118 :   for(i=1; i<=m; i++)
    3110             :   {
    3111     1032520 :     GEN zi = cgetg(n+2,t_VECSMALL);
    3112     1031885 :     zi[1] = P[1];
    3113     1031885 :     gel(z,i) = zi;
    3114     6475023 :     for(j=2; j<n+2; j++)
    3115     5443138 :       uel(zi, j) = k==l ? 0 : uel(P,k++);
    3116     1031885 :     zi = Flx_renormalize(zi, n+2);
    3117             :   }
    3118      516598 :   return z;
    3119             : }
    3120             : 
    3121             : static GEN
    3122    12903561 : FlxV_to_Flm_lg(GEN x, long m, long n)
    3123             : {
    3124             :   long i;
    3125    12903561 :   GEN y = cgetg(n+1, t_MAT);
    3126    61175260 :   for (i=1; i<=n; i++) gel(y,i) = Flx_to_Flv(gel(x,i), m);
    3127    12900663 :   return y;
    3128             : }
    3129             : 
    3130             : /* allow pi = 0 (SMALL_ULONG) */
    3131             : GEN
    3132    13101804 : Flx_FlxqV_eval_pre(GEN Q, GEN x, GEN T, ulong p, ulong pi)
    3133             : {
    3134    13101804 :   pari_sp btop, av = avma;
    3135    13101804 :   long sv = get_Flx_var(T), m = get_Flx_degree(T);
    3136    13102040 :   long i, l = lg(x)-1, lQ = lgpol(Q), n,  d;
    3137             :   GEN A, B, C, S, g;
    3138    13102851 :   if (lQ == 0) return pol0_Flx(sv);
    3139    12904343 :   if (lQ <= l)
    3140             :   {
    3141     6423404 :     n = l;
    3142     6423404 :     d = 1;
    3143             :   }
    3144             :   else
    3145             :   {
    3146     6480939 :     n = l-1;
    3147     6480939 :     d = (lQ+n-1)/n;
    3148             :   }
    3149    12904343 :   A = FlxV_to_Flm_lg(x, m, n);
    3150    12902620 :   B = Flx_blocks_Flm(Q, n, d);
    3151    12901712 :   C = gc_upto(av, Flm_mul(A, B, p));
    3152    12904690 :   g = gel(x, l);
    3153    12904690 :   if (pi && SMALL_ULONG(p)) pi = 0;
    3154    12904690 :   T = Flx_get_red_pre(T, p, pi);
    3155    12904478 :   btop = avma;
    3156    12904478 :   S = Flv_to_Flx(gel(C, d), sv);
    3157    24011179 :   for (i = d-1; i>0; i--)
    3158             :   {
    3159    11107852 :     S = Flx_add(Flxq_mul_pre(S, g, T, p, pi), Flv_to_Flx(gel(C,i), sv), p);
    3160    11107613 :     if (gc_needed(btop,1))
    3161           0 :       S = gc_leaf(btop, S);
    3162             :   }
    3163    12903327 :   return gc_leaf(av, S);
    3164             : }
    3165             : GEN
    3166        5082 : Flx_FlxqV_eval(GEN Q, GEN x, GEN T, ulong p)
    3167        5082 : { return Flx_FlxqV_eval_pre(Q, x, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3168             : 
    3169             : /* allow pi = 0 (SMALL_ULONG) */
    3170             : GEN
    3171     2437495 : Flx_Flxq_eval_pre(GEN Q, GEN x, GEN T, ulong p, ulong pi)
    3172             : {
    3173     2437495 :   pari_sp av = avma;
    3174             :   GEN z, V;
    3175     2437495 :   long d = degpol(Q), rtd;
    3176     2437502 :   if (d < 0) return pol0_Flx(get_Flx_var(T));
    3177     2437411 :   rtd = (long) sqrt((double)d);
    3178     2437411 :   T = Flx_get_red_pre(T, p, pi);
    3179     2437433 :   V = Flxq_powers_pre(x, rtd, T, p, pi);
    3180     2437492 :   z = Flx_FlxqV_eval_pre(Q, V, T, p, pi);
    3181     2437459 :   return gc_upto(av, z);
    3182             : }
    3183             : GEN
    3184      788990 : Flx_Flxq_eval(GEN Q, GEN x, GEN T, ulong p)
    3185      788990 : { return Flx_Flxq_eval_pre(Q, x, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3186             : 
    3187             : /* allow pi = 0 (SMALL_ULONG) */
    3188             : GEN
    3189           0 : FlxC_FlxqV_eval_pre(GEN x, GEN v, GEN T, ulong p, ulong pi)
    3190           0 : { pari_APPLY_type(t_COL, Flx_FlxqV_eval_pre(gel(x,i), v, T, p, pi)) }
    3191             : GEN
    3192           0 : FlxC_FlxqV_eval(GEN x, GEN v, GEN T, ulong p)
    3193           0 : { return FlxC_FlxqV_eval_pre(x, v, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3194             : 
    3195             : /* allow pi = 0 (SMALL_ULONG) */
    3196             : GEN
    3197           0 : FlxC_Flxq_eval_pre(GEN x, GEN F, GEN T, ulong p, ulong pi)
    3198             : {
    3199           0 :   long d = brent_kung_optpow(get_Flx_degree(T)-1,lg(x)-1,1);
    3200           0 :   GEN Fp = Flxq_powers_pre(F, d, T, p, pi);
    3201           0 :   return FlxC_FlxqV_eval_pre(x, Fp, T, p, pi);
    3202             : }
    3203             : GEN
    3204           0 : FlxC_Flxq_eval(GEN x, GEN F, GEN T, ulong p)
    3205           0 : { return FlxC_Flxq_eval_pre(x, F, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3206             : 
    3207             : #if 0
    3208             : static struct bb_algebra Flxq_algebra = { _Flxq_red, _Flxq_add, _Flxq_sub,
    3209             :               _Flxq_mul, _Flxq_sqr, _Flxq_one, _Flxq_zero};
    3210             : #endif
    3211             : 
    3212             : static GEN
    3213       47324 : Flxq_autpow_sqr(void *E, GEN x)
    3214             : {
    3215       47324 :   struct _Flxq *D = (struct _Flxq*)E;
    3216       47324 :   return Flx_Flxq_eval_pre(x, x, D->T, D->p, D->pi);
    3217             : }
    3218             : static GEN
    3219       20698 : Flxq_autpow_msqr(void *E, GEN x)
    3220             : {
    3221       20698 :   struct _Flxq *D = (struct _Flxq*)E;
    3222       20698 :   return Flx_FlxqV_eval_pre(Flxq_autpow_sqr(E, x), D->aut, D->T, D->p, D->pi);
    3223             : }
    3224             : 
    3225             : GEN
    3226       69455 : Flxq_autpow_pre(GEN x, ulong n, GEN T, ulong p, ulong pi)
    3227             : {
    3228       69455 :   pari_sp av = avma;
    3229             :   struct _Flxq D;
    3230             :   long d;
    3231       69455 :   if (n==0) return Flx_rem_pre(polx_Flx(x[1]), T, p, pi);
    3232       69448 :   if (n==1) return Flx_rem_pre(x, T, p, pi);
    3233       32448 :   set_Flxq_pre(&D, T, p, pi);
    3234       32448 :   d = brent_kung_optpow(get_Flx_degree(T), hammingu(n)-1, 1);
    3235       32448 :   D.aut = Flxq_powers_pre(x, d, T, p, D.pi);
    3236       32448 :   x = gen_powu_fold_i(x,n,(void*)&D,Flxq_autpow_sqr,Flxq_autpow_msqr);
    3237       32448 :   return gc_GEN(av, x);
    3238             : }
    3239             : GEN
    3240           7 : Flxq_autpow(GEN x, ulong n, GEN T, ulong p)
    3241           7 : { return Flxq_autpow_pre(x, n, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3242             : 
    3243             : GEN
    3244        1667 : Flxq_autpowers(GEN x, ulong l, GEN T, ulong p)
    3245             : {
    3246        1667 :   long d, vT = get_Flx_var(T), dT = get_Flx_degree(T);
    3247             :   ulong i, pi;
    3248        1667 :   pari_sp av = avma;
    3249        1667 :   GEN xp, V = cgetg(l+2,t_VEC);
    3250        1667 :   gel(V,1) = polx_Flx(vT); if (l==0) return V;
    3251        1667 :   gel(V,2) = gcopy(x); if (l==1) return V;
    3252        1667 :   pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    3253        1667 :   T = Flx_get_red_pre(T, p, pi);
    3254        1667 :   d = brent_kung_optpow(dT-1, l-1, 1);
    3255        1667 :   xp = Flxq_powers_pre(x, d, T, p, pi);
    3256        6998 :   for(i = 3; i < l+2; i++)
    3257        5331 :     gel(V,i) = Flx_FlxqV_eval_pre(gel(V,i-1), xp, T, p, pi);
    3258        1667 :   return gc_GEN(av, V);
    3259             : }
    3260             : 
    3261             : static GEN
    3262      112497 : Flxq_autsum_mul(void *E, GEN x, GEN y)
    3263             : {
    3264      112497 :   struct _Flxq *D = (struct _Flxq*)E;
    3265      112497 :   GEN T = D->T;
    3266      112497 :   ulong p = D->p, pi = D->pi;
    3267      112497 :   GEN phi1 = gel(x,1), a1 = gel(x,2);
    3268      112497 :   GEN phi2 = gel(y,1), a2 = gel(y,2);
    3269      112497 :   ulong d = brent_kung_optpow(maxss(degpol(phi1),degpol(a1)),2,1);
    3270      112497 :   GEN V2 = Flxq_powers_pre(phi2, d, T, p, pi);
    3271      112497 :   GEN phi3 = Flx_FlxqV_eval_pre(phi1, V2, T, p, pi);
    3272      112497 :   GEN aphi = Flx_FlxqV_eval_pre(a1, V2, T, p, pi);
    3273      112497 :   GEN a3 = Flxq_mul_pre(aphi, a2, T, p, pi);
    3274      112497 :   return mkvec2(phi3, a3);
    3275             : }
    3276             : static GEN
    3277      105124 : Flxq_autsum_sqr(void *E, GEN x)
    3278      105124 : { return Flxq_autsum_mul(E, x, x); }
    3279             : 
    3280             : static GEN
    3281       98774 : Flxq_autsum_pre(GEN x, ulong n, GEN T, ulong p, ulong pi)
    3282             : {
    3283       98774 :   pari_sp av = avma;
    3284       98774 :   struct _Flxq D; set_Flxq_pre(&D, T, p, pi);
    3285       98774 :   x = gen_powu_i(x,n,(void*)&D,Flxq_autsum_sqr,Flxq_autsum_mul);
    3286       98774 :   return gc_GEN(av, x);
    3287             : }
    3288             : GEN
    3289           0 : Flxq_autsum(GEN x, ulong n, GEN T, ulong p)
    3290           0 : { return Flxq_autsum_pre(x, n, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3291             : 
    3292             : static GEN
    3293      777153 : Flxq_auttrace_mul(void *E, GEN x, GEN y)
    3294             : {
    3295      777153 :   struct _Flxq *D = (struct _Flxq*)E;
    3296      777153 :   GEN T = D->T;
    3297      777153 :   ulong p = D->p, pi = D->pi;
    3298      777153 :   GEN phi1 = gel(x,1), a1 = gel(x,2);
    3299      777153 :   GEN phi2 = gel(y,1), a2 = gel(y,2);
    3300      777153 :   ulong d = brent_kung_optpow(maxss(degpol(phi1),degpol(a1)),2,1);
    3301      777163 :   GEN V1 = Flxq_powers_pre(phi1, d, T, p, pi);
    3302      777110 :   GEN phi3 = Flx_FlxqV_eval_pre(phi2, V1, T, p, pi);
    3303      777128 :   GEN aphi = Flx_FlxqV_eval_pre(a2, V1, T, p, pi);
    3304      777149 :   GEN a3 = Flx_add(a1, aphi, p);
    3305      777158 :   return mkvec2(phi3, a3);
    3306             : }
    3307             : 
    3308             : static GEN
    3309      651513 : Flxq_auttrace_sqr(void *E, GEN x)
    3310      651513 : { return Flxq_auttrace_mul(E, x, x); }
    3311             : 
    3312             : GEN
    3313      956619 : Flxq_auttrace_pre(GEN x, ulong n, GEN T, ulong p, ulong pi)
    3314             : {
    3315      956619 :   pari_sp av = avma;
    3316             :   struct _Flxq D;
    3317      956619 :   set_Flxq_pre(&D, T, p, pi);
    3318      956620 :   x = gen_powu_i(x,n,(void*)&D,Flxq_auttrace_sqr,Flxq_auttrace_mul);
    3319      956596 :   return gc_GEN(av, x);
    3320             : }
    3321             : GEN
    3322           0 : Flxq_auttrace(GEN x, ulong n, GEN T, ulong p)
    3323           0 : { return Flxq_auttrace_pre(x, n, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3324             : 
    3325             : static long
    3326      395379 : bounded_order(ulong p, GEN b, long k)
    3327             : {
    3328      395379 :   GEN a = modii(utoipos(p), b);
    3329             :   long i;
    3330      812479 :   for(i = 1; i < k; i++)
    3331             :   {
    3332      516506 :     if (equali1(a)) return i;
    3333      417100 :     a = modii(muliu(a,p),b);
    3334             :   }
    3335      295973 :   return 0;
    3336             : }
    3337             : 
    3338             : /* n = (p^d-a)\b
    3339             :  * b = bb*p^vb
    3340             :  * p^k = 1 [bb]
    3341             :  * d = m*k+r+vb
    3342             :  * u = (p^k-1)/bb;
    3343             :  * v = (p^(r+vb)-a)/b;
    3344             :  * w = (p^(m*k)-1)/(p^k-1)
    3345             :  * n = p^r*w*u+v
    3346             :  * w*u = p^vb*(p^(m*k)-1)/b
    3347             :  * n = p^(r+vb)*(p^(m*k)-1)/b+(p^(r+vb)-a)/b */
    3348             : static GEN
    3349    22389784 : Flxq_pow_Frobenius(GEN x, GEN n, GEN aut, GEN T, ulong p, ulong pi)
    3350             : {
    3351    22389784 :   pari_sp av=avma;
    3352    22389784 :   long d = get_Flx_degree(T);
    3353    22389784 :   GEN an = absi_shallow(n), z, q;
    3354    22389784 :   if (abscmpiu(an,p)<0 || cmpis(an,d)<=0) return Flxq_pow_pre(x, n, T, p, pi);
    3355      395749 :   q = powuu(p, d);
    3356      395749 :   if (dvdii(q, n))
    3357             :   {
    3358         315 :     long vn = logint(an, utoipos(p));
    3359         315 :     GEN autvn = vn==1 ? aut: Flxq_autpow_pre(aut,vn,T,p,pi);
    3360         315 :     z = Flx_Flxq_eval_pre(x,autvn,T,p,pi);
    3361             :   } else
    3362             :   {
    3363      395434 :     GEN b = diviiround(q, an), a = subii(q, mulii(an,b));
    3364             :     GEN bb, u, v, autk;
    3365      395434 :     long vb = Z_lvalrem(b,p,&bb);
    3366      395434 :     long m, r, k = is_pm1(bb)? 1: bounded_order(p,bb,d);
    3367      395434 :     if (!k || d-vb < k) return Flxq_pow_pre(x,n, T,p,pi);
    3368       99454 :     m = (d-vb)/k; r = (d-vb)%k;
    3369       99454 :     u = diviiexact(subiu(powuu(p,k),1),bb);
    3370       99454 :     v = diviiexact(subii(powuu(p,r+vb),a),b);
    3371       99454 :     autk = k==1 ? aut: Flxq_autpow_pre(aut,k,T,p,pi);
    3372       99454 :     if (r)
    3373             :     {
    3374         487 :       GEN autr = r==1 ? aut: Flxq_autpow_pre(aut,r,T,p,pi);
    3375         487 :       z = Flx_Flxq_eval_pre(x,autr,T,p,pi);
    3376       98967 :     } else z = x;
    3377       99454 :     if (m > 1) z = gel(Flxq_autsum_pre(mkvec2(autk, z), m, T, p, pi), 2);
    3378       99454 :     if (!is_pm1(u)) z = Flxq_pow_pre(z, u, T, p, pi);
    3379       99454 :     if (signe(v)) z = Flxq_mul_pre(z, Flxq_pow_pre(x, v, T, p, pi), T, p, pi);
    3380             :   }
    3381       99769 :   return gc_upto(av,signe(n)>0 ? z : Flxq_inv_pre(z,T,p,pi));
    3382             : }
    3383             : 
    3384             : static GEN
    3385    22382372 : _Flxq_pow(void *data, GEN x, GEN n)
    3386             : {
    3387    22382372 :   struct _Flxq *D = (struct _Flxq*)data;
    3388    22382372 :   return Flxq_pow_Frobenius(x, n, D->aut, D->T, D->p, D->pi);
    3389             : }
    3390             : 
    3391             : static GEN
    3392        6567 : _Flxq_rand(void *data)
    3393             : {
    3394        6567 :   pari_sp av=avma;
    3395        6567 :   struct _Flxq *D = (struct _Flxq*)data;
    3396             :   GEN z;
    3397             :   do
    3398             :   {
    3399        6589 :     set_avma(av);
    3400        6589 :     z = random_Flx(get_Flx_degree(D->T),get_Flx_var(D->T),D->p);
    3401        6589 :   } while (lgpol(z)==0);
    3402        6567 :   return z;
    3403             : }
    3404             : 
    3405             : /* discrete log in FpXQ for a in Fp^*, g in FpXQ^* of order ord */
    3406             : static GEN
    3407       35544 : Fl_Flxq_log(ulong a, GEN g, GEN o, GEN T, ulong p)
    3408             : {
    3409       35544 :   pari_sp av = avma;
    3410             :   GEN q,n_q,ord,ordp, op;
    3411             : 
    3412       35544 :   if (a == 1UL) return gen_0;
    3413             :   /* p > 2 */
    3414             : 
    3415       35544 :   ordp = utoi(p - 1);
    3416       35544 :   ord  = get_arith_Z(o);
    3417       35544 :   if (!ord) ord = T? subiu(powuu(p, get_FpX_degree(T)), 1): ordp;
    3418       35544 :   if (a == p - 1) /* -1 */
    3419        7739 :     return gc_INT(av, shifti(ord,-1));
    3420       27805 :   ordp = gcdii(ordp, ord);
    3421       27805 :   op = typ(o)==t_MAT ? famat_Z_gcd(o, ordp) : ordp;
    3422             : 
    3423       27805 :   q = NULL;
    3424       27805 :   if (T)
    3425             :   { /* we want < g > = Fp^* */
    3426       27805 :     if (!equalii(ord,ordp)) {
    3427       11906 :       q = diviiexact(ord,ordp);
    3428       11906 :       g = Flxq_pow(g,q,T,p);
    3429             :     }
    3430             :   }
    3431       27805 :   n_q = Fp_log(utoi(a), utoipos(uel(g,2)), op, utoipos(p));
    3432       27805 :   if (lg(n_q)==1) return gc_leaf(av, n_q);
    3433       27805 :   if (q) n_q = mulii(q, n_q);
    3434       27805 :   return gc_INT(av, n_q);
    3435             : }
    3436             : 
    3437             : static GEN
    3438      519321 : Flxq_easylog(void* E, GEN a, GEN g, GEN ord)
    3439             : {
    3440      519321 :   struct _Flxq *f = (struct _Flxq *)E;
    3441      519321 :   GEN T = f->T;
    3442      519321 :   ulong p = f->p;
    3443      519321 :   long d = get_Flx_degree(T);
    3444      519321 :   if (Flx_equal1(a)) return gen_0;
    3445      359618 :   if (Flx_equal(a,g)) return gen_1;
    3446      174457 :   if (!degpol(a))
    3447       35544 :     return Fl_Flxq_log(uel(a,2), g, ord, T, p);
    3448      138913 :   if (typ(ord)!=t_INT || d <= 4 || d == 6 || abscmpiu(ord,1UL<<27)<0)
    3449      138885 :     return NULL;
    3450          28 :   return Flxq_log_index(a, g, ord, T, p);
    3451             : }
    3452             : 
    3453             : static const struct bb_group Flxq_star={_Flxq_mul,_Flxq_pow,_Flxq_rand,hash_GEN,Flx_equal,Flx_equal1,Flxq_easylog};
    3454             : 
    3455             : const struct bb_group *
    3456      283438 : get_Flxq_star(void **E, GEN T, ulong p)
    3457             : {
    3458      283438 :   struct _Flxq *e = (struct _Flxq *) stack_malloc(sizeof(struct _Flxq));
    3459      283438 :   e->T = T; e->p  = p; e->pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    3460      283438 :   e->aut =  Flx_Frobenius_pre(T, p, e->pi);
    3461      283439 :   *E = (void*)e; return &Flxq_star;
    3462             : }
    3463             : 
    3464             : GEN
    3465       97328 : Flxq_order(GEN a, GEN ord, GEN T, ulong p)
    3466             : {
    3467             :   void *E;
    3468       97328 :   const struct bb_group *S = get_Flxq_star(&E,T,p);
    3469       97328 :   return gen_order(a,ord,E,S);
    3470             : }
    3471             : 
    3472             : GEN
    3473      164209 : Flxq_log(GEN a, GEN g, GEN ord, GEN T, ulong p)
    3474             : {
    3475             :   void *E;
    3476      164209 :   pari_sp av = avma;
    3477      164209 :   const struct bb_group *S = get_Flxq_star(&E,T,p);
    3478      164210 :   GEN v = get_arith_ZZM(ord), F = gmael(v,2,1);
    3479      164210 :   if (lg(F) > 1 && Flxq_log_use_index(veclast(F), T, p))
    3480       24283 :     v = mkvec2(gel(v, 1), ZM_famat_limit(gel(v, 2), int2n(27)));
    3481      164210 :   return gc_leaf(av, gen_PH_log(a, g, v, E, S));
    3482             : }
    3483             : 
    3484             : static GEN
    3485      295314 : Flxq_sumautsum_sqr(void *E, GEN xzd)
    3486             : {
    3487      295314 :   struct _Flxq *D = (struct _Flxq*)E;
    3488      295314 :   pari_sp av = avma;
    3489             :   GEN xi, zeta, delta, xi2, zeta2, delta2, temp, xipow;
    3490      295314 :   GEN T = D->T;
    3491      295314 :   ulong d, p = D-> p, pi = D->pi;
    3492      295314 :   xi = gel(xzd, 1); zeta = gel(xzd, 2); delta = gel(xzd, 3);
    3493             : 
    3494      295314 :   d = brent_kung_optpow(get_Flx_degree(T)-1,3,1);
    3495      295314 :   xipow = Flxq_powers_pre(xi, d, T, p, pi);
    3496             : 
    3497      295314 :   xi2 = Flx_FlxqV_eval_pre(xi, xipow, T, p, pi);
    3498      295314 :   zeta2 = Flxq_mul_pre(zeta, Flx_FlxqV_eval_pre(zeta,  xipow, T, p, pi), T, p, pi);
    3499      295314 :   temp  = Flxq_mul_pre(zeta, Flx_FlxqV_eval_pre(delta, xipow, T, p, pi), T, p, pi);
    3500      295314 :   delta2 = Flx_add(delta, temp, p);
    3501      295314 :   return gc_GEN(av, mkvec3(xi2, zeta2, delta2));
    3502             : }
    3503             : 
    3504             : static GEN
    3505       40915 : Flxq_sumautsum_msqr(void *E, GEN xzd)
    3506             : {
    3507       40915 :   struct _Flxq *D = (struct _Flxq*)E;
    3508       40915 :   pari_sp av = avma;
    3509             :   GEN xii, zetai, deltai, xzd2;
    3510       40915 :   GEN T = D->T, xi0pow = gel(D->aut, 1), zeta0 = gel(D->aut, 2);
    3511       40915 :   ulong p = D-> p, pi = D->pi;
    3512       40915 :   xzd2 = Flxq_sumautsum_sqr(E, xzd);
    3513       40915 :   xii = Flx_FlxqV_eval_pre(gel(xzd2, 1), xi0pow, T, p, pi);
    3514       40915 :   zetai = Flxq_mul_pre(zeta0, Flx_FlxqV_eval_pre(gel(xzd2, 2), xi0pow, T, p, pi), T, p, pi);
    3515       40915 :   deltai = Flx_add(gel(xzd2, 3), zetai, p);
    3516             : 
    3517       40915 :   return gc_GEN(av, mkvec3(xii, zetai, deltai));
    3518             : }
    3519             : 
    3520             : /*returns a + a^(1+s) + a^(1+s+2s) + ... + a^(1+s+...+is)
    3521             :   where ax = [a,s] with s an automorphism */
    3522             : static GEN
    3523      210713 : Flxq_sumautsum_pre(GEN ax, long i, GEN T, ulong p, ulong pi) {
    3524      210713 :   pari_sp av = avma;
    3525             :   GEN a, xi, zeta, vec, res;
    3526             :   struct _Flxq D;
    3527             :   ulong d;
    3528      210713 :   D.T = Flx_get_red(T, p); D.p = p; D.pi = pi;
    3529      210713 :   a = gel(ax, 1); xi = gel(ax,2);
    3530      210713 :   d = brent_kung_optpow(get_Flx_degree(T)-1,2*(hammingu(i)-1),1);
    3531      210713 :   zeta = Flx_Flxq_eval_pre(a, xi, T, p, pi);
    3532      210713 :   D.aut = mkvec2(Flxq_powers_pre(xi, d, T, p, pi), zeta);
    3533             : 
    3534      210713 :   vec = gen_powu_fold(mkvec3(xi, zeta, zeta), i, (void *)&D, Flxq_sumautsum_sqr, Flxq_sumautsum_msqr);
    3535      210713 :   res = Flxq_mul_pre(a, Flx_add(pol1_Flx(get_Flx_var(T)), gel(vec, 3), p), T, p, pi);
    3536             : 
    3537      210713 :   return gc_GEN(av, res);
    3538             : }
    3539             : 
    3540             : /*algorithm from
    3541             : Doliskani, J., & Schost, E. (2014).
    3542             : Taking roots over high extensions of finite fields
    3543             : https://arxiv.org/abs/1110.4350
    3544             : */
    3545             : static GEN
    3546       37667 : Flxq_sqrtl_spec_pre(GEN z, GEN n, GEN T, ulong p, ulong pi, GEN *zetan)
    3547             : {
    3548       37667 :   pari_sp av = avma;
    3549             :   GEN psn, c, b, new_z, beta, x, y, w, ax, g, zeta;
    3550       37667 :   long s, l, v = get_Flx_var(T), d = get_Flx_degree(T);
    3551             :   ulong zeta2, beta2;
    3552       37666 :   s = itos(Fp_order(utoi(p), stoi(d), n));
    3553       37667 :   if(s >= d || d % s != 0)
    3554           0 :     pari_err(e_MISC, "expected p's order mod n to divide the degree of T");
    3555       37667 :   l = d/s;
    3556       37667 :   if (!lgpol(z)) return pol0_Flx(get_Flx_var(T));
    3557       37667 :   T = Flx_get_red(T, p);
    3558       37667 :   ax = mkvec2(NULL, Flxq_autpow_pre(Flx_Frobenius_pre(T,p,pi), s, T, p,pi));
    3559       37664 :   psn = diviiexact(subiu(powuu(p, s), 1), n);
    3560             :   do {
    3561       41668 :     do c = random_Flx(d, v, p); while (!lgpol(c));
    3562       41166 :     new_z = Flxq_mul_pre(z, Flxq_pow_pre(c, n, T, p,pi), T, p,pi);
    3563       41165 :     gel(ax,1) = Flxq_pow_pre(new_z, psn, T, p,pi);
    3564             : 
    3565             :     /*If l == 2, b has to be 1 + a^((p^s-1)/n)*/
    3566       41166 :     if(l == 2) y = gel(ax, 1);
    3567        3244 :     else y = Flxq_sumautsum_pre(ax, l-2, T, p, pi);
    3568       41166 :     b = Flx_Fl_add(y, 1, p);
    3569       41166 :   } while (!lgpol(b));
    3570             : 
    3571       37666 :   x = Flxq_mul_pre(new_z, Flxq_pow_pre(b, n, T, p,pi), T, p,pi);
    3572       37665 :   if(s == 1) {
    3573       36517 :     if (degpol(x) > 0) return gc_NULL(av);
    3574       36475 :     beta2 = Fl_sqrtn(Flx_constant(x), umodiu(n, p), p, &zeta2);
    3575       36475 :     if (beta2==~0UL) return gc_NULL(av);
    3576       36475 :     if(zetan) *zetan = monomial_Flx(zeta2, 0, get_Flx_var(T));
    3577       36475 :     w = Flx_Fl_mul(Flxq_inv_pre(Flxq_mul_pre(b, c, T, p,pi), T, p,pi), beta2, p);
    3578       36476 :     (void)gc_all(av, zetan? 2: 1, &w, zetan);
    3579       36477 :     return w;
    3580             :   }
    3581        1148 :   g = Flxq_minpoly(x, T, p);
    3582        1148 :   if (degpol(g) > s) return gc_NULL(av);
    3583        1148 :   beta = Flxq_sqrtn(polx_Flx(get_Flx_var(T)), n, g, p, &zeta);
    3584        1148 :   if (!beta) return gc_NULL(av);
    3585             : 
    3586        1148 :   if(zetan) *zetan = Flx_Flxq_eval(zeta, x, T, p);
    3587        1148 :   beta = Flx_Flxq_eval(beta, x, T, p);
    3588        1148 :   w = Flxq_mul_pre(Flxq_inv_pre(Flxq_mul_pre(b, c, T, p,pi), T, p,pi), beta, T, p,pi);
    3589        1148 :   (void)gc_all(av, zetan? 2: 1, &w, zetan);
    3590        1148 :   return w;
    3591             : }
    3592             : 
    3593             : static GEN
    3594       21901 : Flxq_sqrtn_spec_pre(GEN a, GEN n, GEN T, ulong p, ulong pi, GEN q, GEN *zetan)
    3595             : {
    3596       21901 :   pari_sp ltop = avma;
    3597             :   GEN z, m, u1, u2;
    3598             :   int is_1;
    3599       21901 :   if (is_pm1(n))
    3600             :   {
    3601        1918 :     if (zetan) *zetan = pol1_Flx(get_Flx_var(T));
    3602        1918 :     return signe(n) < 0? Flxq_inv_pre(a, T, p,pi): gcopy(a);
    3603             :   }
    3604       19983 :   is_1 = gequal1(a);
    3605       19983 :   if (is_1 && !zetan) return gcopy(a);
    3606       19983 :   z = pol1_Flx(get_Flx_var(T));
    3607       19983 :   m = bezout(n,q,&u1,&u2);
    3608       19983 :   if (!is_pm1(m))
    3609             :   {
    3610       19983 :     GEN F = Z_factor(m);
    3611       19983 :     long i, j, j2 = 0; /* -Wall */
    3612             :     GEN y, l;
    3613       19983 :     pari_sp av1 = avma;
    3614       40050 :     for (i = nbrows(F); i; i--)
    3615             :     {
    3616       20109 :       l = gcoeff(F,i,1);
    3617       20109 :       j = itos(gcoeff(F,i,2));
    3618       20109 :       if(zetan) {
    3619         104 :         a = Flxq_sqrtl_spec_pre(a,l,T,p,pi,&y);
    3620         146 :         if (!a) return gc_NULL(ltop);
    3621         104 :         j--;
    3622         104 :         j2 = j;
    3623             :       }
    3624       20109 :       if (!is_1 && j > 0) {
    3625             :         do
    3626             :         {
    3627       37451 :           a = Flxq_sqrtl_spec_pre(a,l,T,p,pi,NULL);
    3628       37451 :           if (!a) return gc_NULL(ltop);
    3629       37409 :         } while (--j);
    3630             :       }
    3631             :       /*This is below finding a's root,
    3632             :       so we don't spend time doing this, if a is not n-th root*/
    3633       20067 :       if(zetan) {
    3634         216 :         for(; j2>0; j2--) y = Flxq_sqrtl_spec_pre(y, l, T, p,pi,NULL);
    3635         104 :         z = Flxq_mul_pre(z, y, T, p,pi);
    3636             :       }
    3637       20067 :       if (gc_needed(ltop,1))
    3638             :       { /* n can have lots of prime factors*/
    3639           0 :         if(DEBUGMEM>1) pari_warn(warnmem,"Flxq_sqrtn_spec");
    3640           0 :         (void)gc_all(av1, zetan? 2: 1, &a, &z);
    3641             :       }
    3642             :     }
    3643             :   }
    3644             : 
    3645       19941 :   if (!equalii(m, n))
    3646         434 :     a = Flxq_pow_pre(a,modii(u1,q), T, p,pi);
    3647       19941 :   if (zetan)
    3648             :   {
    3649         104 :     *zetan = z;
    3650         104 :     (void)gc_all(ltop,2,&a,zetan);
    3651             :   }
    3652             :   else /* is_1 is 0: a was modified above -> gc_upto valid */
    3653       19837 :     a = gc_upto(ltop, a);
    3654       19941 :   return a;
    3655             : }
    3656             : 
    3657             : GEN
    3658       23095 : Flxq_sqrtn(GEN a, GEN n, GEN T, ulong p, GEN *zeta)
    3659             : {
    3660       23095 :   if (!lgpol(a))
    3661             :   {
    3662           7 :     if (signe(n) < 0) pari_err_INV("Flxq_sqrtn",a);
    3663           0 :     if (zeta)
    3664           0 :       *zeta=pol1_Flx(get_Flx_var(T));
    3665           0 :     return pol0_Flx(get_Flx_var(T));
    3666             :   }
    3667       23088 :   else if(p == 2) {
    3668        1187 :     pari_sp av = avma;
    3669             :     GEN z;
    3670        1187 :     z = F2xq_sqrtn(Flx_to_F2x(a), n, Flx_to_F2x(get_FpX_mod(T)), zeta);
    3671        1187 :     if (!z) return NULL;
    3672        1187 :     z = F2x_to_Flx(z);
    3673        1187 :     if (!zeta) return gc_leaf(av, z);
    3674           0 :     *zeta=F2x_to_Flx(*zeta);
    3675           0 :     return gc_all(av, 2, &z,zeta);
    3676             :   }
    3677             :   else
    3678             :   {
    3679             :     void *E;
    3680       21901 :     pari_sp av = avma;
    3681       21901 :     const struct bb_group *S = get_Flxq_star(&E,T,p);
    3682       21901 :     GEN o = subiu(powuu(p,get_Flx_degree(T)), 1);
    3683             :     GEN m, u1, u2, l, zeta2, F, n2, z;
    3684       21901 :     long i, s, pi, d = get_Flx_degree(T);
    3685       21901 :     pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    3686       21901 :     m = bezout(n,o,&u1,&u2);
    3687       21900 :     F = Z_factor(m);
    3688       46433 :     for (i = nbrows(F); i; i--)
    3689             :     {
    3690       24533 :       l = gcoeff(F,i,1);
    3691       24533 :       s = itos(Fp_order(utoi(p), subiu(l, 1), l));
    3692             :       /*Flxq_sqrtn_spec only works if d > s and s | d
    3693             :       for those factors of m we use Flxq_sqrtn_spec
    3694             :       for the other factor we stay with gen_Shanks_sqrtn*/
    3695       24532 :       if(d <= s || d % s != 0) {
    3696        4424 :         gcoeff(F,i,2) = gen_0;
    3697             :       }
    3698       20108 :       else gcoeff(F,i,2) = stoi(Z_pval(n,l));
    3699             :     }
    3700       21900 :     F = factorback(F);
    3701       21901 :     z = Flxq_sqrtn_spec_pre(a,F,T, p,pi,o,zeta);
    3702       21901 :     if(!z) return gc_NULL(av);
    3703       21859 :     n2 = diviiexact(n, F);
    3704       21859 :     if(!gequal1(n2)) {
    3705        5005 :       if(zeta) zeta2 = gcopy(*zeta);
    3706        5005 :       z = gen_Shanks_sqrtn(z, n2, o, zeta, E, S);
    3707        5005 :       if (!z) return gc_NULL(av);
    3708        5005 :       if(zeta) *zeta = Flxq_mul_pre(*zeta, zeta2, T, p,pi);
    3709             :     }
    3710       21859 :     return gc_all(av, zeta?2:1, &z, zeta);
    3711             :   }
    3712             : }
    3713             : 
    3714             : GEN
    3715      230484 : Flxq_sqrt_pre(GEN z, GEN T, ulong p, ulong pi)
    3716             : {
    3717      230484 :   pari_sp av = avma;
    3718             :   long d;
    3719      230484 :   if (p==2)
    3720             :   {
    3721           0 :     GEN r = F2xq_sqrt(Flx_to_F2x(z), Flx_to_F2x(get_Flx_mod(T)));
    3722           0 :     return gc_upto(av, F2x_to_Flx(r));
    3723             :   }
    3724      230484 :   d = get_Flx_degree(T);
    3725      230484 :   if (d==2)
    3726             :   {
    3727       65765 :     GEN P = get_Flx_mod(T), s;
    3728       65765 :     ulong c = uel(P,2), b = uel(P,3), a = uel(P,4);
    3729       65765 :     ulong y = degpol(z)<1 ? 0: uel(z,3);
    3730       65765 :     if (a==1 && b==0)
    3731       15226 :     {
    3732       16006 :       ulong x = degpol(z)<1 ? Flx_constant(z): uel(z,2);
    3733       16006 :       GEN r = Fl2_sqrt_pre(mkvecsmall2(x, y), Fl_neg(c, p), p, pi);
    3734       16006 :       if (!r) return gc_NULL(av);
    3735       15226 :       s = mkvecsmall3(P[1], uel(r,1), uel(r,2));
    3736             :     }
    3737             :     else
    3738             :     {
    3739       49759 :       ulong b2 = Fl_halve(b, p), t = Fl_div(b2, a, p);
    3740       49759 :       ulong D = Fl_sub(Fl_sqr(b2, p), Fl_mul(a, c, p), p);
    3741       49759 :       ulong x = degpol(z)<1 ? Flx_constant(z): Fl_sub(uel(z,2), Fl_mul(uel(z,3), t, p), p);
    3742       49759 :       GEN r = Fl2_sqrt_pre(mkvecsmall2(x, y), D, p, pi);
    3743       49759 :       if (!r) return gc_NULL(av);
    3744       47365 :       s = mkvecsmall3(P[1], Fl_add(uel(r,1), Fl_mul(uel(r,2),t,p), p), uel(r,2));
    3745             :     }
    3746       62591 :     return gc_leaf(av, Flx_renormalize(s, 4));
    3747             :   }
    3748      164719 :   if (lgpol(z)<=1 && odd(d))
    3749             :   {
    3750       11710 :     pari_sp av = avma;
    3751       11710 :     ulong s = Fl_sqrt(Flx_constant(z), p);
    3752       11710 :     if (s==~0UL) return gc_NULL(av);
    3753       11696 :     return gc_GEN(av, Fl_to_Flx(s, get_Flx_var(T)));
    3754             :   } else
    3755             :   {
    3756             :     GEN c, b, new_z, x, y, w, ax;
    3757             :     ulong p2, beta;
    3758      153009 :     long v = get_Flx_var(T);
    3759      153009 :     if (!lgpol(z)) return pol0_Flx(v);
    3760      152344 :     T = Flx_get_red_pre(T, p, pi);
    3761      152344 :     ax = mkvec2(NULL, Flx_Frobenius_pre(T, p, pi));
    3762      152344 :     p2 = p >> 1; /* (p-1) / 2 */
    3763             :     do {
    3764      208141 :       do c = random_Flx(d, v, p); while (!lgpol(c));
    3765             : 
    3766      207469 :       new_z = Flxq_mul_pre(z, Flxq_sqr_pre(c, T, p, pi), T, p, pi);
    3767      207469 :       gel(ax, 1) = Flxq_powu_pre(new_z, p2, T, p, pi);
    3768      207469 :       y = Flxq_sumautsum_pre(ax, d-2, T, p, pi); /* d > 2 */
    3769      207469 :       b = Flx_Fl_add(y, 1UL, p);
    3770      207469 :     } while (!lgpol(b));
    3771             : 
    3772      152344 :     x = Flxq_mul_pre(new_z, Flxq_sqr_pre(b, T, p, pi), T, p, pi);
    3773      152344 :     if (degpol(x) > 0) return gc_NULL(av);
    3774      145302 :     beta = Fl_sqrt_pre(Flx_constant(x), p, pi);
    3775      145302 :     if (beta==~0UL) return gc_NULL(av);
    3776      145302 :     w = Flx_Fl_mul(Flxq_inv_pre(Flxq_mul_pre(b, c, T,p,pi), T,p,pi), beta, p);
    3777      145302 :     return gc_GEN(av, w);
    3778             :   }
    3779             : }
    3780             : 
    3781             : GEN
    3782      230484 : Flxq_sqrt(GEN a, GEN T, ulong p)
    3783      230484 : { return Flxq_sqrt_pre(a, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3784             : 
    3785             : /* assume T irreducible mod p */
    3786             : int
    3787      404492 : Flxq_issquare(GEN x, GEN T, ulong p)
    3788             : {
    3789      404492 :   if (lgpol(x) == 0 || p == 2) return 1;
    3790      397989 :   return krouu(Flxq_norm(x,T,p), p) == 1;
    3791             : }
    3792             : 
    3793             : /* assume T irreducible mod p */
    3794             : int
    3795           0 : Flxq_is2npower(GEN x, long n, GEN T, ulong p)
    3796             : {
    3797             :   pari_sp av;
    3798             :   GEN m;
    3799           0 :   if (n==1) return Flxq_issquare(x, T, p);
    3800           0 :   if (lgpol(x) == 0 || p == 2) return 1;
    3801           0 :   av = avma;
    3802           0 :   m = shifti(subiu(powuu(p, get_Flx_degree(T)), 1), -n);
    3803           0 :   return gc_bool(av, Flx_equal1(Flxq_pow(x, m, T, p)));
    3804             : }
    3805             : 
    3806             : GEN
    3807      113589 : Flxq_lroot_fast_pre(GEN a, GEN sqx, GEN T, long p, ulong pi)
    3808             : {
    3809      113589 :   pari_sp av=avma;
    3810      113589 :   GEN A = Flx_splitting(a,p);
    3811      113589 :   return gc_leaf(av, FlxqV_dotproduct_pre(A,sqx,T,p,pi));
    3812             : }
    3813             : GEN
    3814           0 : Flxq_lroot_fast(GEN a, GEN sqx, GEN T, long p)
    3815           0 : { return Flxq_lroot_fast_pre(a, sqx, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3816             : 
    3817             : GEN
    3818       25053 : Flxq_lroot_pre(GEN a, GEN T, long p, ulong pi)
    3819             : {
    3820       25053 :   pari_sp av=avma;
    3821       25053 :   long n = get_Flx_degree(T), d = degpol(a);
    3822             :   GEN sqx, V;
    3823       25053 :   if (n==1) return leafcopy(a);
    3824       25053 :   if (n==2) return Flxq_powu_pre(a, p, T, p, pi);
    3825       25053 :   sqx = Flxq_autpow_pre(Flx_Frobenius_pre(T, p, pi), n-1, T, p, pi);
    3826       25053 :   if (d==1 && a[2]==0 && a[3]==1) return gc_leaf(av, sqx);
    3827           0 :   if (d>=p)
    3828             :   {
    3829           0 :     V = Flxq_powers_pre(sqx,p-1,T,p,pi);
    3830           0 :     return gc_leaf(av, Flxq_lroot_fast_pre(a,V,T,p,pi));
    3831             :   } else
    3832           0 :     return gc_leaf(av, Flx_Flxq_eval_pre(a,sqx,T,p,pi));
    3833             : }
    3834             : GEN
    3835           0 : Flxq_lroot(GEN a, GEN T, long p)
    3836           0 : { return Flxq_lroot_pre(a, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3837             : 
    3838             : ulong
    3839      443318 : Flxq_norm(GEN x, GEN TB, ulong p)
    3840             : {
    3841      443318 :   GEN T = get_Flx_mod(TB);
    3842      443318 :   ulong y = Flx_resultant(T, x, p), L = Flx_lead(T);
    3843      443318 :   if (L==1 || lgpol(x)==0) return y;
    3844           0 :   return Fl_div(y, Fl_powu(L, (ulong)degpol(x), p), p);
    3845             : }
    3846             : 
    3847             : ulong
    3848        4696 : Flxq_trace(GEN x, GEN TB, ulong p)
    3849             : {
    3850        4696 :   pari_sp av = avma;
    3851             :   ulong t;
    3852        4696 :   GEN T = get_Flx_mod(TB);
    3853        4696 :   long n = degpol(T)-1;
    3854        4696 :   GEN z = Flxq_mul(x, Flx_deriv(T, p), TB, p);
    3855        4696 :   t = degpol(z)<n ? 0 : Fl_div(z[2+n],T[3+n],p);
    3856        4696 :   return gc_ulong(av, t);
    3857             : }
    3858             : 
    3859             : /*x must be reduced*/
    3860             : GEN
    3861        3624 : Flxq_charpoly(GEN x, GEN TB, ulong p)
    3862             : {
    3863        3624 :   pari_sp ltop=avma;
    3864        3624 :   GEN T = get_Flx_mod(TB);
    3865        3624 :   long vs = evalvarn(fetch_var());
    3866        3624 :   GEN xm1 = deg1pol_shallow(pol1_Flx(x[1]),Flx_neg(x,p),vs);
    3867        3624 :   GEN r = Flx_FlxY_resultant(T, xm1, p);
    3868        3624 :   r[1] = x[1];
    3869        3624 :   (void)delete_var(); return gc_upto(ltop, r);
    3870             : }
    3871             : 
    3872             : /* Computing minimal polynomial :                         */
    3873             : /* cf Shoup 'Efficient Computation of Minimal Polynomials */
    3874             : /*          in Algebraic Extensions of Finite Fields'     */
    3875             : 
    3876             : /* Let v a linear form, return the linear form z->v(tau*z)
    3877             :    that is, v*(M_tau) */
    3878             : 
    3879             : static GEN
    3880     1742459 : Flxq_transmul_init(GEN tau, GEN T, ulong p, ulong pi)
    3881             : {
    3882             :   GEN bht;
    3883     1742459 :   GEN h, Tp = get_Flx_red(T, &h);
    3884     1742460 :   long n = degpol(Tp), vT = Tp[1];
    3885     1742445 :   GEN ft = Flx_recipspec(Tp+2, n+1, n+1);
    3886     1742438 :   GEN bt = Flx_recipspec(tau+2, lgpol(tau), n);
    3887     1742421 :   ft[1] = vT; bt[1] = vT;
    3888     1742421 :   if (h)
    3889        2688 :     bht = Flxn_mul_pre(bt, h, n-1, p, pi);
    3890             :   else
    3891             :   {
    3892     1739733 :     GEN bh = Flx_div_pre(Flx_shift(tau, n-1), T, p, pi);
    3893     1739738 :     bht = Flx_recipspec(bh+2, lgpol(bh), n-1);
    3894     1739743 :     bht[1] = vT;
    3895             :   }
    3896     1742431 :   return mkvec3(bt, bht, ft);
    3897             : }
    3898             : 
    3899             : static GEN
    3900     4203149 : Flxq_transmul(GEN tau, GEN a, long n, ulong p, ulong pi)
    3901             : {
    3902     4203149 :   pari_sp ltop = avma;
    3903             :   GEN t1, t2, t3, vec;
    3904     4203149 :   GEN bt = gel(tau, 1), bht = gel(tau, 2), ft = gel(tau, 3);
    3905     4203149 :   if (lgpol(a)==0) return pol0_Flx(a[1]);
    3906     4172081 :   t2  = Flx_shift(Flx_mul_pre(bt, a, p, pi),1-n);
    3907     4171752 :   if (lgpol(bht)==0) return gc_leaf(ltop, t2);
    3908     3146379 :   t1  = Flx_shift(Flx_mul_pre(ft, a, p, pi),-n);
    3909     3146385 :   t3  = Flxn_mul_pre(t1, bht, n-1, p, pi);
    3910     3146401 :   vec = Flx_sub(t2, Flx_shift(t3, 1), p);
    3911     3146461 :   return gc_leaf(ltop, vec);
    3912             : }
    3913             : 
    3914             : GEN
    3915      807806 : Flxq_minpoly_pre(GEN x, GEN T, ulong p, ulong pi)
    3916             : {
    3917      807806 :   pari_sp ltop = avma;
    3918      807806 :   long vT = get_Flx_var(T), n = get_Flx_degree(T);
    3919             :   GEN v_x;
    3920      807805 :   GEN g = pol1_Flx(vT), tau = pol1_Flx(vT);
    3921      807775 :   T = Flx_get_red_pre(T, p, pi);
    3922      807774 :   v_x = Flxq_powers_pre(x, usqrt(2*n), T, p, pi);
    3923     1678993 :   while (lgpol(tau) != 0)
    3924             :   {
    3925             :     long i, j, m, k1;
    3926             :     GEN M, v, tr, g_prime, c;
    3927      871213 :     if (degpol(g) == n) { tau = pol1_Flx(vT); g = pol1_Flx(vT); }
    3928      871214 :     v = random_Flx(n, vT, p);
    3929      871234 :     tr = Flxq_transmul_init(tau, T, p, pi);
    3930      871218 :     v = Flxq_transmul(tr, v, n, p, pi);
    3931      871230 :     m = 2*(n-degpol(g));
    3932      871231 :     k1 = usqrt(m);
    3933      871232 :     tr = Flxq_transmul_init(gel(v_x,k1+1), T, p, pi);
    3934      871221 :     c = cgetg(m+2,t_VECSMALL);
    3935      871165 :     c[1] = vT;
    3936     4203024 :     for (i=0; i<m; i+=k1)
    3937             :     {
    3938     3331793 :       long mj = minss(m-i, k1);
    3939    12933095 :       for (j=0; j<mj; j++)
    3940     9601051 :         uel(c,m+1-(i+j)) = Flx_dotproduct_pre(v, gel(v_x,j+1), p, pi);
    3941     3332044 :       v = Flxq_transmul(tr, v, n, p, pi);
    3942             :     }
    3943      871231 :     c = Flx_renormalize(c, m+2);
    3944             :     /* now c contains <v,x^i> , i = 0..m-1  */
    3945      871230 :     M = Flx_halfgcd_pre(monomial_Flx(1, m, vT), c, p, pi);
    3946      871238 :     g_prime = gmael(M, 2, 2);
    3947      871238 :     if (degpol(g_prime) < 1) continue;
    3948      858607 :     g = Flx_mul_pre(g, g_prime, p, pi);
    3949      858596 :     tau = Flxq_mul_pre(tau, Flx_FlxqV_eval_pre(g_prime, v_x, T,p,pi), T,p,pi);
    3950             :   }
    3951      807756 :   g = Flx_normalize(g,p);
    3952      807797 :   return gc_leaf(ltop,g);
    3953             : }
    3954             : GEN
    3955       45776 : Flxq_minpoly(GEN x, GEN T, ulong p)
    3956       45776 : { return Flxq_minpoly_pre(x, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3957             : 
    3958             : GEN
    3959          20 : Flxq_conjvec(GEN x, GEN T, ulong p)
    3960             : {
    3961          20 :   long i, l = 1+get_Flx_degree(T);
    3962          20 :   GEN z = cgetg(l,t_COL);
    3963          20 :   struct _Flxq D; set_Flxq(&D, T, p);
    3964          20 :   gel(z,1) = Flx_copy(x);
    3965          88 :   for (i=2; i<l; i++) gel(z,i) = _Flxq_powu(&D, gel(z,i-1), p);
    3966          20 :   return z;
    3967             : }
    3968             : 
    3969             : GEN
    3970        7194 : gener_Flxq(GEN T, ulong p, GEN *po)
    3971             : {
    3972        7194 :   long i, j, vT = get_Flx_var(T), f = get_Flx_degree(T);
    3973             :   ulong p_1, pi;
    3974             :   GEN g, L, L2, o, q, F;
    3975             :   pari_sp av0, av;
    3976             : 
    3977        7194 :   if (f == 1) {
    3978             :     GEN fa;
    3979          28 :     o = utoipos(p-1);
    3980          28 :     fa = Z_factor(o);
    3981          28 :     L = gel(fa,1);
    3982          28 :     L = vecslice(L, 2, lg(L)-1); /* remove 2 for efficiency */
    3983          28 :     g = Fl_to_Flx(pgener_Fl_local(p, vec_to_vecsmall(L)), vT);
    3984          28 :     if (po) *po = mkvec2(o, fa);
    3985          28 :     return g;
    3986             :   }
    3987             : 
    3988        7166 :   av0 = avma; p_1 = p - 1;
    3989        7166 :   q = diviuexact(subiu(powuu(p,f), 1), p_1);
    3990             : 
    3991        7166 :   L = cgetg(1, t_VECSMALL);
    3992        7166 :   if (p > 3)
    3993             :   {
    3994        2371 :     ulong t = p_1 >> vals(p_1);
    3995        2371 :     GEN P = gel(factoru(t), 1);
    3996        2371 :     L = cgetg_copy(P, &i);
    3997        3787 :     while (--i) L[i] = p_1 / P[i];
    3998             :   }
    3999        7166 :   o = factor_pn_1(utoipos(p),f);
    4000        7166 :   L2 = leafcopy( gel(o, 1) );
    4001       19198 :   for (i = j = 1; i < lg(L2); i++)
    4002             :   {
    4003       12032 :     if (umodui(p_1, gel(L2,i)) == 0) continue;
    4004        6488 :     gel(L2,j++) = diviiexact(q, gel(L2,i));
    4005             :   }
    4006        7166 :   setlg(L2, j); pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    4007        7166 :   F = Flx_Frobenius_pre(T, p, pi);
    4008       17686 :   for (av = avma;; set_avma(av))
    4009       10520 :   {
    4010             :     GEN tt;
    4011       17686 :     g = random_Flx(f, vT, p);
    4012       17686 :     if (degpol(g) < 1) continue;
    4013       12104 :     if (p == 2) tt = g;
    4014             :     else
    4015             :     {
    4016        8905 :       ulong t = Flxq_norm(g, T, p);
    4017        8905 :       if (t == 1 || !is_gener_Fl(t, p, p_1, L)) continue;
    4018        4765 :       tt = Flxq_powu_pre(g, p_1>>1, T, p, pi);
    4019             :     }
    4020       14578 :     for (i = 1; i < j; i++)
    4021             :     {
    4022        7412 :       GEN a = Flxq_pow_Frobenius(tt, gel(L2,i), F, T, p, pi);
    4023        7412 :       if (!degpol(a) && uel(a,2) == p_1) break;
    4024             :     }
    4025        7964 :     if (i == j) break;
    4026             :   }
    4027        7166 :   if (!po)
    4028             :   {
    4029         187 :     set_avma((pari_sp)g);
    4030         187 :     g = gc_leaf(av0, g);
    4031             :   }
    4032             :   else {
    4033        6979 :     *po = mkvec2(subiu(powuu(p,f), 1), o);
    4034        6979 :     (void)gc_all(av0, 2, &g, po);
    4035             :   }
    4036        7166 :   return g;
    4037             : }
    4038             : 
    4039             : static GEN
    4040       35607 : _Flxq_neg(void *E, GEN x)
    4041       35607 : { struct _Flxq *s = (struct _Flxq *)E;
    4042       35607 :   return Flx_neg(x,s->p); }
    4043             : 
    4044             : static GEN
    4045     1260698 : _Flxq_rmul(void *E, GEN x, GEN y)
    4046     1260698 : { struct _Flxq *s = (struct _Flxq *)E;
    4047     1260698 :   return Flx_mul_pre(x,y,s->p,s->pi); }
    4048             : 
    4049             : static GEN
    4050        1532 : _Flxq_inv(void *E, GEN x)
    4051        1532 : { struct _Flxq *s = (struct _Flxq *)E;
    4052        1532 :   return Flxq_inv(x,s->T,s->p); }
    4053             : 
    4054             : static int
    4055        6540 : _Flxq_equal0(GEN x) { return lgpol(x)==0; }
    4056             : 
    4057             : static GEN
    4058        1393 : _Flxq_s(void *E, long x)
    4059        1393 : { struct _Flxq *s = (struct _Flxq *)E;
    4060        1393 :   ulong u = x<0 ? s->p+x: (ulong)x;
    4061        1393 :   return Fl_to_Flx(u, get_Flx_var(s->T));
    4062             : }
    4063             : 
    4064             : static const struct bb_field Flxq_field={_Flxq_red,_Flx_add,_Flxq_rmul,_Flxq_neg,
    4065             :                                          _Flxq_inv,_Flxq_equal0,_Flxq_s};
    4066             : 
    4067       66744 : const struct bb_field *get_Flxq_field(void **E, GEN T, ulong p)
    4068             : {
    4069       66744 :   GEN z = new_chunk(sizeof(struct _Flxq));
    4070       66744 :   set_Flxq((struct _Flxq *)z, T, p); *E = (void*)z; return &Flxq_field;
    4071             : }
    4072             : 
    4073             : /***********************************************************************/
    4074             : /**                               Flxn                                **/
    4075             : /***********************************************************************/
    4076             : 
    4077             : GEN
    4078       54385 : Flx_invLaplace(GEN x, ulong p)
    4079             : {
    4080       54385 :   long i, d = degpol(x);
    4081             :   ulong t;
    4082             :   GEN y;
    4083       54384 :   if (d <= 1) return Flx_copy(x);
    4084       54384 :   t = Fl_inv(factorial_Fl(d, p), p);
    4085       54417 :   y = cgetg(d+3, t_VECSMALL);
    4086       54386 :   y[1] = x[1];
    4087     1332654 :   for (i=d; i>=2; i--)
    4088             :   {
    4089     1278250 :     uel(y,i+2) = Fl_mul(uel(x,i+2), t, p);
    4090     1278248 :     t = Fl_mul(t, i, p);
    4091             :   }
    4092       54404 :   uel(y,3) = uel(x,3);
    4093       54404 :   uel(y,2) = uel(x,2);
    4094       54404 :   return y;
    4095             : }
    4096             : 
    4097             : GEN
    4098       27346 : Flx_Laplace(GEN x, ulong p)
    4099             : {
    4100       27346 :   long i, d = degpol(x);
    4101       27345 :   ulong t = 1;
    4102             :   GEN y;
    4103       27345 :   if (d <= 1) return Flx_copy(x);
    4104       27345 :   y = cgetg(d+3, t_VECSMALL);
    4105       27334 :   y[1] = x[1];
    4106       27334 :   uel(y,2) = uel(x,2);
    4107       27334 :   uel(y,3) = uel(x,3);
    4108      761161 :   for (i=2; i<=d; i++)
    4109             :   {
    4110      733802 :     t = Fl_mul(t, i%p, p);
    4111      733811 :     uel(y,i+2) = Fl_mul(uel(x,i+2), t, p);
    4112             :   }
    4113       27359 :   return y;
    4114             : }
    4115             : 
    4116             : GEN
    4117     6324649 : Flxn_red(GEN a, long n)
    4118             : {
    4119     6324649 :   long i, L, l = lg(a);
    4120             :   GEN  b;
    4121     6324649 :   if (l == 2 || !n) return zero_Flx(a[1]);
    4122     5933261 :   L = n+2; if (L > l) L = l;
    4123     5933261 :   b = cgetg(L, t_VECSMALL); b[1] = a[1];
    4124    59681175 :   for (i=2; i<L; i++) b[i] = a[i];
    4125     5931210 :   return Flx_renormalize(b,L);
    4126             : }
    4127             : 
    4128             : GEN
    4129     5152865 : Flxn_mul_pre(GEN a, GEN b, long n, ulong p, ulong pi)
    4130     5152865 : { return Flxn_red(Flx_mul_pre(a, b, p, pi), n); }
    4131             : GEN
    4132       75845 : Flxn_mul(GEN a, GEN b, long n, ulong p)
    4133       75845 : { return Flxn_mul_pre(a, b, n, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    4134             : 
    4135             : GEN
    4136           0 : Flxn_sqr_pre(GEN a, long n, ulong p, ulong pi)
    4137           0 : { return Flxn_red(Flx_sqr_pre(a, p, pi), n); }
    4138             : GEN
    4139           0 : Flxn_sqr(GEN a, long n, ulong p)
    4140           0 : { return Flxn_sqr_pre(a, n, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    4141             : 
    4142             : /* (f*g) \/ x^n */
    4143             : static GEN
    4144      938974 : Flx_mulhigh_i(GEN f, GEN g, long n, ulong p, ulong pi)
    4145      938974 : { return Flx_shift(Flx_mul_pre(f, g, p, pi),-n); }
    4146             : 
    4147             : static GEN
    4148      517019 : Flxn_mulhigh(GEN f, GEN g, long n2, long n, ulong p, ulong pi)
    4149             : {
    4150      517019 :   GEN F = Flx_blocks(f, n2, 2), fl = gel(F,1), fh = gel(F,2);
    4151      516758 :   return Flx_add(Flx_mulhigh_i(fl, g, n2, p, pi),
    4152             :                  Flxn_mul_pre(fh, g, n - n2, p, pi), p);
    4153             : }
    4154             : 
    4155             : /* g==NULL -> assume g==1 */
    4156             : GEN
    4157       55195 : Flxn_div_pre(GEN g, GEN f, long e, ulong p, ulong pi)
    4158             : {
    4159       55195 :   pari_sp av = avma, av2;
    4160             :   ulong mask;
    4161             :   GEN W;
    4162       55195 :   long n = 1;
    4163       55195 :   if (lg(f) <= 2) pari_err_INV("Flxn_inv",f);
    4164       55195 :   W = Fl_to_Flx(Fl_inv(uel(f,2),p), f[1]);
    4165       55206 :   mask = quadratic_prec_mask(e);
    4166       55208 :   av2 = avma;
    4167      259169 :   for (;mask>1;)
    4168             :   {
    4169             :     GEN u, fr;
    4170      203939 :     long n2 = n;
    4171      203939 :     n<<=1; if (mask & 1) n--;
    4172      203939 :     mask >>= 1;
    4173      203939 :     fr = Flxn_red(f, n);
    4174      203808 :     if (mask>1 || !g)
    4175             :     {
    4176      149667 :       u = Flxn_mul_pre(W, Flxn_mulhigh(fr, W, n2, n, p, pi), n-n2, p, pi);
    4177      149952 :       W = Flx_sub(W, Flx_shift(u, n2), p);
    4178             :     } else
    4179             :     {
    4180       54141 :       GEN y = Flxn_mul_pre(g, W, n, p, pi), yt =  Flxn_red(y, n-n2);
    4181       54112 :       u = Flxn_mul_pre(yt, Flxn_mulhigh(fr,  W, n2, n, p, pi), n-n2, p, pi);
    4182       54137 :       W = Flx_sub(y, Flx_shift(u, n2), p);
    4183             :     }
    4184      203971 :     if (gc_needed(av2,2))
    4185             :     {
    4186           0 :       if(DEBUGMEM>1) pari_warn(warnmem,"Flxn_div, e = %ld", n);
    4187           0 :       W = gc_upto(av2, W);
    4188             :     }
    4189             :   }
    4190       55230 :   return gc_upto(av, W);
    4191             : }
    4192             : GEN
    4193       55176 : Flxn_div(GEN g, GEN f, long e, ulong p)
    4194       55176 : { return Flxn_div_pre(g, f, e, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    4195             : 
    4196             : GEN
    4197        1037 : Flxn_inv(GEN f, long e, ulong p)
    4198        1037 : { return Flxn_div(NULL, f, e, p); }
    4199             : 
    4200             : GEN
    4201      109397 : Flxn_expint(GEN h, long e, ulong p)
    4202             : {
    4203      109397 :   pari_sp av = avma, av2;
    4204      109397 :   long v = h[1], n=1;
    4205      109397 :   GEN f = pol1_Flx(v), g = pol1_Flx(v);
    4206      109366 :   ulong mask = quadratic_prec_mask(e), pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    4207      109374 :   av2 = avma;
    4208      422801 :   for (;mask>1;)
    4209             :   {
    4210             :     GEN u, w;
    4211      422756 :     long n2 = n;
    4212      422756 :     n<<=1; if (mask & 1) n--;
    4213      422756 :     mask >>= 1;
    4214      422756 :     u = Flxn_mul_pre(g, Flx_mulhigh_i(f, Flxn_red(h, n2-1), n2-1, p,pi), n-n2, p,pi);
    4215      422734 :     u = Flx_add(u, Flx_shift(Flxn_red(h, n-1), 1-n2), p);
    4216      422782 :     w = Flxn_mul_pre(f, Flx_integXn(u, n2-1, p), n-n2, p, pi);
    4217      422714 :     f = Flx_add(f, Flx_shift(w, n2), p);
    4218      422828 :     if (mask<=1) break;
    4219      313445 :     u = Flxn_mul_pre(g, Flxn_mulhigh(f, g, n2, n, p, pi), n-n2, p, pi);
    4220      313416 :     g = Flx_sub(g, Flx_shift(u, n2), p);
    4221      313427 :     if (gc_needed(av2,2))
    4222             :     {
    4223           0 :       if (DEBUGMEM>1) pari_warn(warnmem,"Flxn_exp, e = %ld", n);
    4224           0 :       (void)gc_all(av2, 2, &f, &g);
    4225             :     }
    4226             :   }
    4227      109428 :   return gc_upto(av, f);
    4228             : }
    4229             : 
    4230             : GEN
    4231           0 : Flxn_exp(GEN h, long e, ulong p)
    4232             : {
    4233           0 :   if (degpol(h)<1 || uel(h,2)!=0)
    4234           0 :     pari_err_DOMAIN("Flxn_exp","valuation", "<", gen_1, h);
    4235           0 :   return Flxn_expint(Flx_deriv(h, p), e, p);
    4236             : }
    4237             : 
    4238             : INLINE GEN
    4239      217365 : Flxn_recip(GEN x, long n)
    4240             : {
    4241      217365 :   GEN z=Flx_recipspec(x+2,lgpol(x),n);
    4242      217244 :   z[1]=x[1];
    4243      217244 :   return z;
    4244             : }
    4245             : 
    4246             : GEN
    4247       54101 : Flx_Newton(GEN P, long n, ulong p)
    4248             : {
    4249       54101 :   pari_sp av = avma;
    4250       54101 :   long d = degpol(P);
    4251       54091 :   GEN dP = Flxn_recip(Flx_deriv(P, p), d);
    4252       54022 :   GEN Q = Flxn_div(dP, Flxn_recip(P, d+1), n, p);
    4253       54089 :   return gc_leaf(av, Q);
    4254             : }
    4255             : 
    4256             : GEN
    4257      109401 : Flx_fromNewton(GEN P, ulong p)
    4258             : {
    4259      109401 :   pari_sp av = avma;
    4260      109401 :   ulong n = Flx_constant(P)+1;
    4261      109401 :   GEN z = Flx_neg(Flx_shift(P, -1), p);
    4262      109397 :   GEN Q = Flxn_recip(Flxn_expint(z, n, p), n);
    4263      109364 :   return gc_leaf(av, Q);
    4264             : }
    4265             : 
    4266             : static void
    4267       12514 : init_invlaplace(long d, ulong p, GEN *pt_P, GEN *pt_V)
    4268             : {
    4269             :   long i;
    4270             :   ulong e;
    4271       12514 :   GEN P = cgetg(d+1, t_VECSMALL);
    4272       12514 :   GEN V = cgetg(d+1, t_VECSMALL);
    4273     1396581 :   for (i=1, e=1; i<=d; i++, e++)
    4274             :   {
    4275     1384067 :     if (e==p)
    4276             :     {
    4277      459153 :       e = 0;
    4278      459153 :       V[i] = u_lvalrem(i, p, &uel(P,i));
    4279             :     } else
    4280             :     {
    4281      924914 :       V[i] = 0; uel(P,i) = i;
    4282             :     }
    4283             :   }
    4284       12514 :   *pt_P = P; *pt_V = V;
    4285       12514 : }
    4286             : 
    4287             : /* return p^val * FpX_invLaplace(1+x+...x^(n-1), q), with q a power of p and
    4288             :  * val large enough to compensate for the power of p in the factorials */
    4289             : 
    4290             : static GEN
    4291         497 : ZpX_invLaplace_init(long n, GEN q, ulong p, long v, long sv)
    4292             : {
    4293         497 :   pari_sp av = avma;
    4294         497 :   long i, d = n-1, w;
    4295             :   GEN y, W, E, t;
    4296         497 :   init_invlaplace(d, p, &E, &W);
    4297         497 :   t = Fp_inv(FpV_prod(Flv_to_ZV(E), q), q);
    4298         497 :   w = zv_sum(W);
    4299         497 :   if (v > w) t = Fp_mul(t, powuu(p, v-w), q);
    4300         497 :   y = cgetg(d+3,t_POL);
    4301         497 :   y[1] = evalsigne(1) | sv;
    4302       28882 :   for (i=d; i>=1; i--)
    4303             :   {
    4304       28385 :     gel(y,i+2) = t;
    4305       28385 :     t = Fp_mulu(t, uel(E,i), q);
    4306       28385 :     if (uel(W,i)) t = Fp_mul(t, powuu(p, uel(W,i)), q);
    4307             :   }
    4308         497 :   gel(y,2) = t;
    4309         497 :   return gc_GEN(av, ZX_renormalize(y, d+3));
    4310             : }
    4311             : 
    4312             : GEN
    4313       27542 : Flx_composedsum(GEN P, GEN Q, ulong p)
    4314             : {
    4315       27542 :   pari_sp av = avma;
    4316       27542 :   long n = 1 + degpol(P)*degpol(Q);
    4317       27536 :   ulong lead = Fl_mul(Fl_powu(Flx_lead(P), degpol(Q), p),
    4318       27537 :                       Fl_powu(Flx_lead(Q), degpol(P), p), p);
    4319             :   GEN R;
    4320       27543 :   if (p >= (ulong)n)
    4321             :   {
    4322       27046 :     GEN Pl = Flx_invLaplace(Flx_Newton(P,n,p), p);
    4323       27058 :     GEN Ql = Flx_invLaplace(Flx_Newton(Q,n,p), p);
    4324       27055 :     GEN L  = Flx_Laplace(Flxn_mul(Pl, Ql, n, p), p);
    4325       27057 :     R = Flx_fromNewton(L, p);
    4326             :   } else
    4327             :   {
    4328         497 :     long v = factorial_lval(n-1, p);
    4329         497 :     long w = 1 + ulogint(n-1, p);
    4330         497 :     GEN pv = powuu(p, v);
    4331         497 :     GEN qf = powuu(p, w), q = mulii(pv, qf), q2 = mulii(q, pv);
    4332         497 :     GEN iL = ZpX_invLaplace_init(n, q, p, v, P[1]);
    4333         497 :     GEN Pl = FpX_convol(iL, FpX_Newton(Flx_to_ZX(P), n, qf), q);
    4334         497 :     GEN Ql = FpX_convol(iL, FpX_Newton(Flx_to_ZX(Q), n, qf), q);
    4335         497 :     GEN Ln = ZX_Z_divexact(FpXn_mul(Pl, Ql, n, q2), pv);
    4336         497 :     GEN L  = ZX_Z_divexact(FpX_Laplace(Ln, q), pv);
    4337         497 :     R = ZX_to_Flx(FpX_fromNewton(L, qf), p);
    4338             :   }
    4339       27530 :   return gc_leaf(av, Flx_Fl_mul(R, lead, p));
    4340             : }
    4341             : 
    4342             : static GEN
    4343        3882 : _Flx_composedsum(void *E, GEN a, GEN b)
    4344        3882 : { return Flx_composedsum(a, b, (ulong)E); }
    4345             : 
    4346             : GEN
    4347       28961 : FlxV_composedsum(GEN V, ulong p)
    4348       28961 : { return gen_product(V, (void *)p, &_Flx_composedsum); }
    4349             : 
    4350             : GEN
    4351           0 : Flx_composedprod(GEN P, GEN Q, ulong p)
    4352             : {
    4353           0 :   pari_sp av = avma;
    4354           0 :   long n = 1+ degpol(P)*degpol(Q);
    4355           0 :   ulong lead = Fl_mul(Fl_powu(Flx_lead(P), degpol(Q), p),
    4356           0 :                       Fl_powu(Flx_lead(Q), degpol(P), p), p);
    4357             :   GEN R;
    4358           0 :   if (p >= (ulong)n)
    4359             :   {
    4360           0 :     GEN L = Flx_convol(Flx_Newton(P,n,p), Flx_Newton(Q,n,p), p);
    4361           0 :     R = Flx_fromNewton(L, p);
    4362             :   } else
    4363             :   {
    4364           0 :     long w = 1 + ulogint(n, p);
    4365           0 :     GEN qf = powuu(p, w);
    4366           0 :     GEN Pl = FpX_convol(FpX_Newton(Flx_to_ZX(P), n, qf), FpX_Newton(Flx_to_ZX(Q), n, qf), qf);
    4367           0 :     R = ZX_to_Flx(FpX_fromNewton(Pl, qf), p);
    4368             :   }
    4369           0 :   return gc_leaf(av, Flx_Fl_mul(R, lead, p));
    4370             : 
    4371             : }
    4372             : 
    4373             : /* (x+1)^n mod p; assume 2 <= n < 2p prime */
    4374             : static GEN
    4375           0 : Fl_Xp1_powu(ulong n, ulong p, long v)
    4376             : {
    4377           0 :   ulong k, d = (n + 1) >> 1;
    4378           0 :   GEN C, V = identity_zv(d);
    4379             : 
    4380           0 :   Flv_inv_inplace(V, p); /* could restrict to odd integers in [3,d] */
    4381           0 :   C = cgetg(n+3, t_VECSMALL);
    4382           0 :   C[1] = v;
    4383           0 :   uel(C,2) = 1UL;
    4384           0 :   uel(C,3) = n%p;
    4385           0 :   uel(C,4) = Fl_mul(odd(n)? n: n-1, n >> 1, p);
    4386             :     /* binom(n,k) = binom(n,k-1) * (n-k+1) / k */
    4387           0 :   if (SMALL_ULONG(p))
    4388           0 :     for (k = 3; k <= d; k++)
    4389           0 :       uel(C,k+2) = Fl_mul(Fl_mul(n-k+1, uel(C,k+1), p), uel(V,k), p);
    4390             :   else
    4391             :   {
    4392           0 :     ulong pi  = get_Fl_red(p);
    4393           0 :     for (k = 3; k <= d; k++)
    4394           0 :       uel(C,k+2) = Fl_mul_pre(Fl_mul(n-k+1, uel(C,k+1), p), uel(V,k), p, pi);
    4395             :   }
    4396           0 :   for (   ; k <= n; k++) uel(C,2+k) = uel(C,2+n-k);
    4397           0 :   return C; /* normalized */
    4398             : }
    4399             : 
    4400             : /* p arbitrary */
    4401             : GEN
    4402       29202 : Flx_translate1_basecase(GEN P, ulong p)
    4403             : {
    4404       29202 :   GEN R = Flx_copy(P);
    4405       29202 :   long i, k, n = degpol(P);
    4406      659170 :   for (i = 1; i <= n; i++)
    4407    14859060 :     for (k = n-i; k < n; k++) uel(R,k+2) = Fl_add(uel(R,k+2), uel(R,k+3), p);
    4408       29202 :   return R;
    4409             : }
    4410             : 
    4411             : static int
    4412       42367 : translate_basecase(long n, ulong p)
    4413             : {
    4414             : #ifdef LONG_IS_64BIT
    4415       36930 :   if (p <= 19) return n < 40;
    4416       30522 :   if (p < 1UL<<30) return n < 58;
    4417           0 :   if (p < 1UL<<59) return n < 100;
    4418           0 :   if (p < 1UL<<62) return n < 120;
    4419           0 :   if (p < 1UL<<63) return n < 240;
    4420           0 :   return n < 250;
    4421             : #else
    4422        5437 :   if (p <= 13) return n < 18;
    4423        4250 :   if (p <= 17) return n < 22;
    4424        4186 :   if (p <= 29) return n < 39;
    4425        3976 :   if (p <= 67) return n < 69;
    4426        3703 :   if (p < 1UL<< 15) return n < 80;
    4427        2047 :   if (p < 1UL<< 16) return n < 100;
    4428           0 :   if (p < 1UL<< 28) return n < 300;
    4429           0 :   return n < 650;
    4430             : #endif
    4431             : }
    4432             : /* assume p prime */
    4433             : GEN
    4434       17108 : Flx_translate1(GEN P, ulong p)
    4435             : {
    4436       17108 :   long d, n = degpol(P);
    4437             :   GEN R, Q, S;
    4438       17108 :   if (translate_basecase(n, p)) return Flx_translate1_basecase(P, p);
    4439             :   /* n > 0 */
    4440        1148 :   d = n >> 1;
    4441        1148 :   if ((ulong)n < p)
    4442             :   {
    4443           0 :     R = Flx_translate1(Flxn_red(P, d), p);
    4444           0 :     Q = Flx_translate1(Flx_shift(P, -d), p);
    4445           0 :     S = Fl_Xp1_powu(d, p, P[1]);
    4446           0 :     return Flx_add(Flx_mul(Q, S, p), R, p);
    4447             :   }
    4448             :   else
    4449             :   {
    4450             :     ulong q;
    4451        1148 :     if ((ulong)d > p) (void)ulogintall(d, p, &q); else q = p;
    4452        1148 :     R = Flx_translate1(Flxn_red(P, q), p);
    4453        1148 :     Q = Flx_translate1(Flx_shift(P, -q), p);
    4454        1148 :     S = Flx_add(Flx_shift(Q, q), Q, p);
    4455        1148 :     return Flx_add(S, R, p); /* P(x+1) = Q(x+1) (x^q+1) + R(x+1) */
    4456             :   }
    4457             : }
    4458             : 
    4459             : GEN
    4460           0 : Flx_Fl_translate(GEN P, ulong c, ulong p)
    4461             : {
    4462           0 :   pari_sp av = avma;
    4463             :   GEN Q;
    4464           0 :   if (c==0) return Flx_copy(P);
    4465           0 :   if (c==1) return Flx_translate1(P, p);
    4466           0 :   Q = Flx_unscale(Flx_translate1(Flx_unscale(P, c, p), p), Fl_inv(c, p), p);
    4467           0 :   return gc_leaf(av, Q);
    4468             : }
    4469             : 
    4470             : static GEN
    4471       12017 : zl_Xp1_powu(ulong n, ulong p, ulong q, long e, long vs)
    4472             : {
    4473       12017 :   ulong k, d = n >> 1, c, v = 0;
    4474       12017 :   GEN C, V, W, U = upowers(p, e-1);
    4475       12017 :   init_invlaplace(d, p, &V, &W);
    4476       12017 :   Flv_inv_inplace(V, q);
    4477       12017 :   C = cgetg(n+3, t_VECSMALL);
    4478       12017 :   C[1] = vs;
    4479       12017 :   uel(C,2) = 1UL;
    4480       12017 :   uel(C,3) = n%q;
    4481       12017 :   v = u_lvalrem(n, p, &c);
    4482     1355682 :   for (k = 2; k <= d; k++)
    4483             :   {
    4484             :     ulong w;
    4485     1343665 :     v += u_lvalrem(n-k+1, p, &w) - W[k];
    4486     1343665 :     c = Fl_mul(Fl_mul(w%q, c, q), uel(V,k), q);
    4487     1343665 :     uel(C,2+k) = v >= (ulong)e ? 0: v==0 ? c : Fl_mul(c, uel(U, v+1), q);
    4488             :   }
    4489     1374521 :   for (   ; k <= n; k++) uel(C,2+k) = uel(C,2+n-k);
    4490       12017 :   return C; /* normalized */
    4491             : }
    4492             : 
    4493             : GEN
    4494       25259 : zlx_translate1(GEN P, ulong p, long e)
    4495             : {
    4496       25259 :   ulong d, q = upowuu(p,e), n = degpol(P);
    4497             :   GEN R, Q, S;
    4498       25259 :   if (translate_basecase(n, q)) return Flx_translate1_basecase(P, q);
    4499             :   /* n > 0 */
    4500       12017 :   d = n >> 1;
    4501       12017 :   R = zlx_translate1(Flxn_red(P, d), p, e);
    4502       12017 :   Q = zlx_translate1(Flx_shift(P, -d), p, e);
    4503       12017 :   S = zl_Xp1_powu(d, p, q, e, P[1]);
    4504       12017 :   return Flx_add(Flx_mul(Q, S, q), R, q);
    4505             : }
    4506             : 
    4507             : /***********************************************************************/
    4508             : /**                               Fl2                                 **/
    4509             : /***********************************************************************/
    4510             : /* Fl2 objects are Flv of length 2 [a,b] representing a+bsqrt(D) for
    4511             :  * a nonsquare D. */
    4512             : 
    4513             : INLINE GEN
    4514     7558683 : mkF2(ulong a, ulong b) { return mkvecsmall2(a,b); }
    4515             : 
    4516             : /* allow pi = 0 */
    4517             : GEN
    4518     2014572 : Fl2_mul_pre(GEN x, GEN y, ulong D, ulong p, ulong pi)
    4519             : {
    4520             :   ulong xaya, xbyb, Db2, mid, z1, z2;
    4521     2014572 :   ulong x1 = x[1], x2 = x[2], y1 = y[1], y2 = y[2];
    4522     2014572 :   if (pi)
    4523             :   {
    4524     2014594 :     xaya = Fl_mul_pre(x1,y1,p,pi);
    4525     2014967 :     if (x2==0 && y2==0) return mkF2(xaya,0);
    4526     1938938 :     if (x2==0) return mkF2(xaya,Fl_mul_pre(x1,y2,p,pi));
    4527     1913206 :     if (y2==0) return mkF2(xaya,Fl_mul_pre(x2,y1,p,pi));
    4528     1912952 :     xbyb = Fl_mul_pre(x2,y2,p,pi);
    4529     1912816 :     mid = Fl_mul_pre(Fl_add(x1,x2,p), Fl_add(y1,y2,p),p,pi);
    4530     1913014 :     Db2 = Fl_mul_pre(D, xbyb, p,pi);
    4531             :   }
    4532           0 :   else if (p & HIGHMASK)
    4533             :   {
    4534           0 :     xaya = Fl_mul(x1,y1,p);
    4535           0 :     if (x2==0 && y2==0) return mkF2(xaya,0);
    4536           0 :     if (x2==0) return mkF2(xaya,Fl_mul(x1,y2,p));
    4537           0 :     if (y2==0) return mkF2(xaya,Fl_mul(x2,y1,p));
    4538           0 :     xbyb = Fl_mul(x2,y2,p);
    4539           0 :     mid = Fl_mul(Fl_add(x1,x2,p), Fl_add(y1,y2,p),p);
    4540           0 :     Db2 = Fl_mul(D, xbyb, p);
    4541             :   }
    4542             :   else
    4543             :   {
    4544           0 :     xaya = (x1 * y1) % p;
    4545           0 :     if (x2==0 && y2==0) return mkF2(xaya,0);
    4546           0 :     if (x2==0) return mkF2(xaya, (x1 * y2) % p);
    4547           0 :     if (y2==0) return mkF2(xaya, (x2 * y1) % p);
    4548           0 :     xbyb = (x2 * y2) % p;
    4549           0 :     mid = (Fl_add(x1,x2,p) * Fl_add(y1,y2,p)) % p;
    4550           0 :     Db2 = (D * xbyb) % p;
    4551             :   }
    4552     1912930 :   z1 = Fl_add(xaya,Db2,p);
    4553     1912928 :   z2 = Fl_sub(mid,Fl_add(xaya,xbyb,p),p);
    4554     1912935 :   return mkF2(z1,z2);
    4555             : }
    4556             : 
    4557             : /* allow pi = 0 */
    4558             : GEN
    4559     5074028 : Fl2_sqr_pre(GEN x, ulong D, ulong p, ulong pi)
    4560             : {
    4561     5074028 :   ulong a = x[1], b = x[2];
    4562             :   ulong a2, Db2, ab;
    4563     5074028 :   if (pi)
    4564             :   {
    4565     5074105 :     a2 = Fl_sqr_pre(a,p,pi);
    4566     5075993 :     if (b==0) return mkF2(a2,0);
    4567     4839744 :     Db2= Fl_mul_pre(D, Fl_sqr_pre(b,p,pi), p,pi);
    4568     4839907 :     ab = Fl_mul_pre(a,b,p,pi);
    4569             :   }
    4570           0 :   else if (p & HIGHMASK)
    4571             :   {
    4572           0 :     a2 = Fl_sqr(a,p);
    4573           0 :     if (b==0) return mkF2(a2,0);
    4574           0 :     Db2= Fl_mul(D, Fl_sqr(b,p), p);
    4575           0 :     ab = Fl_mul(a,b,p);
    4576             :   }
    4577             :   else
    4578             :   {
    4579           0 :     a2 = (a * a) % p;
    4580           0 :     if (b==0) return mkF2(a2,0);
    4581           0 :     Db2= (D * ((b * b) % p)) % p;
    4582           0 :     ab = (a * b) % p;
    4583             :   }
    4584     4839676 :   return mkF2(Fl_add(a2,Db2,p), Fl_double(ab,p));
    4585             : }
    4586             : 
    4587             : /* allow pi = 0 */
    4588             : ulong
    4589      128169 : Fl2_norm_pre(GEN x, ulong D, ulong p, ulong pi)
    4590             : {
    4591      128169 :   ulong a = x[1], b = x[2], a2;
    4592      128169 :   if (pi)
    4593             :   {
    4594       76290 :     a2 = Fl_sqr_pre(a,p,pi);
    4595       76290 :     return b? Fl_sub(a2, Fl_mul_pre(D, Fl_sqr_pre(b, p,pi), p,pi), p): a2;
    4596             :   }
    4597       51879 :   else if (p & HIGHMASK)
    4598             :   {
    4599           0 :     a2 = Fl_sqr(a,p);
    4600           0 :     return b? Fl_sub(a2, Fl_mul(D, Fl_sqr(b, p), p), p): a2;
    4601             :   }
    4602             :   else
    4603             :   {
    4604       51879 :     a2 = (a * a) % p;
    4605       51879 :     return b? Fl_sub(a2, (D * ((b * b) % p)) % p, p): a2;
    4606             :   }
    4607             : }
    4608             : 
    4609             : /* allow pi = 0 */
    4610             : GEN
    4611      202095 : Fl2_inv_pre(GEN x, ulong D, ulong p, ulong pi)
    4612             : {
    4613      202095 :   ulong a = x[1], b = x[2], n, ni;
    4614      202095 :   if (b == 0) return mkF2(Fl_inv(a,p), 0);
    4615      168193 :   b = Fl_neg(b, p);
    4616      168195 :   if (pi)
    4617             :   {
    4618      168195 :     n = Fl_sub(Fl_sqr_pre(a, p,pi),
    4619             :                Fl_mul_pre(D, Fl_sqr_pre(b, p,pi), p,pi), p);
    4620      168194 :     ni = Fl_inv(n,p);
    4621      168197 :     return mkF2(Fl_mul_pre(a, ni, p,pi), Fl_mul_pre(b, ni, p,pi));
    4622             :   }
    4623           0 :   else if (p & HIGHMASK)
    4624             :   {
    4625           0 :     n = Fl_sub(Fl_sqr(a, p), Fl_mul(D, Fl_sqr(b, p), p), p);
    4626           0 :     ni = Fl_inv(n,p);
    4627           0 :     return mkF2(Fl_mul(a, ni, p), Fl_mul(b, ni, p));
    4628             :   }
    4629             :   else
    4630             :   {
    4631           0 :     n = Fl_sub((a * a) % p, (D * ((b * b) % p)) % p, p);
    4632           0 :     ni = Fl_inv(n,p);
    4633           0 :     return mkF2((a * ni) % p, (b * ni) % p);
    4634             :   }
    4635             : }
    4636             : 
    4637             : int
    4638      462956 : Fl2_equal1(GEN x) { return x[1]==1 && x[2]==0; }
    4639             : 
    4640             : struct _Fl2 {
    4641             :   ulong p, pi, D;
    4642             : };
    4643             : 
    4644             : static GEN
    4645     5074022 : _Fl2_sqr(void *data, GEN x)
    4646             : {
    4647     5074022 :   struct _Fl2 *D = (struct _Fl2*)data;
    4648     5074022 :   return Fl2_sqr_pre(x, D->D, D->p, D->pi);
    4649             : }
    4650             : static GEN
    4651     1985544 : _Fl2_mul(void *data, GEN x, GEN y)
    4652             : {
    4653     1985544 :   struct _Fl2 *D = (struct _Fl2*)data;
    4654     1985544 :   return Fl2_mul_pre(x,y, D->D, D->p, D->pi);
    4655             : }
    4656             : 
    4657             : /* n-Power of x in Z/pZ[X]/(T), as t_VECSMALL; allow pi = 0 */
    4658             : GEN
    4659      690574 : Fl2_pow_pre(GEN x, GEN n, ulong D, ulong p, ulong pi)
    4660             : {
    4661      690574 :   pari_sp av = avma;
    4662             :   struct _Fl2 d;
    4663             :   GEN y;
    4664      690574 :   long s = signe(n);
    4665      690574 :   if (!s) return mkF2(1,0);
    4666      612182 :   if (s < 0)
    4667      202096 :     x = Fl2_inv_pre(x,D,p,pi);
    4668      612178 :   if (is_pm1(n)) return s < 0 ? x : zv_copy(x);
    4669      451891 :   d.p = p; d.pi = pi; d.D=D;
    4670      451891 :   y = gen_pow_i(x, n, (void*)&d, &_Fl2_sqr, &_Fl2_mul);
    4671      451938 :   return gc_leaf(av, y);
    4672             : }
    4673             : 
    4674             : static GEN
    4675      690561 : _Fl2_pow(void *data, GEN x, GEN n)
    4676             : {
    4677      690561 :   struct _Fl2 *D = (struct _Fl2*)data;
    4678      690561 :   return Fl2_pow_pre(x, n, D->D, D->p, D->pi);
    4679             : }
    4680             : 
    4681             : static GEN
    4682      118287 : _Fl2_rand(void *data)
    4683             : {
    4684      118287 :   struct _Fl2 *D = (struct _Fl2*)data;
    4685      118287 :   ulong a = random_Fl(D->p), b=random_Fl(D->p-1)+1;
    4686      118288 :   return mkF2(a,b);
    4687             : }
    4688             : 
    4689             : GEN
    4690       65765 : Fl2_sqrt_pre(GEN z, ulong D, ulong p, ulong pi)
    4691             : {
    4692       65765 :   ulong a = uel(z,1), b = uel(z,2), as2, u, v, s;
    4693       65765 :   ulong y = Fl_2gener_pre_i(D, p, pi);
    4694       65765 :   if (b == 0)
    4695       18930 :     return krouu(a, p)==1 ? mkF2(Fl_sqrt_pre_i(a, y, p, pi), 0)
    4696       18930 :                           : mkF2(0, Fl_sqrt_pre_i(Fl_div(a, D, p), y, p, pi));
    4697       52709 :   s = Fl_sqrt_pre_i(Fl2_norm_pre(z, D, p, pi), y, p, pi);
    4698       52709 :   if (s==~0UL) return NULL;
    4699       49535 :   as2 = Fl_halve(Fl_add(a, s, p), p);
    4700       49535 :   if (krouu(as2, p)==-1) as2 = Fl_sub(as2, s, p);
    4701       49535 :   u = Fl_sqrt_pre_i(as2, y, p, pi);
    4702       49535 :   v = Fl_div(b, Fl_double(u, p), p);
    4703       49535 :   return mkF2(u,v);
    4704             : }
    4705             : 
    4706             : static const struct bb_group Fl2_star={_Fl2_mul, _Fl2_pow, _Fl2_rand,
    4707             :        hash_GEN, zv_equal, Fl2_equal1, NULL};
    4708             : 
    4709             : /* allow pi = 0 */
    4710             : GEN
    4711       78393 : Fl2_sqrtn_pre(GEN a, GEN n, ulong D, ulong p, ulong pi, GEN *zeta)
    4712             : {
    4713             :   struct _Fl2 E;
    4714             :   GEN o;
    4715       78393 :   if (a[1]==0 && a[2]==0)
    4716             :   {
    4717           0 :     if (signe(n) < 0) pari_err_INV("Flxq_sqrtn",a);
    4718           0 :     if (zeta) *zeta=mkF2(1,0);
    4719           0 :     return zv_copy(a);
    4720             :   }
    4721       78393 :   E.p=p; E.pi = pi; E.D = D;
    4722       78393 :   o = subiu(powuu(p,2), 1);
    4723       78392 :   return gen_Shanks_sqrtn(a,n,o,zeta,(void*)&E,&Fl2_star);
    4724             : }
    4725             : 
    4726             : /* allow pi = 0 */
    4727             : GEN
    4728       10773 : Flx_Fl2_eval_pre(GEN x, GEN y, ulong D, ulong p, ulong pi)
    4729             : {
    4730             :   GEN p1;
    4731       10773 :   long i = lg(x)-1;
    4732       10773 :   if (i <= 2)
    4733        2177 :     return mkF2(i == 2? x[2]: 0, 0);
    4734        8596 :   p1 = mkF2(x[i], 0);
    4735       37625 :   for (i--; i>=2; i--)
    4736             :   {
    4737       29029 :     p1 = Fl2_mul_pre(p1, y, D, p, pi);
    4738       29029 :     uel(p1,1) = Fl_add(uel(p1,1), uel(x,i), p);
    4739             :   }
    4740        8596 :   return p1;
    4741             : }
    4742             : 
    4743             : /***********************************************************************/
    4744             : /**                               FlxV                                **/
    4745             : /***********************************************************************/
    4746             : /* FlxV are t_VEC with Flx coefficients. */
    4747             : 
    4748             : GEN
    4749       34356 : FlxV_Flc_mul(GEN V, GEN W, ulong p)
    4750             : {
    4751       34356 :   pari_sp ltop=avma;
    4752             :   long i;
    4753       34356 :   GEN z = Flx_Fl_mul(gel(V,1),W[1],p);
    4754      255934 :   for(i=2;i<lg(V);i++)
    4755      221578 :     z=Flx_add(z,Flx_Fl_mul(gel(V,i),W[i],p),p);
    4756       34356 :   return gc_leaf(ltop,z);
    4757             : }
    4758             : 
    4759             : GEN
    4760           0 : ZXV_to_FlxV(GEN x, ulong p)
    4761           0 : { pari_APPLY_type(t_VEC, ZX_to_Flx(gel(x,i), p)) }
    4762             : 
    4763             : GEN
    4764     3805468 : ZXT_to_FlxT(GEN x, ulong p)
    4765             : {
    4766     3805468 :   if (typ(x) == t_POL)
    4767     3746774 :     return ZX_to_Flx(x, p);
    4768             :   else
    4769      192685 :     pari_APPLY_type(t_VEC, ZXT_to_FlxT(gel(x,i), p))
    4770             : }
    4771             : 
    4772             : GEN
    4773      172280 : FlxV_to_Flm(GEN x, long n)
    4774      928631 : { pari_APPLY_type(t_MAT, Flx_to_Flv(gel(x,i), n)) }
    4775             : 
    4776             : GEN
    4777           0 : FlxV_red(GEN x, ulong p)
    4778           0 : { pari_APPLY_type(t_VEC, Flx_red(gel(x,i), p)) }
    4779             : 
    4780             : GEN
    4781      294167 : FlxT_red(GEN x, ulong p)
    4782             : {
    4783      294167 :   if (typ(x) == t_VECSMALL)
    4784      197930 :     return Flx_red(x, p);
    4785             :   else
    4786      322709 :     pari_APPLY_type(t_VEC, FlxT_red(gel(x,i), p))
    4787             : }
    4788             : 
    4789             : GEN
    4790      113589 : FlxqV_dotproduct_pre(GEN x, GEN y, GEN T, ulong p, ulong pi)
    4791             : {
    4792      113589 :   long i, lx = lg(x);
    4793             :   pari_sp av;
    4794             :   GEN c;
    4795      113589 :   if (lx == 1) return pol0_Flx(get_Flx_var(T));
    4796      113589 :   av = avma; c = Flx_mul_pre(gel(x,1),gel(y,1), p, pi);
    4797      464499 :   for (i=2; i<lx; i++) c = Flx_add(c, Flx_mul_pre(gel(x,i),gel(y,i), p, pi), p);
    4798      113589 :   return gc_leaf(av, Flx_rem_pre(c,T,p,pi));
    4799             : }
    4800             : GEN
    4801           0 : FlxqV_dotproduct(GEN x, GEN y, GEN T, ulong p)
    4802           0 : { return FlxqV_dotproduct_pre(x, y, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    4803             : 
    4804             : GEN
    4805        1526 : FlxqX_dotproduct(GEN x, GEN y, GEN T, ulong p)
    4806             : {
    4807        1526 :   long i, l = minss(lg(x), lg(y));
    4808             :   ulong pi;
    4809             :   pari_sp av;
    4810             :   GEN c;
    4811        1526 :   if (l == 2) return pol0_Flx(get_Flx_var(T));
    4812        1513 :   av = avma; pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    4813        1513 :   c = Flx_mul_pre(gel(x,2),gel(y,2), p, pi);
    4814        4494 :   for (i=3; i<l; i++) c = Flx_add(c, Flx_mul_pre(gel(x,i),gel(y,i), p, pi), p);
    4815        1513 :   return gc_leaf(av, Flx_rem_pre(c,T,p,pi));
    4816             : }
    4817             : 
    4818             : /* allow pi = 0 */
    4819             : GEN
    4820      325154 : FlxC_eval_powers_pre(GEN z, GEN x, ulong p, ulong pi)
    4821             : {
    4822      325154 :   long i, l = lg(z);
    4823      325154 :   GEN y = cgetg(l, t_VECSMALL);
    4824    15065854 :   for (i=1; i<l; i++) uel(y,i) = Flx_eval_powers_pre(gel(z,i), x, p, pi);
    4825      325059 :   return y;
    4826             : }
    4827             : 
    4828             : /***********************************************************************/
    4829             : /**                               FlxM                                **/
    4830             : /***********************************************************************/
    4831             : /* allow pi = 0 */
    4832             : GEN
    4833       22302 : FlxM_eval_powers_pre(GEN z, GEN x, ulong p, ulong pi)
    4834             : {
    4835       22302 :   long i, l = lg(z);
    4836       22302 :   GEN y = cgetg(l, t_MAT);
    4837      347456 :   for (i=1; i<l; i++) gel(y,i) = FlxC_eval_powers_pre(gel(z,i), x, p, pi);
    4838       22303 :   return y;
    4839             : }
    4840             : 
    4841             : GEN
    4842           0 : zero_FlxC(long n, long sv)
    4843             : {
    4844           0 :   GEN x = cgetg(n + 1, t_COL), z = zero_Flx(sv);
    4845             :   long i;
    4846           0 :   for (i = 1; i <= n; i++) gel(x, i) = z;
    4847           0 :   return x;
    4848             : }
    4849             : 
    4850             : GEN
    4851           0 : FlxC_neg(GEN x, ulong p)
    4852           0 : { pari_APPLY_type(t_COL, Flx_neg(gel(x, i), p)) }
    4853             : 
    4854             : GEN
    4855           0 : FlxC_sub(GEN x, GEN y, ulong p)
    4856           0 : { pari_APPLY_type(t_COL, Flx_sub(gel(x, i), gel(y, i), p)) }
    4857             : 
    4858             : GEN
    4859           0 : zero_FlxM(long r, long c, long sv)
    4860             : {
    4861           0 :   GEN x = cgetg(c + 1, t_MAT), z = zero_FlxC(r, sv);
    4862             :   long j;
    4863           0 :   for (j = 1; j <= c; j++) gel(x, j) = z;
    4864           0 :   return x;
    4865             : }
    4866             : 
    4867             : GEN
    4868           0 : zero_FlxM_copy(long r, long c, long sv)
    4869             : {
    4870           0 :   GEN x = cgetg(c + 1, t_MAT);
    4871             :   long j;
    4872           0 :   for (j = 1; j <= c; j++) gel(x, j) = zero_FlxC(r, sv);
    4873           0 :   return x;
    4874             : }
    4875             : 
    4876             : GEN
    4877           0 : FlxM_neg(GEN x, ulong p)
    4878           0 : { pari_APPLY_same(FlxC_neg(gel(x, i), p)) }
    4879             : 
    4880             : GEN
    4881           0 : FlxM_sub(GEN x, GEN y, ulong p)
    4882           0 : { pari_APPLY_same(FlxC_sub(gel(x, i), gel(y,i), p)) }
    4883             : 
    4884             : GEN
    4885           0 : FlxC_Fl_translate(GEN x, ulong c, ulong p)
    4886           0 : { pari_APPLY_type(t_COL, Flx_Fl_translate(gel(x,i), c, p)) }
    4887             : 
    4888             : GEN
    4889           0 : FlxM_Fl_translate(GEN x, ulong c, ulong p)
    4890           0 : { pari_APPLY_same(FlxC_Fl_translate(gel(x,i), c, p)) }
    4891             : 
    4892             : GEN
    4893      170737 : FlxqC_red_pre(GEN x, GEN T, ulong p, ulong pi)
    4894     3739496 : { pari_APPLY_type(t_COL, Flx_rem_pre(gel(x,i), T, p, pi)) }
    4895             : 
    4896             : GEN
    4897       74264 : FlxqM_red_pre(GEN x, GEN T, ulong p, ulong pi)
    4898      245001 : { pari_APPLY_same(FlxqC_red_pre(gel(x,i), T, p, pi)) }
    4899             : 
    4900             : GEN
    4901           0 : FlxqC_Flxq_mul(GEN x, GEN y, GEN T, ulong p)
    4902           0 : { pari_APPLY_type(t_COL, Flxq_mul(gel(x, i), y, T, p)) }
    4903             : 
    4904             : GEN
    4905           0 : FlxqM_Flxq_mul(GEN x, GEN y, GEN T, ulong p)
    4906           0 : { pari_APPLY_same(FlxqC_Flxq_mul(gel(x, i), y, T, p)) }
    4907             : 
    4908             : static GEN
    4909       35257 : FlxM_pack_ZM(GEN M, GEN (*pack)(GEN, long)) {
    4910             :   long i, j, l, lc;
    4911       35257 :   GEN N = cgetg_copy(M, &l), x;
    4912       35257 :   if (l == 1)
    4913           0 :     return N;
    4914       35257 :   lc = lgcols(M);
    4915      120938 :   for (j = 1; j < l; j++) {
    4916       85681 :     gel(N, j) = cgetg(lc, t_COL);
    4917      538944 :     for (i = 1; i < lc; i++) {
    4918      453263 :       x = gcoeff(M, i, j);
    4919      453263 :       gcoeff(N, i, j) = pack(x + 2, lgpol(x));
    4920             :     }
    4921             :   }
    4922       35257 :   return N;
    4923             : }
    4924             : 
    4925             : static GEN
    4926      414404 : kron_pack_Flx_spec_half(GEN x, long l) {
    4927      414404 :   if (l == 0) return gen_0;
    4928      319068 :   return Flx_to_int_halfspec(x, l);
    4929             : }
    4930             : 
    4931             : static GEN
    4932       35470 : kron_pack_Flx_spec(GEN x, long l) {
    4933             :   long i;
    4934             :   GEN w, y;
    4935       35470 :   if (l == 0)
    4936        6545 :     return gen_0;
    4937       28925 :   y = cgetipos(l + 2);
    4938      101157 :   for (i = 0, w = int_LSW(y); i < l; i++, w = int_nextW(w))
    4939       72232 :     *w = x[i];
    4940       28925 :   return y;
    4941             : }
    4942             : 
    4943             : static GEN
    4944        3389 : kron_pack_Flx_spec_2(GEN x, long l) { return Flx_eval2BILspec(x, 2, l); }
    4945             : 
    4946             : static GEN
    4947           0 : kron_pack_Flx_spec_3(GEN x, long l) { return Flx_eval2BILspec(x, 3, l); }
    4948             : 
    4949             : static GEN
    4950       31047 : kron_unpack_Flx(GEN z, ulong p)
    4951             : {
    4952       31047 :   long i, l = lgefint(z);
    4953       31047 :   GEN x = cgetg(l, t_VECSMALL), w;
    4954      144373 :   for (w = int_LSW(z), i = 2; i < l; w = int_nextW(w), i++)
    4955      113326 :     x[i] = ((ulong) *w) % p;
    4956       31047 :   return Flx_renormalize(x, l);
    4957             : }
    4958             : 
    4959             : static GEN
    4960        2930 : kron_unpack_Flx_2(GEN x, ulong p) {
    4961        2930 :   long d = (lgefint(x)-1)/2 - 1;
    4962        2930 :   return Z_mod2BIL_Flx_2(x, d, p);
    4963             : }
    4964             : 
    4965             : static GEN
    4966           0 : kron_unpack_Flx_3(GEN x, ulong p) {
    4967           0 :   long d = lgefint(x)/3 - 1;
    4968           0 :   return Z_mod2BIL_Flx_3(x, d, p);
    4969             : }
    4970             : 
    4971             : static GEN
    4972      113183 : FlxM_pack_ZM_bits(GEN M, long b)
    4973             : {
    4974             :   long i, j, l, lc;
    4975      113183 :   GEN N = cgetg_copy(M, &l), x;
    4976      113183 :   if (l == 1)
    4977           0 :     return N;
    4978      113183 :   lc = lgcols(M);
    4979      461587 :   for (j = 1; j < l; j++) {
    4980      348404 :     gel(N, j) = cgetg(lc, t_COL);
    4981     5848073 :     for (i = 1; i < lc; i++) {
    4982     5499669 :       x = gcoeff(M, i, j);
    4983     5499669 :       gcoeff(N, i, j) = kron_pack_Flx_spec_bits(x + 2, b, lgpol(x));
    4984             :     }
    4985             :   }
    4986      113183 :   return N;
    4987             : }
    4988             : 
    4989             : static GEN
    4990       17632 : ZM_unpack_FlxM(GEN M, ulong p, ulong sv, GEN (*unpack)(GEN, ulong))
    4991             : {
    4992             :   long i, j, l, lc;
    4993       17632 :   GEN N = cgetg_copy(M, &l), x;
    4994       17632 :   if (l == 1)
    4995           0 :     return N;
    4996       17632 :   lc = lgcols(M);
    4997       51323 :   for (j = 1; j < l; j++) {
    4998       33691 :     gel(N, j) = cgetg(lc, t_COL);
    4999      397043 :     for (i = 1; i < lc; i++) {
    5000      363352 :       x = unpack(gcoeff(M, i, j), p);
    5001      363352 :       x[1] = sv;
    5002      363352 :       gcoeff(N, i, j) = x;
    5003             :     }
    5004             :   }
    5005       17632 :   return N;
    5006             : }
    5007             : 
    5008             : static GEN
    5009       56632 : ZM_unpack_FlxM_bits(GEN M, long b, ulong p, ulong pi, long sv)
    5010             : {
    5011             :   long i, j, l, lc;
    5012       56632 :   GEN N = cgetg_copy(M, &l), x;
    5013       56632 :   if (l == 1)
    5014           0 :     return N;
    5015       56632 :   lc = lgcols(M);
    5016       56632 :   if (b < BITS_IN_LONG) {
    5017      184308 :     for (j = 1; j < l; j++) {
    5018      129314 :       gel(N, j) = cgetg(lc, t_COL);
    5019     3169907 :       for (i = 1; i < lc; i++) {
    5020     3040593 :         x = kron_unpack_Flx_bits_narrow(gcoeff(M, i, j), b, p);
    5021     3040593 :         x[1] = sv;
    5022     3040593 :         gcoeff(N, i, j) = x;
    5023             :       }
    5024             :     }
    5025             :   } else {
    5026        1638 :     if (!pi) pi = get_Fl_red(p); /* unset if !SMALL_ULONG(p) */
    5027        9370 :     for (j = 1; j < l; j++) {
    5028        7732 :       gel(N, j) = cgetg(lc, t_COL);
    5029      172546 :       for (i = 1; i < lc; i++) {
    5030      164814 :         x = kron_unpack_Flx_bits_wide(gcoeff(M, i, j), b, p, pi);
    5031      164814 :         x[1] = sv;
    5032      164814 :         gcoeff(N, i, j) = x;
    5033             :       }
    5034             :     }
    5035             :   }
    5036       56632 :   return N;
    5037             : }
    5038             : 
    5039             : static GEN
    5040       74264 : FlxM_mul_Kronecker_i(GEN A, GEN B, ulong p, ulong pi, long d, long sv)
    5041             : {
    5042       74264 :   long b, n = lg(A) - 1;
    5043             :   GEN C, z;
    5044             :   GEN (*pack)(GEN, long), (*unpack)(GEN, ulong);
    5045       74264 :   int is_sqr = A==B;
    5046             : 
    5047       74264 :   z = muliu(muliu(sqru(p - 1), d), n);
    5048       74264 :   b = expi(z) + 1;
    5049             :   /* only do expensive bit-packing if it saves at least 1 limb */
    5050       74264 :   if (b <= BITS_IN_HALFULONG)
    5051       70503 :   { if (nbits2nlong(d*b) == (d + 1)/2) b = BITS_IN_HALFULONG; }
    5052             :   else
    5053             :   {
    5054        3761 :     long l = lgefint(z) - 2;
    5055        3761 :     if (nbits2nlong(d*b) == d*l) b = l*BITS_IN_LONG;
    5056             :   }
    5057             : 
    5058       74264 :   switch (b) {
    5059       16928 :   case BITS_IN_HALFULONG:
    5060       16928 :     pack = kron_pack_Flx_spec_half;
    5061       16928 :     unpack = int_to_Flx_half;
    5062       16928 :     break;
    5063         655 :   case BITS_IN_LONG:
    5064         655 :     pack = kron_pack_Flx_spec;
    5065         655 :     unpack = kron_unpack_Flx;
    5066         655 :     break;
    5067          49 :   case 2*BITS_IN_LONG:
    5068          49 :     pack = kron_pack_Flx_spec_2;
    5069          49 :     unpack = kron_unpack_Flx_2;
    5070          49 :     break;
    5071           0 :   case 3*BITS_IN_LONG:
    5072           0 :     pack = kron_pack_Flx_spec_3;
    5073           0 :     unpack = kron_unpack_Flx_3;
    5074           0 :     break;
    5075       56632 :   default:
    5076       56632 :     A = FlxM_pack_ZM_bits(A, b);
    5077       56632 :     B = is_sqr? A: FlxM_pack_ZM_bits(B, b);
    5078       56632 :     C = ZM_mul(A, B);
    5079       56632 :     return ZM_unpack_FlxM_bits(C, b, p, pi, sv);
    5080             :   }
    5081       17632 :   A = FlxM_pack_ZM(A, pack);
    5082       17632 :   B = is_sqr? A: FlxM_pack_ZM(B, pack);
    5083       17632 :   C = ZM_mul(A, B);
    5084       17632 :   return ZM_unpack_FlxM(C, p, sv, unpack);
    5085             : }
    5086             : 
    5087             : GEN
    5088       74264 : FlxqM_mul_Kronecker(GEN A, GEN B, GEN T, ulong p)
    5089             : {
    5090       74264 :   pari_sp av = avma;
    5091       74264 :   ulong pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    5092       74264 :   long sv = get_Flx_var(T), d = get_Flx_degree(T);
    5093       74264 :   GEN C = FlxM_mul_Kronecker_i(A, B, p, pi, d, sv);
    5094       74264 :   C = FlxqM_red_pre(C, T, p, pi);
    5095       74264 :   return gc_upto(av, C);
    5096             : }
    5097             : 
    5098             : /* assume m > 1 */
    5099             : static long
    5100           0 : FlxV_max_degree_i(GEN x, long m)
    5101             : {
    5102           0 :   long i, l = degpol(gel(x,1));
    5103           0 :   for (i = 2; i < m; i++) l = maxss(l, degpol(gel(x,i)));
    5104           0 :   return l;
    5105             : }
    5106             : 
    5107             : /* assume n > 1 and m > 1 */
    5108             : static long
    5109           0 : FlxM_max_degree_i(GEN x, long n, long m)
    5110             : {
    5111           0 :   long j, l = FlxV_max_degree_i(gel(x,1), m);
    5112           0 :   for (j = 2; j < n; j++) l = maxss(l, FlxV_max_degree_i(gel(x,j), m));
    5113           0 :   return l;
    5114             : }
    5115             : 
    5116             : static long
    5117           0 : FlxM_max_degree(GEN x)
    5118             : {
    5119           0 :   long n = lg(x), m;
    5120           0 :   if (n == 1) return -1;
    5121           0 :   m = lgcols(x); return m == 1? -1: FlxM_max_degree_i(x, n, m);
    5122             : }
    5123             : 
    5124             : GEN
    5125           0 : FlxM_mul(GEN x, GEN y, ulong p)
    5126             : {
    5127           0 :   pari_sp av = avma;
    5128           0 :   ulong pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    5129             :   long sv, d;
    5130           0 :   if (lg(x) == 1) return cgetg(1,t_MAT);
    5131           0 :   if (lg(gel(x,1))==1) return FlxqM_mul(x, y, NULL, p);
    5132           0 :   sv = mael3(x,1,1,1);
    5133           0 :   d = maxss(FlxM_max_degree(x), FlxM_max_degree(y));
    5134           0 :   return gc_GEN(av, FlxM_mul_Kronecker_i(x, y, p, pi, d+1, sv));
    5135             : }

Generated by: LCOV version 1.16