Code coverage tests

This page documents the degree to which the PARI/GP source code is tested by our public test suite, distributed with the source distribution in directory src/test/. This is measured by the gcov utility; we then process gcov output using the lcov frond-end.

We test a few variants depending on Configure flags on the pari.math.u-bordeaux.fr machine (x86_64 architecture), and agregate them in the final report:

The target is to exceed 90% coverage for all mathematical modules (given that branches depending on DEBUGLEVEL or DEBUGMEM are not covered). This script is run to produce the results below.

LCOV - code coverage report
Current view: top level - basemath - Flx.c (source / functions) Hit Total Coverage
Test: PARI/GP v2.18.1 lcov report (development 30550-07450a7a86) Lines: 2553 2914 87.6 %
Date: 2025-11-18 09:22:37 Functions: 304 359 84.7 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /* Copyright (C) 2004  The PARI group.
       2             : 
       3             : This file is part of the PARI/GP package.
       4             : 
       5             : PARI/GP is free software; you can redistribute it and/or modify it under the
       6             : terms of the GNU General Public License as published by the Free Software
       7             : Foundation; either version 2 of the License, or (at your option) any later
       8             : version. It is distributed in the hope that it will be useful, but WITHOUT
       9             : ANY WARRANTY WHATSOEVER.
      10             : 
      11             : Check the License for details. You should have received a copy of it, along
      12             : with the package; see the file 'COPYING'. If not, write to the Free Software
      13             : Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */
      14             : 
      15             : #include "pari.h"
      16             : #include "paripriv.h"
      17             : 
      18             : /* Not so fast arithmetic with polynomials with small coefficients. */
      19             : 
      20             : static GEN
      21   990232489 : get_Flx_red(GEN T, GEN *B)
      22             : {
      23   990232489 :   if (typ(T)!=t_VEC) { *B=NULL; return T; }
      24      648966 :   *B = gel(T,1); return gel(T,2);
      25             : }
      26             : 
      27             : /***********************************************************************/
      28             : /**                              Flx                                  **/
      29             : /***********************************************************************/
      30             : /* Flx objects are defined as follows:
      31             :  * Let l an ulong. An Flx is a t_VECSMALL:
      32             :  * x[0] = codeword
      33             :  * x[1] = evalvarn(variable number)  (signe is not stored).
      34             :  * x[2] = a_0 x[3] = a_1, etc. with 0 <= a_i < l
      35             :  *
      36             :  * signe(x) is not valid. Use degpol(x)>0 instead. */
      37             : /***********************************************************************/
      38             : /**                      Conversion from Flx                          **/
      39             : /***********************************************************************/
      40             : 
      41             : GEN
      42    38306659 : Flx_to_ZX(GEN z)
      43             : {
      44    38306659 :   long i, l = lg(z);
      45    38306659 :   GEN x = cgetg(l,t_POL);
      46   248027886 :   for (i=2; i<l; i++) gel(x,i) = utoi(z[i]);
      47    38295638 :   x[1] = evalsigne(l-2!=0)| z[1]; return x;
      48             : }
      49             : 
      50             : GEN
      51       71629 : Flx_to_FlxX(GEN z, long sv)
      52             : {
      53       71629 :   long i, l = lg(z);
      54       71629 :   GEN x = cgetg(l,t_POL);
      55      279708 :   for (i=2; i<l; i++) gel(x,i) = Fl_to_Flx(z[i], sv);
      56       71624 :   x[1] = evalsigne(l-2!=0)| z[1]; return x;
      57             : }
      58             : 
      59             : /* same as Flx_to_ZX, in place */
      60             : GEN
      61    36578677 : Flx_to_ZX_inplace(GEN z)
      62             : {
      63    36578677 :   long i, l = lg(z);
      64   227961225 :   for (i=2; i<l; i++) gel(z,i) = utoi(z[i]);
      65    36570897 :   settyp(z, t_POL); z[1]=evalsigne(l-2!=0)|z[1]; return z;
      66             : }
      67             : 
      68             : /*Flx_to_Flv=zx_to_zv*/
      69             : GEN
      70    66699918 : Flx_to_Flv(GEN x, long N)
      71             : {
      72    66699918 :   GEN z = cgetg(N+1,t_VECSMALL);
      73    66693862 :   long i, l = lg(x)-1;
      74    66693862 :   x++;
      75   708541821 :   for (i=1; i<l ; i++) z[i]=x[i];
      76   330342672 :   for (   ; i<=N; i++) z[i]=0;
      77    66693862 :   return z;
      78             : }
      79             : 
      80             : /*Flv_to_Flx=zv_to_zx*/
      81             : GEN
      82    25513995 : Flv_to_Flx(GEN x, long sv)
      83             : {
      84    25513995 :   long i, l=lg(x)+1;
      85    25513995 :   GEN z = cgetg(l,t_VECSMALL); z[1]=sv;
      86    25510046 :   x--;
      87   279928592 :   for (i=2; i<l ; i++) z[i]=x[i];
      88    25510046 :   return Flx_renormalize(z,l);
      89             : }
      90             : 
      91             : /*Flm_to_FlxV=zm_to_zxV*/
      92             : GEN
      93        2772 : Flm_to_FlxV(GEN x, long sv)
      94        7455 : { pari_APPLY_type(t_VEC, Flv_to_Flx(gel(x,i), sv)) }
      95             : 
      96             : /*FlxC_to_ZXC=zxC_to_ZXC*/
      97             : GEN
      98      104060 : FlxC_to_ZXC(GEN x)
      99      527425 : { pari_APPLY_type(t_COL, Flx_to_ZX(gel(x,i))) }
     100             : 
     101             : /*FlxC_to_ZXC=zxV_to_ZXV*/
     102             : GEN
     103      606914 : FlxV_to_ZXV(GEN x)
     104     2454730 : { pari_APPLY_type(t_VEC, Flx_to_ZX(gel(x,i))) }
     105             : 
     106             : void
     107     3031460 : FlxV_to_ZXV_inplace(GEN v)
     108             : {
     109             :   long i;
     110     8045772 :   for(i=1;i<lg(v);i++) gel(v,i)= Flx_to_ZX(gel(v,i));
     111     3031340 : }
     112             : 
     113             : /*FlxM_to_ZXM=zxM_to_ZXM*/
     114             : GEN
     115        2485 : FlxM_to_ZXM(GEN x)
     116        8351 : { pari_APPLY_same(FlxC_to_ZXC(gel(x,i))) }
     117             : 
     118             : GEN
     119      397977 : FlxV_to_FlxX(GEN x, long v)
     120             : {
     121      397977 :   long i, l = lg(x)+1;
     122      397977 :   GEN z = cgetg(l,t_POL); z[1] = evalvarn(v);
     123      397977 :   x--;
     124     4999132 :   for (i=2; i<l ; i++) gel(z,i) = gel(x,i);
     125      397977 :   return FlxX_renormalize(z,l);
     126             : }
     127             : 
     128             : GEN
     129           0 : FlxM_to_FlxXV(GEN x, long v)
     130           0 : { pari_APPLY_type(t_COL, FlxV_to_FlxX(gel(x,i), v)) }
     131             : 
     132             : GEN
     133           0 : FlxM_Flx_add_shallow(GEN x, GEN y, ulong p)
     134             : {
     135           0 :   long l = lg(x), i, j;
     136           0 :   GEN z = cgetg(l,t_MAT);
     137             : 
     138           0 :   if (l==1) return z;
     139           0 :   if (l != lgcols(x)) pari_err_OP( "+", x, y);
     140           0 :   for (i=1; i<l; i++)
     141             :   {
     142           0 :     GEN zi = cgetg(l,t_COL), xi = gel(x,i);
     143           0 :     gel(z,i) = zi;
     144           0 :     for (j=1; j<l; j++) gel(zi,j) = gel(xi,j);
     145           0 :     gel(zi,i) = Flx_add(gel(zi,i), y, p);
     146             :   }
     147           0 :   return z;
     148             : }
     149             : 
     150             : /***********************************************************************/
     151             : /**                      Conversion to Flx                            **/
     152             : /***********************************************************************/
     153             : /* Take an integer and return a scalar polynomial mod p,  with evalvarn=vs */
     154             : GEN
     155    21217520 : Fl_to_Flx(ulong x, long sv) { return x? mkvecsmall2(sv, x): pol0_Flx(sv); }
     156             : 
     157             : /* a X^d */
     158             : GEN
     159      943971 : monomial_Flx(ulong a, long d, long vs)
     160             : {
     161             :   GEN P;
     162      943971 :   if (a==0) return pol0_Flx(vs);
     163      943971 :   P = const_vecsmall(d+2, 0);
     164      943977 :   P[1] = vs; P[d+2] = a; return P;
     165             : }
     166             : 
     167             : GEN
     168     7561606 : Z_to_Flx(GEN x, ulong p, long sv)
     169             : {
     170     7561606 :   long u = umodiu(x,p);
     171     7561596 :   return u? mkvecsmall2(sv, u): pol0_Flx(sv);
     172             : }
     173             : 
     174             : /* return x[0 .. dx] mod p as t_VECSMALL. Assume x a t_POL*/
     175             : GEN
     176   171037205 : ZX_to_Flx(GEN x, ulong p)
     177             : {
     178   171037205 :   long i, lx = lg(x);
     179   171037205 :   GEN a = cgetg(lx, t_VECSMALL);
     180   170998907 :   a[1]=((ulong)x[1])&VARNBITS;
     181  1125332802 :   for (i=2; i<lx; i++) a[i] = umodiu(gel(x,i), p);
     182   170996486 :   return Flx_renormalize(a,lx);
     183             : }
     184             : 
     185             : /* return x[0 .. dx] mod p as t_VECSMALL. Assume x a t_POL*/
     186             : GEN
     187     6537849 : zx_to_Flx(GEN x, ulong p)
     188             : {
     189     6537849 :   long i, lx = lg(x);
     190     6537849 :   GEN a = cgetg(lx, t_VECSMALL);
     191     6533496 :   a[1] = x[1];
     192    20121259 :   for (i=2; i<lx; i++) uel(a,i) = umodsu(x[i], p);
     193     6533337 :   return Flx_renormalize(a,lx);
     194             : }
     195             : 
     196             : ulong
     197    73222923 : Rg_to_Fl(GEN x, ulong p)
     198             : {
     199    73222923 :   switch(typ(x))
     200             :   {
     201    48462869 :     case t_INT: return umodiu(x, p);
     202      456930 :     case t_FRAC: {
     203      456930 :       ulong z = umodiu(gel(x,1), p);
     204      456930 :       if (!z) return 0;
     205      447192 :       return Fl_div(z, umodiu(gel(x,2), p), p);
     206             :     }
     207      205955 :     case t_PADIC: return padic_to_Fl(x, p);
     208    24097180 :     case t_INTMOD: {
     209    24097180 :       GEN q = gel(x,1), a = gel(x,2);
     210    24097180 :       if (absequaliu(q, p)) return itou(a);
     211           0 :       if (!dvdiu(q,p)) pari_err_MODULUS("Rg_to_Fl", q, utoipos(p));
     212           0 :       return umodiu(a, p);
     213             :     }
     214           0 :     default: pari_err_TYPE("Rg_to_Fl",x);
     215             :       return 0; /* LCOV_EXCL_LINE */
     216             :   }
     217             : }
     218             : 
     219             : ulong
     220     1710359 : Rg_to_F2(GEN x)
     221             : {
     222     1710359 :   switch(typ(x))
     223             :   {
     224      277550 :     case t_INT: return mpodd(x);
     225           0 :     case t_FRAC:
     226           0 :       if (!mpodd(gel(x,2))) (void)Fl_inv(0,2); /* error */
     227           0 :       return mpodd(gel(x,1));
     228           0 :     case t_PADIC:
     229           0 :       if (!absequaliu(padic_p(x),2)) pari_err_OP("",x, mkintmodu(1,2));
     230           0 :       if (valp(x) < 0) (void)Fl_inv(0,2);
     231           0 :       return valp(x) & 1;
     232     1432809 :     case t_INTMOD: {
     233     1432809 :       GEN q = gel(x,1), a = gel(x,2);
     234     1432809 :       if (mpodd(q)) pari_err_MODULUS("Rg_to_F2", q, gen_2);
     235     1432809 :       return mpodd(a);
     236             :     }
     237           0 :     default: pari_err_TYPE("Rg_to_F2",x);
     238             :       return 0; /* LCOV_EXCL_LINE */
     239             :   }
     240             : }
     241             : 
     242             : GEN
     243     2250309 : RgX_to_Flx(GEN x, ulong p)
     244             : {
     245     2250309 :   long i, lx = lg(x);
     246     2250309 :   GEN a = cgetg(lx, t_VECSMALL);
     247     2250309 :   a[1]=((ulong)x[1])&VARNBITS;
     248    20059006 :   for (i=2; i<lx; i++) a[i] = Rg_to_Fl(gel(x,i), p);
     249     2250309 :   return Flx_renormalize(a,lx);
     250             : }
     251             : 
     252             : GEN
     253           7 : RgXV_to_FlxV(GEN x, ulong p)
     254         175 : { pari_APPLY_type(t_VEC, RgX_to_Flx(gel(x,i), p)) }
     255             : 
     256             : /* If x is a POLMOD, assume modulus is a multiple of T. */
     257             : GEN
     258     3598599 : Rg_to_Flxq(GEN x, GEN T, ulong p)
     259             : {
     260     3598599 :   long ta, tx = typ(x), v = get_Flx_var(T);
     261             :   ulong pi;
     262             :   GEN a, b;
     263     3598599 :   if (is_const_t(tx))
     264             :   {
     265     3338979 :     if (tx == t_FFELT) return FF_to_Flxq(x);
     266     2607971 :     return Fl_to_Flx(Rg_to_Fl(x, p), v);
     267             :   }
     268      259620 :   switch(tx)
     269             :   {
     270        8576 :     case t_POLMOD:
     271        8576 :       b = gel(x,1);
     272        8576 :       a = gel(x,2); ta = typ(a);
     273        8576 :       if (is_const_t(ta)) return Fl_to_Flx(Rg_to_Fl(a, p), v);
     274        8422 :       b = RgX_to_Flx(b, p); if (b[1] != v) break;
     275        8422 :       a = RgX_to_Flx(a, p); if (Flx_equal(b,T)) return a;
     276           0 :       pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
     277           0 :       if (lgpol(Flx_rem_pre(b,T,p,pi))==0) return Flx_rem_pre(a, T, p, pi);
     278           0 :       break;
     279      251044 :     case t_POL:
     280      251044 :       x = RgX_to_Flx(x,p);
     281      251044 :       if (x[1] != v) break;
     282      251044 :       return Flx_rem(x, T, p);
     283           0 :     case t_RFRAC:
     284           0 :       a = Rg_to_Flxq(gel(x,1), T,p);
     285           0 :       b = Rg_to_Flxq(gel(x,2), T,p);
     286           0 :       return Flxq_div(a,b, T,p);
     287             :   }
     288           0 :   pari_err_TYPE("Rg_to_Flxq",x);
     289             :   return NULL; /* LCOV_EXCL_LINE */
     290             : }
     291             : 
     292             : /***********************************************************************/
     293             : /**                   Basic operation on Flx                          **/
     294             : /***********************************************************************/
     295             : /* = zx_renormalize. Similar to normalizepol, in place */
     296             : GEN
     297  2153389125 : Flx_renormalize(GEN /*in place*/ x, long lx)
     298             : {
     299             :   long i;
     300  2403962603 :   for (i = lx-1; i>1; i--)
     301  2307932435 :     if (x[i]) break;
     302  2153389125 :   stackdummy((pari_sp)(x + lg(x)), (pari_sp)(x + i+1));
     303  2153158584 :   setlg(x, i+1); return x;
     304             : }
     305             : 
     306             : GEN
     307     1881621 : Flx_red(GEN z, ulong p)
     308             : {
     309     1881621 :   long i, l = lg(z);
     310     1881621 :   GEN x = cgetg(l, t_VECSMALL);
     311     1881495 :   x[1] = z[1];
     312    33503414 :   for (i=2; i<l; i++) x[i] = uel(z,i)%p;
     313     1881495 :   return Flx_renormalize(x,l);
     314             : }
     315             : 
     316             : int
     317    26925798 : Flx_equal(GEN V, GEN W)
     318             : {
     319    26925798 :   long l = lg(V);
     320    26925798 :   if (lg(W) != l) return 0;
     321    27923947 :   while (--l > 1) /* do not compare variables, V[1] */
     322    26820825 :     if (V[l] != W[l]) return 0;
     323     1103122 :   return 1;
     324             : }
     325             : 
     326             : GEN
     327     2651270 : random_Flx(long d1, long vs, ulong p)
     328             : {
     329     2651270 :   long i, d = d1+2;
     330     2651270 :   GEN y = cgetg(d,t_VECSMALL); y[1] = vs;
     331    18241664 :   for (i=2; i<d; i++) y[i] = random_Fl(p);
     332     2651459 :   return Flx_renormalize(y,d);
     333             : }
     334             : 
     335             : static GEN
     336     7257702 : Flx_addspec(GEN x, GEN y, ulong p, long lx, long ly)
     337             : {
     338             :   long i,lz;
     339             :   GEN z;
     340             : 
     341     7257702 :   if (ly>lx) swapspec(x,y, lx,ly);
     342     7257702 :   lz = lx+2; z = cgetg(lz, t_VECSMALL);
     343   106743081 :   for (i=0; i<ly; i++) z[i+2] = Fl_add(x[i], y[i], p);
     344    90436332 :   for (   ; i<lx; i++) z[i+2] = x[i];
     345     7257702 :   z[1] = 0; return Flx_renormalize(z, lz);
     346             : }
     347             : 
     348             : GEN
     349    64913385 : Flx_add(GEN x, GEN y, ulong p)
     350             : {
     351             :   long i,lz;
     352             :   GEN z;
     353    64913385 :   long lx=lg(x);
     354    64913385 :   long ly=lg(y);
     355    64913385 :   if (ly>lx) swapspec(x,y, lx,ly);
     356    64913385 :   lz = lx; z = cgetg(lz, t_VECSMALL); z[1]=x[1];
     357   588701037 :   for (i=2; i<ly; i++) z[i] = Fl_add(x[i], y[i], p);
     358   130654572 :   for (   ; i<lx; i++) z[i] = x[i];
     359    64889906 :   return Flx_renormalize(z, lz);
     360             : }
     361             : 
     362             : GEN
     363    10029490 : Flx_Fl_add(GEN y, ulong x, ulong p)
     364             : {
     365             :   GEN z;
     366             :   long lz, i;
     367    10029490 :   if (!lgpol(y))
     368      230124 :     return Fl_to_Flx(x,y[1]);
     369     9800673 :   lz=lg(y);
     370     9800673 :   z=cgetg(lz,t_VECSMALL);
     371     9799958 :   z[1]=y[1];
     372     9799958 :   z[2] = Fl_add(y[2],x,p);
     373    47712455 :   for(i=3;i<lz;i++)
     374    37912958 :     z[i] = y[i];
     375     9799497 :   if (lz==3) z = Flx_renormalize(z,lz);
     376     9799434 :   return z;
     377             : }
     378             : 
     379             : static GEN
     380      898327 : Flx_subspec(GEN x, GEN y, ulong p, long lx, long ly)
     381             : {
     382             :   long i,lz;
     383             :   GEN z;
     384             : 
     385      898327 :   if (ly <= lx)
     386             :   {
     387      898340 :     lz = lx+2; z = cgetg(lz, t_VECSMALL);
     388    53957914 :     for (i=0; i<ly; i++) z[i+2] = Fl_sub(x[i],y[i],p);
     389     1449076 :     for (   ; i<lx; i++) z[i+2] = x[i];
     390             :   }
     391             :   else
     392             :   {
     393           0 :     lz = ly+2; z = cgetg(lz, t_VECSMALL);
     394           0 :     for (i=0; i<lx; i++) z[i+2] = Fl_sub(x[i],y[i],p);
     395           0 :     for (   ; i<ly; i++) z[i+2] = Fl_neg(y[i],p);
     396             :   }
     397      898066 :   z[1] = 0; return Flx_renormalize(z, lz);
     398             : }
     399             : 
     400             : GEN
     401   138714397 : Flx_sub(GEN x, GEN y, ulong p)
     402             : {
     403   138714397 :   long i,lz,lx = lg(x), ly = lg(y);
     404             :   GEN z;
     405             : 
     406   138714397 :   if (ly <= lx)
     407             :   {
     408    88500868 :     lz = lx; z = cgetg(lz, t_VECSMALL);
     409   458141767 :     for (i=2; i<ly; i++) z[i] = Fl_sub(x[i],y[i],p);
     410   176638812 :     for (   ; i<lx; i++) z[i] = x[i];
     411             :   }
     412             :   else
     413             :   {
     414    50213529 :     lz = ly; z = cgetg(lz, t_VECSMALL);
     415   262459867 :     for (i=2; i<lx; i++) z[i] = Fl_sub(x[i],y[i],p);
     416   232774188 :     for (   ; i<ly; i++) z[i] = y[i]? (long)(p - y[i]): y[i];
     417             :   }
     418   138675305 :   z[1]=x[1]; return Flx_renormalize(z, lz);
     419             : }
     420             : 
     421             : GEN
     422      151834 : Flx_Fl_sub(GEN y, ulong x, ulong p)
     423             : {
     424             :   GEN z;
     425      151834 :   long lz = lg(y), i;
     426      151834 :   if (lz==2)
     427         513 :     return Fl_to_Flx(Fl_neg(x, p),y[1]);
     428      151321 :   z = cgetg(lz, t_VECSMALL);
     429      151322 :   z[1] = y[1];
     430      151322 :   z[2] = Fl_sub(uel(y,2), x, p);
     431      753858 :   for(i=3; i<lz; i++)
     432      602536 :     z[i] = y[i];
     433      151322 :   if (lz==3) z = Flx_renormalize(z,lz);
     434      151322 :   return z;
     435             : }
     436             : 
     437             : static GEN
     438     3264682 : Flx_negspec(GEN x, ulong p, long l)
     439             : {
     440             :   long i;
     441     3264682 :   GEN z = cgetg(l+2, t_VECSMALL) + 2;
     442    20986083 :   for (i=0; i<l; i++) z[i] = Fl_neg(x[i], p);
     443     3264736 :   return z-2;
     444             : }
     445             : 
     446             : GEN
     447     3264705 : Flx_neg(GEN x, ulong p)
     448             : {
     449     3264705 :   GEN z = Flx_negspec(x+2, p, lgpol(x));
     450     3264730 :   z[1] = x[1];
     451     3264730 :   return z;
     452             : }
     453             : 
     454             : GEN
     455     1778757 : Flx_neg_inplace(GEN x, ulong p)
     456             : {
     457     1778757 :   long i, l = lg(x);
     458    52392500 :   for (i=2; i<l; i++)
     459    50613743 :     if (x[i]) x[i] = p - x[i];
     460     1778757 :   return x;
     461             : }
     462             : 
     463             : GEN
     464     2445177 : Flx_double(GEN y, ulong p)
     465             : {
     466             :   long i, l;
     467     2445177 :   GEN z = cgetg_copy(y, &l); z[1] = y[1];
     468    20335150 :   for(i=2; i<l; i++) z[i] = Fl_double(y[i], p);
     469     2445177 :   return Flx_renormalize(z, l);
     470             : }
     471             : GEN
     472     1049887 : Flx_triple(GEN y, ulong p)
     473             : {
     474             :   long i, l;
     475     1049887 :   GEN z = cgetg_copy(y, &l); z[1] = y[1];
     476     8278717 :   for(i=2; i<l; i++) z[i] = Fl_triple(y[i], p);
     477     1049887 :   return Flx_renormalize(z, l);
     478             : }
     479             : 
     480             : GEN
     481    18298686 : Flx_Fl_mul_pre(GEN y, ulong x, ulong p, ulong pi)
     482             : {
     483             :   GEN z;
     484             :   long i, l;
     485    18298686 :   if (!x) return pol0_Flx(y[1]);
     486    17522929 :   z = cgetg_copy(y, &l); z[1] = y[1];
     487    17522807 :   if (pi==0)
     488             :   {
     489    15310448 :     if (HIGHWORD(x | p))
     490           0 :       for(i=2; i<l; i++) z[i] = Fl_mul(uel(y,i), x, p);
     491             :     else
     492    92211285 :       for(i=2; i<l; i++) z[i] = (uel(y,i) * x) % p;
     493             :   } else
     494    18094014 :       for(i=2; i<l; i++) z[i] = Fl_mul_pre(uel(y,i), x, p, pi);
     495    17523619 :   return Flx_renormalize(z, l);
     496             : }
     497             : 
     498             : GEN
     499     7327619 : Flx_Fl_mul(GEN x, ulong y, ulong p)
     500     7327619 : { return Flx_Fl_mul_pre(x, y, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
     501             : 
     502             : GEN
     503           0 : Flx_convol(GEN x, GEN y, ulong p)
     504             : {
     505           0 :   long lx = lg(x), ly = lg(y), i;
     506             :   GEN z;
     507           0 :   if (lx < ly) swapspec(x,y, lx,ly);
     508           0 :   z = cgetg(ly,t_VECSMALL); z[1] = x[1];
     509           0 :   for (i=2; i<ly; i++) uel(z,i) = Fl_mul(uel(x,i),uel(y,i), p);
     510           0 :   return Flx_renormalize(z, ly);
     511             : }
     512             : 
     513             : GEN
     514    12029729 : Flx_Fl_mul_to_monic(GEN y, ulong x, ulong p)
     515             : {
     516             :   GEN z;
     517             :   long i, l;
     518    12029729 :   z = cgetg_copy(y, &l); z[1] = y[1];
     519    12026363 :   if (HIGHWORD(x | p))
     520     5418683 :     for(i=2; i<l-1; i++) z[i] = Fl_mul(y[i], x, p);
     521             :   else
     522    27089165 :     for(i=2; i<l-1; i++) z[i] = (y[i] * x) % p;
     523    12026349 :   z[l-1] = 1; return z;
     524             : }
     525             : 
     526             : /* Return a*x^n if n>=0 and a\x^(-n) if n<0 */
     527             : GEN
     528    27414367 : Flx_shift(GEN a, long n)
     529             : {
     530    27414367 :   long i, l = lg(a);
     531             :   GEN  b;
     532    27414367 :   if (l==2 || !n) return Flx_copy(a);
     533    27069452 :   if (l+n<=2) return pol0_Flx(a[1]);
     534    26854304 :   b = cgetg(l+n, t_VECSMALL);
     535    26851999 :   b[1] = a[1];
     536    26851999 :   if (n < 0)
     537    73841777 :     for (i=2-n; i<l; i++) b[i+n] = a[i];
     538             :   else
     539             :   {
     540    52429141 :     for (i=0; i<n; i++) b[2+i] = 0;
     541   150104283 :     for (i=2; i<l; i++) b[i+n] = a[i];
     542             :   }
     543    26851999 :   return b;
     544             : }
     545             : 
     546             : GEN
     547    63979171 : Flx_normalize(GEN z, ulong p)
     548             : {
     549    63979171 :   long l = lg(z)-1;
     550    63979171 :   ulong p1 = z[l]; /* leading term */
     551    63979171 :   if (p1 == 1) return z;
     552    12005658 :   return Flx_Fl_mul_to_monic(z, Fl_inv(p1,p), p);
     553             : }
     554             : 
     555             : /* return (x * X^d) + y. Assume d > 0, shallow if x == 0*/
     556             : static GEN
     557     3728641 : Flx_addshift(GEN x, GEN y, ulong p, long d)
     558             : {
     559     3728641 :   GEN xd,yd,zd = (GEN)avma;
     560     3728641 :   long a,lz,ny = lgpol(y), nx = lgpol(x);
     561     3728641 :   long vs = x[1];
     562     3728641 :   if (nx == 0) return y;
     563     3726798 :   x += 2; y += 2; a = ny-d;
     564     3726798 :   if (a <= 0)
     565             :   {
     566       85099 :     lz = (a>nx)? ny+2: nx+d+2;
     567       85099 :     (void)new_chunk(lz); xd = x+nx; yd = y+ny;
     568     1732405 :     while (xd > x) *--zd = *--xd;
     569       85099 :     x = zd + a;
     570      164579 :     while (zd > x) *--zd = 0;
     571             :   }
     572             :   else
     573             :   {
     574     3641699 :     xd = new_chunk(d); yd = y+d;
     575     3641699 :     x = Flx_addspec(x,yd,p, nx,a);
     576     3641699 :     lz = (a>nx)? ny+2: lg(x)+d;
     577   132897024 :     x += 2; while (xd > x) *--zd = *--xd;
     578             :   }
     579    60485676 :   while (yd > y) *--zd = *--yd;
     580     3726798 :   *--zd = vs;
     581     3726798 :   *--zd = evaltyp(t_VECSMALL) | evallg(lz); return zd;
     582             : }
     583             : 
     584             : /* shift polynomial + GC; do not set evalvarn*/
     585             : static GEN
     586   632792892 : Flx_shiftip(pari_sp av, GEN x, long v)
     587             : {
     588   632792892 :   long i, lx = lg(x), ly;
     589             :   GEN y;
     590   632792892 :   if (!v || lx==2) return gc_leaf(av, x);
     591   176961653 :   ly = lx + v; /* result length */
     592   176961653 :   (void)new_chunk(ly); /* check that result fits */
     593   176888789 :   x += lx; y = (GEN)av;
     594  1248258070 :   for (i = 2; i<lx; i++) *--y = *--x;
     595   710303923 :   for (i = 0; i< v; i++) *--y = 0;
     596   176888789 :   y -= 2; y[0] = evaltyp(t_VECSMALL) | evallg(ly);
     597   177030355 :   return gc_const((pari_sp)y, y);
     598             : }
     599             : 
     600             : static long
     601  2329589122 : get_Fl_threshold(ulong p, long mul, long mul2)
     602             : {
     603  2329589122 :   return SMALL_ULONG(p) ? mul: mul2;
     604             : }
     605             : 
     606             : #define BITS_IN_QUARTULONG (BITS_IN_HALFULONG >> 1)
     607             : #define QUARTMASK ((1UL<<BITS_IN_QUARTULONG)-1UL)
     608             : #define LLQUARTWORD(x) ((x) & QUARTMASK)
     609             : #define HLQUARTWORD(x) (((x) >> BITS_IN_QUARTULONG) & QUARTMASK)
     610             : #define LHQUARTWORD(x) (((x) >> (2*BITS_IN_QUARTULONG)) & QUARTMASK)
     611             : #define HHQUARTWORD(x) (((x) >> (3*BITS_IN_QUARTULONG)) & QUARTMASK)
     612             : INLINE long
     613     8407823 : maxbitcoeffpol(ulong p, long n)
     614             : {
     615     8407823 :   GEN z = muliu(sqru(p - 1), n);
     616     8405113 :   long b = expi(z) + 1;
     617             :   /* only do expensive bit-packing if it saves at least 1 limb */
     618     8405983 :   if (b <= BITS_IN_QUARTULONG)
     619             :   {
     620      874465 :     if (nbits2nlong(n*b) == (n + 3)>>2)
     621      107383 :       b = BITS_IN_QUARTULONG;
     622             :   }
     623     7531518 :   else if (b <= BITS_IN_HALFULONG)
     624             :   {
     625     1553193 :     if (nbits2nlong(n*b) == (n + 1)>>1)
     626        5809 :       b = BITS_IN_HALFULONG;
     627             :   }
     628             :   else
     629             :   {
     630     5978325 :     long l = lgefint(z) - 2;
     631     5978325 :     if (nbits2nlong(n*b) == n*l)
     632      305824 :       b = l*BITS_IN_LONG;
     633             :   }
     634     8405857 :   return b;
     635             : }
     636             : 
     637             : INLINE ulong
     638  3382586454 : Flx_mullimb_ok(GEN x, GEN y, ulong p, long a, long b)
     639             : { /* Assume OK_ULONG*/
     640  3382586454 :   ulong p1 = 0;
     641             :   long i;
     642 16022910329 :   for (i=a; i<b; i++)
     643 12640323875 :     if (y[i])
     644             :     {
     645 10637829323 :       p1 += y[i] * x[-i];
     646 10637829323 :       if (p1 & HIGHBIT) p1 %= p;
     647             :     }
     648  3382586454 :   return p1 % p;
     649             : }
     650             : 
     651             : INLINE ulong
     652  1187258704 : Flx_mullimb(GEN x, GEN y, ulong p, ulong pi, long a, long b)
     653             : {
     654  1187258704 :   ulong p1 = 0;
     655             :   long i;
     656  3759961153 :   for (i=a; i<b; i++)
     657  2571162458 :     if (y[i])
     658  2529216772 :       p1 = Fl_addmul_pre(p1, y[i], x[-i], p, pi);
     659  1188798695 :   return p1;
     660             : }
     661             : 
     662             : /* assume nx >= ny > 0 */
     663             : static GEN
     664   345256533 : Flx_mulspec_basecase(GEN x, GEN y, ulong p, ulong pi, long nx, long ny)
     665             : {
     666             :   long i,lz,nz;
     667             :   GEN z;
     668             : 
     669   345256533 :   lz = nx+ny+1; nz = lz-2;
     670   345256533 :   z = cgetg(lz, t_VECSMALL) + 2; /* x:y:z [i] = term of degree i */
     671   345064654 :   if (!pi)
     672             :   {
     673  1138006474 :     for (i=0; i<ny; i++)z[i] = Flx_mullimb_ok(x+i,y,p,0,i+1);
     674   735542884 :     for (  ; i<nx; i++) z[i] = Flx_mullimb_ok(x+i,y,p,0,ny);
     675   885495658 :     for (  ; i<nz; i++) z[i] = Flx_mullimb_ok(x+i,y,p,i-nx+1,ny);
     676             :   }
     677             :   else
     678             :   {
     679   322304177 :     for (i=0; i<ny; i++)z[i] = Flx_mullimb(x+i,y,p,pi,0,i+1);
     680   222193725 :     for (  ; i<nx; i++) z[i] = Flx_mullimb(x+i,y,p,pi,0,ny);
     681   231306415 :     for (  ; i<nz; i++) z[i] = Flx_mullimb(x+i,y,p,pi,i-nx+1,ny);
     682             :   }
     683   344965583 :   z -= 2; return Flx_renormalize(z, lz);
     684             : }
     685             : 
     686             : static GEN
     687       12217 : int_to_Flx(GEN z, ulong p)
     688             : {
     689       12217 :   long i, l = lgefint(z);
     690       12217 :   GEN x = cgetg(l, t_VECSMALL);
     691     1047134 :   for (i=2; i<l; i++) x[i] = uel(z,i)%p;
     692       12211 :   return Flx_renormalize(x, l);
     693             : }
     694             : 
     695             : INLINE GEN
     696       10144 : Flx_mulspec_mulii(GEN a, GEN b, ulong p, long na, long nb)
     697             : {
     698       10144 :   GEN z=muliispec(a,b,na,nb);
     699       10147 :   return int_to_Flx(z,p);
     700             : }
     701             : 
     702             : static GEN
     703      468821 : Flx_to_int_halfspec(GEN a, long na)
     704             : {
     705             :   long j;
     706      468821 :   long n = (na+1)>>1UL;
     707      468821 :   GEN V = cgetipos(2+n);
     708             :   GEN w;
     709     1381691 :   for (w = int_LSW(V), j=0; j+1<na; j+=2, w=int_nextW(w))
     710      912870 :     *w = a[j]|(a[j+1]<<BITS_IN_HALFULONG);
     711      468821 :   if (j<na)
     712      319667 :     *w = a[j];
     713      468821 :   return V;
     714             : }
     715             : 
     716             : static GEN
     717      507268 : int_to_Flx_half(GEN z, ulong p)
     718             : {
     719             :   long i;
     720      507268 :   long lx = (lgefint(z)-2)*2+2;
     721      507268 :   GEN w, x = cgetg(lx, t_VECSMALL);
     722     1919207 :   for (w = int_LSW(z), i=2; i<lx; i+=2, w=int_nextW(w))
     723             :   {
     724     1411939 :     x[i]   = LOWWORD((ulong)*w)%p;
     725     1411939 :     x[i+1] = HIGHWORD((ulong)*w)%p;
     726             :   }
     727      507268 :   return Flx_renormalize(x, lx);
     728             : }
     729             : 
     730             : static GEN
     731        5484 : Flx_mulspec_halfmulii(GEN a, GEN b, ulong p, long na, long nb)
     732             : {
     733        5484 :   GEN A = Flx_to_int_halfspec(a,na);
     734        5484 :   GEN B = Flx_to_int_halfspec(b,nb);
     735        5484 :   GEN z = mulii(A,B);
     736        5484 :   return int_to_Flx_half(z,p);
     737             : }
     738             : 
     739             : static GEN
     740      204550 : Flx_to_int_quartspec(GEN a, long na)
     741             : {
     742             :   long j;
     743      204550 :   long n = (na+3)>>2UL;
     744      204550 :   GEN V = cgetipos(2+n);
     745             :   GEN w;
     746     4378074 :   for (w = int_LSW(V), j=0; j+3<na; j+=4, w=int_nextW(w))
     747     4173523 :     *w = a[j]|(a[j+1]<<BITS_IN_QUARTULONG)|(a[j+2]<<(2*BITS_IN_QUARTULONG))|(a[j+3]<<(3*BITS_IN_QUARTULONG));
     748      204551 :   switch (na-j)
     749             :   {
     750      116247 :   case 3:
     751      116247 :     *w = a[j]|(a[j+1]<<BITS_IN_QUARTULONG)|(a[j+2]<<(2*BITS_IN_QUARTULONG));
     752      116247 :     break;
     753       34460 :   case 2:
     754       34460 :     *w = a[j]|(a[j+1]<<BITS_IN_QUARTULONG);
     755       34460 :     break;
     756       27349 :   case 1:
     757       27349 :     *w = a[j];
     758       27349 :     break;
     759       26495 :   case 0:
     760       26495 :     break;
     761             :   }
     762      204551 :   return V;
     763             : }
     764             : 
     765             : static GEN
     766      107385 : int_to_Flx_quart(GEN z, ulong p)
     767             : {
     768             :   long i;
     769      107385 :   long lx = (lgefint(z)-2)*4+2;
     770      107385 :   GEN w, x = cgetg(lx, t_VECSMALL);
     771     4874026 :   for (w = int_LSW(z), i=2; i<lx; i+=4, w=int_nextW(w))
     772             :   {
     773     4766641 :     x[i]   = LLQUARTWORD((ulong)*w)%p;
     774     4766641 :     x[i+1] = HLQUARTWORD((ulong)*w)%p;
     775     4766641 :     x[i+2] = LHQUARTWORD((ulong)*w)%p;
     776     4766641 :     x[i+3] = HHQUARTWORD((ulong)*w)%p;
     777             :   }
     778      107385 :   return Flx_renormalize(x, lx);
     779             : }
     780             : 
     781             : static GEN
     782       97166 : Flx_mulspec_quartmulii(GEN a, GEN b, ulong p, long na, long nb)
     783             : {
     784       97166 :   GEN A = Flx_to_int_quartspec(a,na);
     785       97166 :   GEN B = Flx_to_int_quartspec(b,nb);
     786       97167 :   GEN z = mulii(A,B);
     787       97167 :   return int_to_Flx_quart(z,p);
     788             : }
     789             : 
     790             : /*Eval x in 2^(k*BIL) in linear time, k==2 or 3*/
     791             : static GEN
     792      579091 : Flx_eval2BILspec(GEN x, long k, long l)
     793             : {
     794      579091 :   long i, lz = k*l, ki;
     795      579091 :   GEN pz = cgetipos(2+lz);
     796    16210657 :   for (i=0; i < lz; i++)
     797    15631566 :     *int_W(pz,i) = 0UL;
     798     8394874 :   for (i=0, ki=0; i<l; i++, ki+=k)
     799     7815783 :     *int_W(pz,ki) = x[i];
     800      579091 :   return int_normalize(pz,0);
     801             : }
     802             : 
     803             : static GEN
     804      296542 : Z_mod2BIL_Flx_2(GEN x, long d, ulong p)
     805             : {
     806      296542 :   long i, offset, lm = lgefint(x)-2, l = d+3;
     807      296542 :   ulong pi = get_Fl_red(p);
     808      296542 :   GEN pol = cgetg(l, t_VECSMALL);
     809      296542 :   pol[1] = 0;
     810     7935230 :   for (i=0, offset=0; offset+1 < lm; i++, offset += 2)
     811     7638688 :     pol[i+2] = remll_pre(*int_W(x,offset+1), *int_W(x,offset), p, pi);
     812      296542 :   if (offset < lm)
     813      223638 :     pol[i+2] = (*int_W(x,offset)) % p;
     814      296542 :   return Flx_renormalize(pol,l);
     815             : }
     816             : 
     817             : static GEN
     818           0 : Z_mod2BIL_Flx_3(GEN x, long d, ulong p)
     819             : {
     820           0 :   long i, offset, lm = lgefint(x)-2, l = d+3;
     821           0 :   ulong pi = get_Fl_red(p);
     822           0 :   GEN pol = cgetg(l, t_VECSMALL);
     823           0 :   pol[1] = 0;
     824           0 :   for (i=0, offset=0; offset+2 < lm; i++, offset += 3)
     825           0 :     pol[i+2] = remlll_pre(*int_W(x,offset+2), *int_W(x,offset+1),
     826           0 :                           *int_W(x,offset), p, pi);
     827           0 :   if (offset+1 < lm)
     828           0 :     pol[i+2] = remll_pre(*int_W(x,offset+1), *int_W(x,offset), p, pi);
     829           0 :   else if (offset < lm)
     830           0 :     pol[i+2] = (*int_W(x,offset)) % p;
     831           0 :   return Flx_renormalize(pol,l);
     832             : }
     833             : 
     834             : static GEN
     835      293612 : Z_mod2BIL_Flx(GEN x, long bs, long d, ulong p)
     836             : {
     837      293612 :   return bs==2 ? Z_mod2BIL_Flx_2(x, d, p): Z_mod2BIL_Flx_3(x, d, p);
     838             : }
     839             : 
     840             : static GEN
     841      282090 : Flx_mulspec_mulii_inflate(GEN x, GEN y, long N, ulong p, long nx, long ny)
     842             : {
     843      282090 :   pari_sp av = avma;
     844      282090 :   GEN z = mulii(Flx_eval2BILspec(x,N,nx), Flx_eval2BILspec(y,N,ny));
     845      282090 :   return gc_upto(av, Z_mod2BIL_Flx(z, N, nx+ny-2, p));
     846             : }
     847             : 
     848             : static GEN
     849    20873954 : kron_pack_Flx_spec_bits(GEN x, long b, long l) {
     850             :   GEN y;
     851             :   long i;
     852    20873954 :   if (l == 0)
     853     3429494 :     return gen_0;
     854    17444460 :   y = cgetg(l + 1, t_VECSMALL);
     855   818097775 :   for(i = 1; i <= l; i++)
     856   800657529 :     y[i] = x[l - i];
     857    17440246 :   return nv_fromdigits_2k(y, b);
     858             : }
     859             : 
     860             : /* assume b < BITS_IN_LONG */
     861             : static GEN
     862     5658126 : kron_unpack_Flx_bits_narrow(GEN z, long b, ulong p) {
     863     5658126 :   GEN v = binary_2k_nv(z, b), x;
     864     5658158 :   long i, l = lg(v) + 1;
     865     5658158 :   x = cgetg(l, t_VECSMALL);
     866   624664174 :   for (i = 2; i < l; i++)
     867   619005945 :     x[i] = v[l - i] % p;
     868     5658229 :   return Flx_renormalize(x, l);
     869             : }
     870             : 
     871             : static GEN
     872     5610496 : kron_unpack_Flx_bits_wide(GEN z, long b, ulong p, ulong pi) {
     873     5610496 :   GEN v = binary_2k(z, b), x, y;
     874     5609668 :   long i, l = lg(v) + 1, ly;
     875     5609668 :   x = cgetg(l, t_VECSMALL);
     876   235244988 :   for (i = 2; i < l; i++) {
     877   229637194 :     y = gel(v, l - i);
     878   229637194 :     ly = lgefint(y);
     879   229637194 :     switch (ly) {
     880     6278800 :     case 2: x[i] = 0; break;
     881    29640674 :     case 3: x[i] = *int_W_lg(y, 0, ly) % p; break;
     882   177720101 :     case 4: x[i] = remll_pre(*int_W_lg(y, 1, ly), *int_W_lg(y, 0, ly), p, pi); break;
     883    31994383 :     case 5: x[i] = remlll_pre(*int_W_lg(y, 2, ly), *int_W_lg(y, 1, ly),
     884    15997619 :                               *int_W_lg(y, 0, ly), p, pi); break;
     885           0 :     default: x[i] = umodiu(gel(v, l - i), p);
     886             :     }
     887             :   }
     888     5607794 :   return Flx_renormalize(x, l);
     889             : }
     890             : 
     891             : static GEN
     892     7294801 : Flx_mulspec_Kronecker(GEN A, GEN B, long b, ulong p, long lA, long lB)
     893             : {
     894             :   GEN C, D;
     895     7294801 :   pari_sp av = avma;
     896     7294801 :   A =  kron_pack_Flx_spec_bits(A, b, lA);
     897     7300207 :   B =  kron_pack_Flx_spec_bits(B, b, lB);
     898     7300290 :   C = gc_INT(av, mulii(A, B));
     899     7299384 :   if (b < BITS_IN_LONG)
     900     2069036 :     D =  kron_unpack_Flx_bits_narrow(C, b, p);
     901             :   else
     902             :   {
     903     5230348 :     ulong pi = get_Fl_red(p);
     904     5229836 :     D = kron_unpack_Flx_bits_wide(C, b, p, pi);
     905             :   }
     906     7296721 :   return D;
     907             : }
     908             : 
     909             : static GEN
     910      691201 : Flx_sqrspec_Kronecker(GEN A, long b, ulong p, long lA)
     911             : {
     912             :   GEN C, D;
     913      691201 :   A =  kron_pack_Flx_spec_bits(A, b, lA);
     914      691247 :   C = sqri(A);
     915      691268 :   if (b < BITS_IN_LONG)
     916      477632 :     D =  kron_unpack_Flx_bits_narrow(C, b, p);
     917             :   else
     918             :   {
     919      213636 :     ulong pi = get_Fl_red(p);
     920      213635 :     D = kron_unpack_Flx_bits_wide(C, b, p, pi);
     921             :   }
     922      691233 :   return D;
     923             : }
     924             : 
     925             : /* fast product (Karatsuba) of polynomials a,b. These are not real GENs, a+2,
     926             :  * b+2 were sent instead. na, nb = number of terms of a, b.
     927             :  * Only c, c0, c1, c2 are genuine GEN.
     928             :  */
     929             : static GEN
     930   382857956 : Flx_mulspec(GEN a, GEN b, ulong p, ulong pi, long na, long nb)
     931             : {
     932             :   GEN a0,c,c0;
     933   382857956 :   long n0, n0a, i, v = 0;
     934             :   pari_sp av;
     935             : 
     936   488447839 :   while (na && !a[0]) { a++; na--; v++; }
     937   569590581 :   while (nb && !b[0]) { b++; nb--; v++; }
     938   382857956 :   if (na < nb) swapspec(a,b, na,nb);
     939   382857956 :   if (!nb) return pol0_Flx(0);
     940             : 
     941   354483174 :   av = avma;
     942   354483174 :   if (nb >= get_Fl_threshold(p, Flx_MUL_MULII_LIMIT, Flx_MUL2_MULII_LIMIT))
     943             :   {
     944     7692651 :     long m = maxbitcoeffpol(p,nb);
     945     7689293 :     switch (m)
     946             :     {
     947       97165 :     case BITS_IN_QUARTULONG:
     948       97165 :       return Flx_shiftip(av,Flx_mulspec_quartmulii(a,b,p,na,nb), v);
     949        5484 :     case BITS_IN_HALFULONG:
     950        5484 :       return Flx_shiftip(av,Flx_mulspec_halfmulii(a,b,p,na,nb), v);
     951       10144 :     case BITS_IN_LONG:
     952       10144 :       return Flx_shiftip(av,Flx_mulspec_mulii(a,b,p,na,nb), v);
     953      282090 :     case 2*BITS_IN_LONG:
     954      282090 :       return Flx_shiftip(av,Flx_mulspec_mulii_inflate(a,b,2,p,na,nb), v);
     955           0 :     case 3*BITS_IN_LONG:
     956           0 :       return Flx_shiftip(av,Flx_mulspec_mulii_inflate(a,b,3,p,na,nb), v);
     957     7294410 :     default:
     958     7294410 :       return Flx_shiftip(av,Flx_mulspec_Kronecker(a,b,m,p,na,nb), v);
     959             :     }
     960             :   }
     961   347021971 :   if (nb < get_Fl_threshold(p, Flx_MUL_KARATSUBA_LIMIT, Flx_MUL2_KARATSUBA_LIMIT))
     962   345195836 :     return Flx_shiftip(av,Flx_mulspec_basecase(a,b,p,pi,na,nb), v);
     963     1832887 :   i=(na>>1); n0=na-i; na=i;
     964     1832887 :   a0=a+n0; n0a=n0;
     965     2601211 :   while (n0a && !a[n0a-1]) n0a--;
     966             : 
     967     1832887 :   if (nb > n0)
     968             :   {
     969             :     GEN b0,c1,c2;
     970             :     long n0b;
     971             : 
     972     1778757 :     nb -= n0; b0 = b+n0; n0b = n0;
     973     2859532 :     while (n0b && !b[n0b-1]) n0b--;
     974     1778757 :     c =  Flx_mulspec(a,b,p,pi,n0a,n0b);
     975     1778757 :     c0 = Flx_mulspec(a0,b0,p,pi,na,nb);
     976             : 
     977     1778757 :     c2 = Flx_addspec(a0,a,p,na,n0a);
     978     1778757 :     c1 = Flx_addspec(b0,b,p,nb,n0b);
     979             : 
     980     1778757 :     c1 = Flx_mul_pre(c1,c2,p,pi);
     981     1778757 :     c2 = Flx_add(c0,c,p);
     982             : 
     983     1778757 :     c2 = Flx_neg_inplace(c2,p);
     984     1778757 :     c2 = Flx_add(c1,c2,p);
     985     1778757 :     c0 = Flx_addshift(c0,c2 ,p, n0);
     986             :   }
     987             :   else
     988             :   {
     989       54130 :     c  = Flx_mulspec(a,b,p,pi,n0a,nb);
     990       54130 :     c0 = Flx_mulspec(a0,b,p,pi,na,nb);
     991             :   }
     992     1832887 :   c0 = Flx_addshift(c0,c,p,n0);
     993     1832887 :   return Flx_shiftip(av,c0, v);
     994             : }
     995             : 
     996             : GEN
     997   377277152 : Flx_mul_pre(GEN x, GEN y, ulong p, ulong pi)
     998             : {
     999   377277152 :   GEN z = Flx_mulspec(x+2,y+2,p, pi, lgpol(x),lgpol(y));
    1000   377327916 :   z[1] = x[1]; return z;
    1001             : }
    1002             : GEN
    1003    27834533 : Flx_mul(GEN x, GEN y, ulong p)
    1004    27834533 : { return Flx_mul_pre(x, y, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    1005             : 
    1006             : static GEN
    1007   278739036 : Flx_sqrspec_basecase(GEN x, ulong p, ulong pi, long nx)
    1008             : {
    1009             :   long i, lz, nz;
    1010             :   ulong p1;
    1011             :   GEN z;
    1012             : 
    1013   278739036 :   if (!nx) return pol0_Flx(0);
    1014   278739036 :   lz = (nx << 1) + 1, nz = lz-2;
    1015   278739036 :   z = cgetg(lz, t_VECSMALL) + 2;
    1016   278256846 :   if (!pi)
    1017             :   {
    1018   214026605 :     z[0] = x[0]*x[0]%p;
    1019   918417163 :     for (i=1; i<nx; i++)
    1020             :     {
    1021   704390044 :       p1 = Flx_mullimb_ok(x+i,x,p,0, (i+1)>>1);
    1022   704390558 :       p1 <<= 1;
    1023   704390558 :       if ((i&1) == 0) p1 += x[i>>1] * x[i>>1];
    1024   704390558 :       z[i] = p1 % p;
    1025             :     }
    1026   922646323 :     for (  ; i<nz; i++)
    1027             :     {
    1028   708105142 :       p1 = Flx_mullimb_ok(x+i,x,p,i-nx+1, (i+1)>>1);
    1029   708619204 :       p1 <<= 1;
    1030   708619204 :       if ((i&1) == 0) p1 += x[i>>1] * x[i>>1];
    1031   708619204 :       z[i] = p1 % p;
    1032             :     }
    1033             :   }
    1034             :   else
    1035             :   {
    1036    64230241 :     z[0] = Fl_sqr_pre(x[0], p, pi);
    1037   412931952 :     for (i=1; i<nx; i++)
    1038             :     {
    1039   348711796 :       p1 = Flx_mullimb(x+i,x,p,pi,0, (i+1)>>1);
    1040   349254005 :       p1 = Fl_add(p1, p1, p);
    1041   348690566 :       if ((i&1) == 0) p1 = Fl_add(p1, Fl_sqr_pre(x[i>>1], p, pi), p);
    1042   348611244 :       z[i] = p1;
    1043             :     }
    1044   413100175 :     for (  ; i<nz; i++)
    1045             :     {
    1046   348828578 :       p1 = Flx_mullimb(x+i,x,p,pi,i-nx+1, (i+1)>>1);
    1047   349661437 :       p1 = Fl_add(p1, p1, p);
    1048   349153849 :       if ((i&1) == 0) p1 = Fl_add(p1, Fl_sqr_pre(x[i>>1], p, pi), p);
    1049   348880019 :       z[i] = p1;
    1050             :     }
    1051             :   }
    1052   278812778 :   z -= 2; return Flx_renormalize(z, lz);
    1053             : }
    1054             : 
    1055             : static GEN
    1056        2068 : Flx_sqrspec_sqri(GEN a, ulong p, long na)
    1057             : {
    1058        2068 :   GEN z=sqrispec(a,na);
    1059        2070 :   return int_to_Flx(z,p);
    1060             : }
    1061             : 
    1062             : static GEN
    1063         325 : Flx_sqrspec_halfsqri(GEN a, ulong p, long na)
    1064             : {
    1065         325 :   GEN z = sqri(Flx_to_int_halfspec(a,na));
    1066         325 :   return int_to_Flx_half(z,p);
    1067             : }
    1068             : 
    1069             : static GEN
    1070       10218 : Flx_sqrspec_quartsqri(GEN a, ulong p, long na)
    1071             : {
    1072       10218 :   GEN z = sqri(Flx_to_int_quartspec(a,na));
    1073       10218 :   return int_to_Flx_quart(z,p);
    1074             : }
    1075             : 
    1076             : static GEN
    1077       11522 : Flx_sqrspec_sqri_inflate(GEN x, long N, ulong p, long nx)
    1078             : {
    1079       11522 :   pari_sp av = avma;
    1080       11522 :   GEN  z = sqri(Flx_eval2BILspec(x,N,nx));
    1081       11522 :   return gc_upto(av, Z_mod2BIL_Flx(z, N, (nx-1)*2, p));
    1082             : }
    1083             : 
    1084             : static GEN
    1085   279453407 : Flx_sqrspec(GEN a, ulong p, ulong pi, long na)
    1086             : {
    1087             :   GEN a0, c, c0;
    1088   279453407 :   long n0, n0a, i, v = 0, m;
    1089             :   pari_sp av;
    1090             : 
    1091   401830073 :   while (na && !a[0]) { a++; na--; v += 2; }
    1092   279453407 :   if (!na) return pol0_Flx(0);
    1093             : 
    1094   279207314 :   av = avma;
    1095   279207314 :   if (na >= get_Fl_threshold(p, Flx_SQR_SQRI_LIMIT, Flx_SQR2_SQRI_LIMIT))
    1096             :   {
    1097      715298 :     m = maxbitcoeffpol(p,na);
    1098      715330 :     switch(m)
    1099             :     {
    1100       10218 :     case BITS_IN_QUARTULONG:
    1101       10218 :       return Flx_shiftip(av, Flx_sqrspec_quartsqri(a,p,na), v);
    1102         325 :     case BITS_IN_HALFULONG:
    1103         325 :       return Flx_shiftip(av, Flx_sqrspec_halfsqri(a,p,na), v);
    1104        2068 :     case BITS_IN_LONG:
    1105        2068 :       return Flx_shiftip(av, Flx_sqrspec_sqri(a,p,na), v);
    1106       11522 :     case 2*BITS_IN_LONG:
    1107       11522 :       return Flx_shiftip(av, Flx_sqrspec_sqri_inflate(a,2,p,na), v);
    1108           0 :     case 3*BITS_IN_LONG:
    1109           0 :       return Flx_shiftip(av, Flx_sqrspec_sqri_inflate(a,3,p,na), v);
    1110      691197 :     default:
    1111      691197 :       return Flx_shiftip(av, Flx_sqrspec_Kronecker(a,m,p,na), v);
    1112             :     }
    1113             :   }
    1114   278539290 :   if (na < get_Fl_threshold(p, Flx_SQR_KARATSUBA_LIMIT, Flx_SQR2_KARATSUBA_LIMIT))
    1115   278448862 :     return Flx_shiftip(av, Flx_sqrspec_basecase(a,p,pi,na), v);
    1116       58508 :   i=(na>>1); n0=na-i; na=i;
    1117       58508 :   a0=a+n0; n0a=n0;
    1118       73250 :   while (n0a && !a[n0a-1]) n0a--;
    1119             : 
    1120       58508 :   c = Flx_sqrspec(a,p,pi,n0a);
    1121       58508 :   c0= Flx_sqrspec(a0,p,pi,na);
    1122       58508 :   if (p == 2) n0 *= 2;
    1123             :   else
    1124             :   {
    1125       58489 :     GEN c1, t = Flx_addspec(a0,a,p,na,n0a);
    1126       58489 :     t = Flx_sqr_pre(t,p,pi);
    1127       58489 :     c1= Flx_add(c0,c, p);
    1128       58489 :     c1= Flx_sub(t, c1, p);
    1129       58489 :     c0 = Flx_addshift(c0,c1,p,n0);
    1130             :   }
    1131       58508 :   c0 = Flx_addshift(c0,c,p,n0);
    1132       58508 :   return Flx_shiftip(av,c0,v);
    1133             : }
    1134             : 
    1135             : GEN
    1136   279333606 : Flx_sqr_pre(GEN x, ulong p, ulong pi)
    1137             : {
    1138   279333606 :   GEN z = Flx_sqrspec(x+2,p, pi, lgpol(x));
    1139   279928946 :   z[1] = x[1]; return z;
    1140             : }
    1141             : GEN
    1142      354640 : Flx_sqr(GEN x, ulong p)
    1143      354640 : { return Flx_sqr_pre(x, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    1144             : 
    1145             : GEN
    1146        3932 : Flx_powu_pre(GEN x, ulong n, ulong p, ulong pi)
    1147             : {
    1148        3932 :   GEN y = pol1_Flx(x[1]), z;
    1149             :   ulong m;
    1150        3932 :   if (n == 0) return y;
    1151        3932 :   m = n; z = x;
    1152             :   for (;;)
    1153             :   {
    1154       12740 :     if (m&1UL) y = Flx_mul_pre(y,z, p, pi);
    1155       12741 :     m >>= 1; if (!m) return y;
    1156        8810 :     z = Flx_sqr_pre(z, p, pi);
    1157             :   }
    1158             : }
    1159             : GEN
    1160           0 : Flx_powu(GEN x, ulong n, ulong p)
    1161             : {
    1162           0 :   if (n == 0) return pol1_Flx(x[1]);
    1163           0 :   return Flx_powu_pre(x, n, p, SMALL_ULONG(p)? 0: get_Fl_red(p));
    1164             : }
    1165             : 
    1166             : GEN
    1167       14047 : Flx_halve(GEN y, ulong p)
    1168             : {
    1169             :   GEN z;
    1170             :   long i, l;
    1171       14047 :   z = cgetg_copy(y, &l); z[1] = y[1];
    1172       58609 :   for(i=2; i<l; i++) uel(z,i) = Fl_halve(uel(y,i), p);
    1173       14047 :   return z;
    1174             : }
    1175             : 
    1176             : static GEN
    1177     7302548 : Flx_recipspec(GEN x, long l, long n)
    1178             : {
    1179             :   long i;
    1180     7302548 :   GEN z=cgetg(n+2,t_VECSMALL)+2;
    1181   116499968 :   for(i=0; i<l; i++)
    1182   109198591 :     z[n-i-1] = x[i];
    1183    15970629 :   for(   ; i<n; i++)
    1184     8669252 :     z[n-i-1] = 0;
    1185     7301377 :   return Flx_renormalize(z-2,n+2);
    1186             : }
    1187             : 
    1188             : GEN
    1189           0 : Flx_recip(GEN x)
    1190             : {
    1191           0 :   GEN z=Flx_recipspec(x+2,lgpol(x),lgpol(x));
    1192           0 :   z[1]=x[1];
    1193           0 :   return z;
    1194             : }
    1195             : 
    1196             : /* Return P(x * h) */
    1197             : GEN
    1198           0 : Flx_unscale(GEN P, ulong h, ulong p)
    1199             : {
    1200             :   long i, l;
    1201           0 :   ulong hi = 1UL;
    1202           0 :   GEN Q = cgetg_copy(P, &l);
    1203           0 :   Q[1] = P[1];
    1204           0 :   if (l == 2) return Q;
    1205           0 :   uel(Q,2) = uel(P,2);
    1206           0 :   for (i=3; i<l; i++)
    1207             :   {
    1208           0 :     hi = Fl_mul(hi, h ,p);
    1209           0 :     uel(Q,i) = Fl_mul(uel(P,i), hi, p);
    1210             :   }
    1211           0 :   return Q;
    1212             : }
    1213             : /* Return h^degpol(P) P(x / h) */
    1214             : GEN
    1215        1117 : Flx_rescale(GEN P, ulong h, ulong p)
    1216             : {
    1217        1117 :   long i, l = lg(P);
    1218        1117 :   GEN Q = cgetg(l,t_VECSMALL);
    1219        1117 :   ulong hi = h;
    1220        1117 :   Q[l-1] = P[l-1];
    1221       12538 :   for (i=l-2; i>=2; i--)
    1222             :   {
    1223       12538 :     Q[i] = Fl_mul(P[i], hi, p);
    1224       12538 :     if (i == 2) break;
    1225       11421 :     hi = Fl_mul(hi,h, p);
    1226             :   }
    1227        1117 :   Q[1] = P[1]; return Q;
    1228             : }
    1229             : 
    1230             : /* x/polrecip(P)+O(x^n); allow pi = 0 */
    1231             : static GEN
    1232      134340 : Flx_invBarrett_basecase(GEN T, ulong p, ulong pi)
    1233             : {
    1234      134340 :   long i, l=lg(T)-1, lr=l-1, k;
    1235      134340 :   GEN r=cgetg(lr,t_VECSMALL); r[1] = T[1];
    1236      134340 :   r[2] = 1;
    1237      134340 :   if (!pi)
    1238      767996 :     for (i=3;i<lr;i++)
    1239             :     {
    1240      760949 :       ulong u = uel(T, l-i+2);
    1241    45648450 :       for (k=3; k<i; k++)
    1242    44887501 :         { u += uel(T,l-i+k) * uel(r, k); if (u & HIGHBIT) u %= p; }
    1243      760949 :       r[i] = Fl_neg(u % p, p);
    1244             :     }
    1245             :   else
    1246     2110909 :     for (i=3;i<lr;i++)
    1247             :     {
    1248     1983618 :       ulong u = Fl_neg(uel(T,l-i+2), p);
    1249    59549281 :       for (k=3; k<i; k++)
    1250             :       {
    1251    57565663 :         ulong t = Fl_neg(uel(T,l-i+k), p);
    1252    57565663 :         u = Fl_addmul_pre(u, t, uel(r,k), p, pi);
    1253             :       }
    1254     1983618 :       r[i] = u;
    1255             :     }
    1256      134338 :   return Flx_renormalize(r,lr);
    1257             : }
    1258             : 
    1259             : /* Return new lgpol */
    1260             : static long
    1261     2134039 : Flx_lgrenormalizespec(GEN x, long lx)
    1262             : {
    1263             :   long i;
    1264     7483165 :   for (i = lx-1; i>=0; i--)
    1265     7482335 :     if (x[i]) break;
    1266     2134039 :   return i+1;
    1267             : }
    1268             : /* allow pi = 0 */
    1269             : static GEN
    1270       23161 : Flx_invBarrett_Newton(GEN T, ulong p, ulong pi)
    1271             : {
    1272       23161 :   long nold, lx, lz, lq, l = degpol(T), lQ;
    1273       23161 :   GEN q, y, z, x = zero_zv(l+1) + 2;
    1274       23161 :   ulong mask = quadratic_prec_mask(l-2); /* assume l > 2 */
    1275             :   pari_sp av;
    1276             : 
    1277       23161 :   y = T+2;
    1278       23161 :   q = Flx_recipspec(y,l+1,l+1); lQ = lgpol(q); q+=2;
    1279       23160 :   av = avma;
    1280             :   /* We work on _spec_ Flx's, all the l[xzq12] below are lgpol's */
    1281             : 
    1282             :   /* initialize */
    1283       23160 :   x[0] = Fl_inv(q[0], p);
    1284       23160 :   if (lQ>1 && q[1])
    1285        5108 :   {
    1286        5108 :     ulong u = q[1];
    1287        5108 :     if (x[0] != 1) u = Fl_mul(u, Fl_sqr(x[0],p), p);
    1288        5108 :     x[1] = p - u; lx = 2;
    1289             :   }
    1290             :   else
    1291       18052 :     lx = 1;
    1292       23160 :   nold = 1;
    1293      159205 :   for (; mask > 1; set_avma(av))
    1294             :   { /* set x -= x(x*q - 1) + O(t^(nnew + 1)), knowing x*q = 1 + O(t^(nold+1)) */
    1295      136051 :     long i, lnew, nnew = nold << 1;
    1296             : 
    1297      136051 :     if (mask & 1) nnew--;
    1298      136051 :     mask >>= 1;
    1299             : 
    1300      136051 :     lnew = nnew + 1;
    1301      136051 :     lq = Flx_lgrenormalizespec(q, minss(lQ, lnew));
    1302      136057 :     z = Flx_mulspec(x, q, p, pi, lx, lq); /* FIXME: high product */
    1303      136047 :     lz = lgpol(z); if (lz > lnew) lz = lnew;
    1304      136044 :     z += 2;
    1305             :     /* subtract 1 [=>first nold words are 0]: renormalize so that z(0) != 0 */
    1306      298865 :     for (i = nold; i < lz; i++) if (z[i]) break;
    1307      136044 :     nold = nnew;
    1308      136044 :     if (i >= lz) continue; /* z-1 = 0(t^(nnew + 1)) */
    1309             : 
    1310             :     /* z + i represents (x*q - 1) / t^i */
    1311      100988 :     lz = Flx_lgrenormalizespec (z+i, lz-i);
    1312      100988 :     z = Flx_mulspec(x, z+i, p, pi, lx, lz); /* FIXME: low product */
    1313      100990 :     lz = lgpol(z); z += 2;
    1314      100990 :     if (lz > lnew-i) lz = Flx_lgrenormalizespec(z, lnew-i);
    1315             : 
    1316      100990 :     lx = lz+ i;
    1317      100990 :     y  = x + i; /* x -= z * t^i, in place */
    1318      999760 :     for (i = 0; i < lz; i++) y[i] = Fl_neg(z[i], p);
    1319             :   }
    1320       23161 :   x -= 2; setlg(x, lx + 2); x[1] = T[1];
    1321       23161 :   return x;
    1322             : }
    1323             : 
    1324             : /* allow pi = 0 */
    1325             : static GEN
    1326      158801 : Flx_invBarrett_pre(GEN T, ulong p, ulong pi)
    1327             : {
    1328      158801 :   pari_sp ltop = avma;
    1329      158801 :   long l = lgpol(T);
    1330             :   GEN r;
    1331      158801 :   if (l < 3) return pol0_Flx(T[1]);
    1332      157501 :   if (l < get_Fl_threshold(p, Flx_INVBARRETT_LIMIT, Flx_INVBARRETT2_LIMIT))
    1333             :   {
    1334      134340 :     ulong c = T[l+1];
    1335      134340 :     if (c != 1)
    1336             :     {
    1337       98118 :       ulong ci = Fl_inv(c,p);
    1338       98118 :       T = Flx_Fl_mul_pre(T, ci, p, pi);
    1339       98118 :       r = Flx_invBarrett_basecase(T, p, pi);
    1340       98118 :       r = Flx_Fl_mul_pre(r, ci, p, pi);
    1341             :     }
    1342             :     else
    1343       36222 :       r = Flx_invBarrett_basecase(T, p, pi);
    1344             :   }
    1345             :   else
    1346       23161 :     r = Flx_invBarrett_Newton(T, p, pi);
    1347      157500 :   return gc_leaf(ltop, r);
    1348             : }
    1349             : GEN
    1350           0 : Flx_invBarrett(GEN T, ulong p)
    1351           0 : { return Flx_invBarrett_pre(T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    1352             : 
    1353             : /* allow pi = 0 */
    1354             : GEN
    1355    97339218 : Flx_get_red_pre(GEN T, ulong p, ulong pi)
    1356             : {
    1357    97339218 :   if (typ(T)!=t_VECSMALL
    1358    97303493 :     || lgpol(T) < get_Fl_threshold(p, Flx_BARRETT_LIMIT,
    1359             :                                        Flx_BARRETT2_LIMIT))
    1360    97319631 :     return T;
    1361        7627 :   retmkvec2(Flx_invBarrett_pre(T, p, pi),T);
    1362             : }
    1363             : GEN
    1364    14507478 : Flx_get_red(GEN T, ulong p)
    1365             : {
    1366    14507478 :   if (typ(T)!=t_VECSMALL
    1367    14507380 :     || lgpol(T) < get_Fl_threshold(p, Flx_BARRETT_LIMIT,
    1368             :                                        Flx_BARRETT2_LIMIT))
    1369    14501786 :     return T;
    1370        5194 :   retmkvec2(Flx_invBarrett_pre(T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)),T);
    1371             : }
    1372             : 
    1373             : /* separate from Flx_divrem for maximal speed. */
    1374             : static GEN
    1375   801511749 : Flx_rem_basecase(GEN x, GEN y, ulong p, ulong pi)
    1376             : {
    1377             :   pari_sp av;
    1378             :   GEN z, c;
    1379             :   long dx,dy,dy1,dz,i,j;
    1380             :   ulong p1,inv;
    1381   801511749 :   long vs=x[1];
    1382             : 
    1383   801511749 :   dy = degpol(y); if (!dy) return pol0_Flx(x[1]);
    1384   764900956 :   dx = degpol(x);
    1385   764789309 :   dz = dx-dy; if (dz < 0) return Flx_copy(x);
    1386   764789309 :   x += 2; y += 2;
    1387   764789309 :   inv = y[dy];
    1388   764789309 :   if (inv != 1UL) inv = Fl_inv(inv,p);
    1389   917596765 :   for (dy1=dy-1; dy1>=0 && !y[dy1]; dy1--);
    1390             : 
    1391   766402279 :   c = cgetg(dy+3, t_VECSMALL); c[1]=vs; c += 2; av=avma;
    1392   765069239 :   z = cgetg(dz+3, t_VECSMALL); z[1]=vs; z += 2;
    1393             : 
    1394   763560710 :   if (!pi)
    1395             :   {
    1396   482069640 :     z[dz] = (inv*x[dx]) % p;
    1397  1806661123 :     for (i=dx-1; i>=dy; --i)
    1398             :     {
    1399  1324591483 :       p1 = p - x[i]; /* compute -p1 instead of p1 (pb with ulongs otherwise) */
    1400 10491028839 :       for (j=i-dy1; j<=i && j<=dz; j++)
    1401             :       {
    1402  9166437356 :         p1 += z[j]*y[i-j];
    1403  9166437356 :         if (p1 & HIGHBIT) p1 %= p;
    1404             :       }
    1405  1324591483 :       p1 %= p;
    1406  1324591483 :       z[i-dy] = p1? ((p - p1)*inv) % p: 0;
    1407             :     }
    1408  3287947072 :     for (i=0; i<dy; i++)
    1409             :     {
    1410  2806231112 :       p1 = z[0]*y[i];
    1411 14487718368 :       for (j=maxss(1,i-dy1); j<=i && j<=dz; j++)
    1412             :       {
    1413 11681487256 :         p1 += z[j]*y[i-j];
    1414 11681487256 :         if (p1 & HIGHBIT) p1 %= p;
    1415             :       }
    1416  2806255112 :       c[i] = Fl_sub(x[i], p1%p, p);
    1417             :     }
    1418             :   }
    1419             :   else
    1420             :   {
    1421   281491070 :     z[dz] = Fl_mul_pre(inv, x[dx], p, pi);
    1422   861093231 :     for (i=dx-1; i>=dy; --i)
    1423             :     {
    1424   579411825 :       p1 = p - x[i]; /* compute -p1 instead of p1 (pb with ulongs otherwise) */
    1425  2406762445 :       for (j=i-dy1; j<=i && j<=dz; j++)
    1426  1827044918 :         p1 = Fl_addmul_pre(p1, z[j], y[i - j], p, pi);
    1427   579717527 :       z[i-dy] = p1? Fl_mul_pre(p - p1, inv, p, pi): 0;
    1428             :     }
    1429  2040208457 :     for (i=0; i<dy; i++)
    1430             :     {
    1431  1759604313 :       p1 = Fl_mul_pre(z[0],y[i],p,pi);
    1432  4741817587 :       for (j=maxss(1,i-dy1); j<=i && j<=dz; j++)
    1433  2972445849 :         p1 = Fl_addmul_pre(p1, z[j], y[i - j], p, pi);
    1434  1746049845 :       c[i] = Fl_sub(x[i], p1, p);
    1435             :     }
    1436             :   }
    1437   931957788 :   i = dy-1; while (i>=0 && !c[i]) i--;
    1438   762320104 :   set_avma(av); return Flx_renormalize(c-2, i+3);
    1439             : }
    1440             : 
    1441             : /* as FpX_divrem but working only on ulong types.
    1442             :  * if relevant, *pr is the last object on stack */
    1443             : static GEN
    1444    62324966 : Flx_divrem_basecase(GEN x, GEN y, ulong p, ulong pi, GEN *pr)
    1445             : {
    1446             :   GEN z,q,c;
    1447             :   long dx,dy,dy1,dz,i,j;
    1448             :   ulong p1,inv;
    1449    62324966 :   long sv=x[1];
    1450             : 
    1451    62324966 :   dy = degpol(y);
    1452    62322791 :   if (dy<0) pari_err_INV("Flx_divrem",y);
    1453    62322925 :   if (pr == ONLY_REM) return Flx_rem_basecase(x, y, p, pi);
    1454    62322527 :   if (!dy)
    1455             :   {
    1456     7169354 :     if (pr && pr != ONLY_DIVIDES) *pr = pol0_Flx(sv);
    1457     7169343 :     if (y[2] == 1UL) return Flx_copy(x);
    1458     5150450 :     return Flx_Fl_mul_pre(x, Fl_inv(y[2], p), p, pi);
    1459             :   }
    1460    55153173 :   dx = degpol(x);
    1461    55156301 :   dz = dx-dy;
    1462    55156301 :   if (dz < 0)
    1463             :   {
    1464     1059253 :     q = pol0_Flx(sv);
    1465     1059247 :     if (pr && pr != ONLY_DIVIDES) *pr = Flx_copy(x);
    1466     1059247 :     return q;
    1467             :   }
    1468    54097048 :   x += 2;
    1469    54097048 :   y += 2;
    1470    54097048 :   z = cgetg(dz + 3, t_VECSMALL); z[1] = sv; z += 2;
    1471    54096577 :   inv = uel(y, dy);
    1472    54096577 :   if (inv != 1UL) inv = Fl_inv(inv,p);
    1473    79459955 :   for (dy1=dy-1; dy1>=0 && !y[dy1]; dy1--);
    1474             : 
    1475    54099507 :   if (SMALL_ULONG(p))
    1476             :   {
    1477    52209887 :     z[dz] = (inv*x[dx]) % p;
    1478   132460614 :     for (i=dx-1; i>=dy; --i)
    1479             :     {
    1480    80250727 :       p1 = p - x[i]; /* compute -p1 instead of p1 (pb with ulongs otherwise) */
    1481   259388560 :       for (j=i-dy1; j<=i && j<=dz; j++)
    1482             :       {
    1483   179137833 :         p1 += z[j]*y[i-j];
    1484   179137833 :         if (p1 & HIGHBIT) p1 %= p;
    1485             :       }
    1486    80250727 :       p1 %= p;
    1487    80250727 :       z[i-dy] = p1? (long) ((p - p1)*inv) % p: 0;
    1488             :     }
    1489             :   }
    1490             :   else
    1491             :   {
    1492     1889620 :     z[dz] = Fl_mul(inv, x[dx], p);
    1493     9277868 :     for (i=dx-1; i>=dy; --i)
    1494             :     { /* compute -p1 instead of p1 (pb with ulongs otherwise) */
    1495     7388222 :       p1 = p - uel(x,i);
    1496    26429108 :       for (j=i-dy1; j<=i && j<=dz; j++)
    1497    19040889 :         p1 = Fl_add(p1, Fl_mul(z[j],y[i-j],p), p);
    1498     7388219 :       z[i-dy] = p1? Fl_mul(p - p1, inv, p): 0;
    1499             :     }
    1500             :   }
    1501    54099533 :   q = Flx_renormalize(z-2, dz+3);
    1502    54099018 :   if (!pr) return q;
    1503             : 
    1504    26591814 :   c = cgetg(dy + 3, t_VECSMALL); c[1] = sv; c += 2;
    1505    26593737 :   if (SMALL_ULONG(p))
    1506             :   {
    1507   229494804 :     for (i=0; i<dy; i++)
    1508             :     {
    1509   204550050 :       p1 = (ulong)z[0]*y[i];
    1510   479969838 :       for (j=maxss(1,i-dy1); j<=i && j<=dz; j++)
    1511             :       {
    1512   275419788 :         p1 += (ulong)z[j]*y[i-j];
    1513   275419788 :         if (p1 & HIGHBIT) p1 %= p;
    1514             :       }
    1515   204549673 :       c[i] = Fl_sub(x[i], p1%p, p);
    1516             :     }
    1517             :   }
    1518             :   else
    1519             :   {
    1520    16106994 :     for (i=0; i<dy; i++)
    1521             :     {
    1522    14458734 :       p1 = Fl_mul(z[0],y[i],p);
    1523    50345082 :       for (j=maxss(1,i-dy1); j<=i && j<=dz; j++)
    1524    35886349 :         p1 = Fl_add(p1, Fl_mul(z[j],y[i-j],p), p);
    1525    14458737 :       c[i] = Fl_sub(x[i], p1, p);
    1526             :     }
    1527             :   }
    1528    35834125 :   i=dy-1; while (i>=0 && !c[i]) i--;
    1529    26593014 :   c = Flx_renormalize(c-2, i+3);
    1530    26593877 :   if (pr == ONLY_DIVIDES)
    1531         454 :   { if (lg(c) != 2) return NULL; }
    1532             :   else
    1533    26593423 :     *pr = c;
    1534    26593730 :   return q;
    1535             : }
    1536             : 
    1537             : /* Compute x mod T where 2 <= degpol(T) <= l+1 <= 2*(degpol(T)-1)
    1538             :  * and mg is the Barrett inverse of T. */
    1539             : static GEN
    1540      905800 : Flx_divrem_Barrettspec(GEN x, long l, GEN mg, GEN T, ulong p, ulong pi, GEN *pr)
    1541             : {
    1542             :   GEN q, r;
    1543      905800 :   long lt = degpol(T); /*We discard the leading term*/
    1544             :   long ld, lm, lT, lmg;
    1545      905782 :   ld = l-lt;
    1546      905782 :   lm = minss(ld, lgpol(mg));
    1547      906106 :   lT  = Flx_lgrenormalizespec(T+2,lt);
    1548      906217 :   lmg = Flx_lgrenormalizespec(mg+2,lm);
    1549      906078 :   q = Flx_recipspec(x+lt,ld,ld);               /* q = rec(x)      lz<=ld*/
    1550      905665 :   q = Flx_mulspec(q+2,mg+2,p,pi,lgpol(q),lmg); /* q = rec(x) * mg lz<=ld+lm*/
    1551      906117 :   q = Flx_recipspec(q+2,minss(ld,lgpol(q)),ld);/* q = rec (rec(x) * mg) lz<=ld*/
    1552      905564 :   if (!pr) return q;
    1553      897858 :   r = Flx_mulspec(q+2,T+2,p,pi,lgpol(q),lT);   /* r = q*pol      lz<=ld+lt*/
    1554      898443 :   r = Flx_subspec(x,r+2,p,lt,minss(lt,lgpol(r)));/* r = x - q*pol lz<=lt */
    1555      898085 :   if (pr == ONLY_REM) return r;
    1556      428357 :   *pr = r; return q;
    1557             : }
    1558             : 
    1559             : static GEN
    1560      604905 : Flx_divrem_Barrett(GEN x, GEN mg, GEN T, ulong p, ulong pi, GEN *pr)
    1561             : {
    1562      604905 :   GEN q = NULL, r = Flx_copy(x);
    1563      604925 :   long l = lgpol(x), lt = degpol(T), lm = 2*lt-1, v = T[1];
    1564             :   long i;
    1565      604923 :   if (l <= lt)
    1566             :   {
    1567           0 :     if (pr == ONLY_REM) return Flx_copy(x);
    1568           0 :     if (pr == ONLY_DIVIDES) return lgpol(x)? NULL: pol0_Flx(v);
    1569           0 :     if (pr) *pr = Flx_copy(x);
    1570           0 :     return pol0_Flx(v);
    1571             :   }
    1572      604923 :   if (lt <= 1)
    1573        1300 :     return Flx_divrem_basecase(x,T,p,pi,pr);
    1574      603623 :   if (pr != ONLY_REM && l>lm)
    1575       28973 :   { q = zero_zv(l-lt+1); q[1] = T[1]; }
    1576      907364 :   while (l>lm)
    1577             :   {
    1578      303821 :     GEN zr, zq = Flx_divrem_Barrettspec(r+2+l-lm,lm,mg,T,p,pi,&zr);
    1579      303775 :     long lz = lgpol(zr);
    1580      303741 :     if (pr != ONLY_REM)
    1581             :     {
    1582       58217 :       long lq = lgpol(zq);
    1583      884286 :       for(i=0; i<lq; i++) q[2+l-lm+i] = zq[2+i];
    1584             :     }
    1585     4413587 :     for(i=0; i<lz; i++)   r[2+l-lm+i] = zr[2+i];
    1586      303741 :     l = l-lm+lz;
    1587             :   }
    1588      603543 :   if (pr == ONLY_REM)
    1589             :   {
    1590      469774 :     if (l > lt)
    1591      469732 :       r = Flx_divrem_Barrettspec(r+2,l,mg,T,p,pi,ONLY_REM);
    1592             :     else
    1593          42 :       r = Flx_renormalize(r, l+2);
    1594      469771 :     r[1] = v; return r;
    1595             :   }
    1596      133769 :   if (l > lt)
    1597             :   {
    1598      132269 :     GEN zq = Flx_divrem_Barrettspec(r+2,l,mg,T,p,pi, pr ? &r: NULL);
    1599      132269 :     if (!q) q = zq;
    1600             :     else
    1601             :     {
    1602       27393 :       long lq = lgpol(zq);
    1603      160014 :       for(i=0; i<lq; i++) q[2+i] = zq[2+i];
    1604             :     }
    1605             :   }
    1606        1500 :   else if (pr)
    1607        1541 :     r = Flx_renormalize(r, l+2);
    1608      133769 :   q[1] = v; q = Flx_renormalize(q, lg(q));
    1609      133849 :   if (pr == ONLY_DIVIDES) return lgpol(r)? NULL: q;
    1610      133849 :   if (pr) { r[1] = v; *pr = r; }
    1611      133849 :   return q;
    1612             : }
    1613             : 
    1614             : /* allow pi = 0 (SMALL_ULONG) */
    1615             : GEN
    1616    79766653 : Flx_divrem_pre(GEN x, GEN T, ulong p, ulong pi, GEN *pr)
    1617             : {
    1618             :   GEN B, y;
    1619             :   long dy, dx, d;
    1620    79766653 :   if (pr==ONLY_REM) return Flx_rem_pre(x, T, p, pi);
    1621    62449139 :   y = get_Flx_red(T, &B);
    1622    62460451 :   dy = degpol(y); dx = degpol(x); d = dx-dy;
    1623    62456841 :   if (!B && d+3 < get_Fl_threshold(p, Flx_DIVREM_BARRETT_LIMIT,Flx_DIVREM2_BARRETT_LIMIT))
    1624    62322538 :     return Flx_divrem_basecase(x,y,p,pi,pr);
    1625             :   else
    1626             :   {
    1627      134751 :     pari_sp av = avma;
    1628      134751 :     GEN mg = B? B: Flx_invBarrett_pre(y, p, pi);
    1629      134751 :     GEN q1 = Flx_divrem_Barrett(x,mg,y,p,pi,pr);
    1630      134751 :     if (!q1) return gc_NULL(av);
    1631      134751 :     if (!pr || pr==ONLY_DIVIDES) return gc_leaf(av, q1);
    1632      126451 :     return gc_all(av, 2, &q1, pr);
    1633             :   }
    1634             : }
    1635             : GEN
    1636    30452825 : Flx_divrem(GEN x, GEN T, ulong p, GEN *pr)
    1637    30452825 : { return Flx_divrem_pre(x, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p), pr); }
    1638             : 
    1639             : GEN
    1640   926172962 : Flx_rem_pre(GEN x, GEN T, ulong p, ulong pi)
    1641             : {
    1642   926172962 :   GEN B, y = get_Flx_red(T, &B);
    1643   926076591 :   long d = degpol(x) - degpol(y);
    1644   925821376 :   if (d < 0) return Flx_copy(x);
    1645   802340378 :   if (!B && d+3 < get_Fl_threshold(p, Flx_REM_BARRETT_LIMIT,Flx_REM2_BARRETT_LIMIT))
    1646   801619055 :     return Flx_rem_basecase(x,y,p, pi);
    1647             :   else
    1648             :   {
    1649      470158 :     pari_sp av=avma;
    1650      470158 :     GEN mg = B ? B: Flx_invBarrett_pre(y, p, pi);
    1651      470157 :     GEN r  = Flx_divrem_Barrett(x, mg, y, p, pi, ONLY_REM);
    1652      470168 :     return gc_leaf(av, r);
    1653             :   }
    1654             : }
    1655             : GEN
    1656    42226787 : Flx_rem(GEN x, GEN T, ulong p)
    1657    42226787 : { return Flx_rem_pre(x, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    1658             : 
    1659             : /* reduce T mod (X^n - 1, p). Shallow function */
    1660             : GEN
    1661     5057253 : Flx_mod_Xnm1(GEN T, ulong n, ulong p)
    1662             : {
    1663     5057253 :   long i, j, L = lg(T), l = n+2;
    1664             :   GEN S;
    1665     5057253 :   if (L <= l || n & ~LGBITS) return T;
    1666        3529 :   S = cgetg(l, t_VECSMALL);
    1667        3529 :   S[1] = T[1];
    1668       15097 :   for (i = 2; i < l; i++) S[i] = T[i];
    1669        9755 :   for (j = 2; i < L; i++) {
    1670        6226 :     S[j] = Fl_add(S[j], T[i], p);
    1671        6226 :     if (++j == l) j = 2;
    1672             :   }
    1673        3529 :   return Flx_renormalize(S, l);
    1674             : }
    1675             : /* reduce T mod (X^n + 1, p). Shallow function */
    1676             : GEN
    1677       31764 : Flx_mod_Xn1(GEN T, ulong n, ulong p)
    1678             : {
    1679       31764 :   long i, j, L = lg(T), l = n+2, s = -1;
    1680             :   GEN S;
    1681       31764 :   if (L <= l || n & ~LGBITS) return T;
    1682        2740 :   S = cgetg(l, t_VECSMALL);
    1683        2740 :   S[1] = T[1];
    1684       12032 :   for (i = 2; i < l; i++) S[i] = T[i];
    1685        7267 :   for (j = 2; i < L; i++) {
    1686        4527 :     S[j] = s==-1 ? Fl_sub(S[j], T[i], p): Fl_add(S[j], T[i], p);
    1687        4527 :     if (++j == l) { j = 2; s = -s; }
    1688             :   }
    1689        2740 :   return Flx_renormalize(S, l);
    1690             : }
    1691             : 
    1692             : struct _Flxq {
    1693             :   GEN aut, T;
    1694             :   ulong p, pi;
    1695             : };
    1696             : /* allow pi = 0 */
    1697             : static void
    1698    69560734 : set_Flxq_pre(struct _Flxq *D, GEN T, ulong p, ulong pi)
    1699             : {
    1700    69560734 :   D->p = p;
    1701    69560734 :   D->pi = pi;
    1702    69560734 :   D->T = Flx_get_red_pre(T, p, pi);
    1703    69556080 : }
    1704             : static void
    1705       68922 : set_Flxq(struct _Flxq *D, GEN T, ulong p)
    1706       68922 : { set_Flxq_pre(D, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    1707             : 
    1708             : static GEN
    1709           0 : _Flx_divrem(void * E, GEN x, GEN y, GEN *r)
    1710             : {
    1711           0 :   struct _Flxq *D = (struct _Flxq*) E;
    1712           0 :   return Flx_divrem_pre(x, y, D->p, D->pi, r);
    1713             : }
    1714             : static GEN
    1715      389834 : _Flx_add(void * E, GEN x, GEN y) {
    1716      389834 :   struct _Flxq *D = (struct _Flxq*) E;
    1717      389834 :   return Flx_add(x, y, D->p);
    1718             : }
    1719             : static GEN
    1720    11006992 : _Flx_mul(void *E, GEN x, GEN y) {
    1721    11006992 :   struct _Flxq *D = (struct _Flxq*) E;
    1722    11006992 :   return Flx_mul_pre(x, y, D->p, D->pi);
    1723             : }
    1724             : static GEN
    1725           0 : _Flx_sqr(void *E, GEN x) {
    1726           0 :   struct _Flxq *D = (struct _Flxq*) E;
    1727           0 :   return Flx_sqr_pre(x, D->p, D->pi);
    1728             : }
    1729             : 
    1730             : static struct bb_ring Flx_ring = { _Flx_add,_Flx_mul,_Flx_sqr };
    1731             : 
    1732             : GEN
    1733           0 : Flx_digits(GEN x, GEN T, ulong p)
    1734             : {
    1735             :   struct _Flxq D;
    1736           0 :   long d = degpol(T), n = (lgpol(x)+d-1)/d;
    1737           0 :   D.p = p; D.pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    1738           0 :   return gen_digits(x,T,n,(void *)&D, &Flx_ring, _Flx_divrem);
    1739             : }
    1740             : 
    1741             : GEN
    1742           0 : FlxV_Flx_fromdigits(GEN x, GEN T, ulong p)
    1743             : {
    1744             :   struct _Flxq D;
    1745           0 :   D.p = p; D.pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    1746           0 :   return gen_fromdigits(x,T,(void *)&D, &Flx_ring);
    1747             : }
    1748             : 
    1749             : long
    1750     4494568 : Flx_val(GEN x)
    1751             : {
    1752     4494568 :   long i, l=lg(x);
    1753     4494568 :   if (l==2)  return LONG_MAX;
    1754     4503665 :   for (i=2; i<l && x[i]==0; i++) /*empty*/;
    1755     4494568 :   return i-2;
    1756             : }
    1757             : long
    1758    27437246 : Flx_valrem(GEN x, GEN *Z)
    1759             : {
    1760    27437246 :   long v, i, l=lg(x);
    1761             :   GEN y;
    1762    27437246 :   if (l==2) { *Z = Flx_copy(x); return LONG_MAX; }
    1763    29615639 :   for (i=2; i<l && x[i]==0; i++) /*empty*/;
    1764    27437246 :   v = i-2;
    1765    27437246 :   if (v == 0) { *Z = x; return 0; }
    1766     1024126 :   l -= v;
    1767     1024126 :   y = cgetg(l, t_VECSMALL); y[1] = x[1];
    1768     2629647 :   for (i=2; i<l; i++) y[i] = x[i+v];
    1769     1024262 :   *Z = y; return v;
    1770             : }
    1771             : 
    1772             : GEN
    1773    22988672 : Flx_deriv(GEN z, ulong p)
    1774             : {
    1775    22988672 :   long i,l = lg(z)-1;
    1776             :   GEN x;
    1777    22988672 :   if (l < 2) l = 2;
    1778    22988672 :   x = cgetg(l, t_VECSMALL); x[1] = z[1]; z++;
    1779    22987461 :   if (HIGHWORD(l | p))
    1780    62976149 :     for (i=2; i<l; i++) x[i] = Fl_mul((ulong)i-1, z[i], p);
    1781             :   else
    1782    87969904 :     for (i=2; i<l; i++) x[i] = ((i-1) * z[i]) % p;
    1783    22986958 :   return Flx_renormalize(x,l);
    1784             : }
    1785             : 
    1786             : static GEN
    1787      422798 : Flx_integXn(GEN x, long n, ulong p)
    1788             : {
    1789      422798 :   long i, lx = lg(x);
    1790             :   GEN y;
    1791      422798 :   if (lx == 2) return Flx_copy(x);
    1792      412985 :   y = cgetg(lx, t_VECSMALL); y[1] = x[1];
    1793     2096950 :   for (i=2; i<lx; i++)
    1794             :   {
    1795     1683595 :     ulong xi = uel(x,i);
    1796     1683595 :     if (xi == 0)
    1797       13345 :       uel(y,i) = 0;
    1798             :     else
    1799             :     {
    1800     1670250 :       ulong j = n+i-1;
    1801     1670250 :       ulong d = ugcd(j, xi);
    1802     1670208 :       if (d==1)
    1803     1018448 :         uel(y,i) = Fl_div(xi, j, p);
    1804             :       else
    1805      651760 :         uel(y,i) = Fl_div(xi/d, j/d, p);
    1806             :     }
    1807             :   }
    1808      413355 :   return Flx_renormalize(y, lx);;
    1809             : }
    1810             : 
    1811             : GEN
    1812           0 : Flx_integ(GEN x, ulong p)
    1813             : {
    1814           0 :   long i, lx = lg(x);
    1815             :   GEN y;
    1816           0 :   if (lx == 2) return Flx_copy(x);
    1817           0 :   y = cgetg(lx+1, t_VECSMALL); y[1] = x[1];
    1818           0 :   uel(y,2) = 0;
    1819           0 :   for (i=3; i<=lx; i++)
    1820           0 :     uel(y,i) = uel(x,i-1) ? Fl_div(uel(x,i-1), (i-2)%p, p): 0UL;
    1821           0 :   return Flx_renormalize(y, lx+1);;
    1822             : }
    1823             : 
    1824             : /* assume p prime */
    1825             : GEN
    1826       14448 : Flx_diff1(GEN P, ulong p)
    1827             : {
    1828       14448 :   return Flx_sub(Flx_translate1(P, p), P, p);
    1829             : }
    1830             : 
    1831             : GEN
    1832      421027 : Flx_deflate(GEN x0, long d)
    1833             : {
    1834             :   GEN z, y, x;
    1835      421027 :   long i,id, dy, dx = degpol(x0);
    1836      421027 :   if (d == 1 || dx <= 0) return Flx_copy(x0);
    1837      357516 :   dy = dx/d;
    1838      357516 :   y = cgetg(dy+3, t_VECSMALL); y[1] = x0[1];
    1839      357516 :   z = y + 2;
    1840      357516 :   x = x0+ 2;
    1841     1162683 :   for (i=id=0; i<=dy; i++,id+=d) z[i] = x[id];
    1842      357516 :   return y;
    1843             : }
    1844             : 
    1845             : GEN
    1846      160463 : Flx_inflate(GEN x0, long d)
    1847             : {
    1848      160463 :   long i, id, dy, dx = degpol(x0);
    1849      160460 :   GEN x = x0 + 2, z, y;
    1850      160460 :   if (dx <= 0) return Flx_copy(x0);
    1851      159398 :   dy = dx*d;
    1852      159398 :   y = cgetg(dy+3, t_VECSMALL); y[1] = x0[1];
    1853      159395 :   z = y + 2;
    1854     8835477 :   for (i=0; i<=dy; i++) z[i] = 0;
    1855     4299213 :   for (i=id=0; i<=dx; i++,id+=d) z[id] = x[i];
    1856      159395 :   return y;
    1857             : }
    1858             : 
    1859             : /* write p(X) = a_0(X^k) + X*a_1(X^k) + ... + X^(k-1)*a_{k-1}(X^k) */
    1860             : GEN
    1861      147434 : Flx_splitting(GEN p, long k)
    1862             : {
    1863      147434 :   long n = degpol(p), v = p[1], m, i, j, l;
    1864             :   GEN r;
    1865             : 
    1866      147434 :   m = n/k;
    1867      147434 :   r = cgetg(k+1,t_VEC);
    1868      679611 :   for(i=1; i<=k; i++)
    1869             :   {
    1870      532181 :     gel(r,i) = cgetg(m+3, t_VECSMALL);
    1871      532176 :     mael(r,i,1) = v;
    1872             :   }
    1873     4472741 :   for (j=1, i=0, l=2; i<=n; i++)
    1874             :   {
    1875     4325311 :     mael(r,j,l) = p[2+i];
    1876     4325311 :     if (j==k) { j=1; l++; } else j++;
    1877             :   }
    1878      679621 :   for(i=1; i<=k; i++)
    1879      532196 :     gel(r,i) = Flx_renormalize(gel(r,i),i<j?l+1:l);
    1880      147425 :   return r;
    1881             : }
    1882             : 
    1883             : /* ux + vy */
    1884             : static GEN
    1885      416797 : Flx_addmulmul(GEN u, GEN v, GEN x, GEN y, ulong p, ulong pi)
    1886      416797 : { return Flx_add(Flx_mul_pre(u,x, p,pi), Flx_mul_pre(v,y, p,pi), p); }
    1887             : 
    1888             : static GEN
    1889       25999 : FlxM_Flx_mul2(GEN M, GEN x, GEN y, ulong p, ulong pi)
    1890             : {
    1891       25999 :   GEN res = cgetg(3, t_COL);
    1892       25999 :   gel(res, 1) = Flx_addmulmul(gcoeff(M,1,1), gcoeff(M,1,2), x, y, p, pi);
    1893       26000 :   gel(res, 2) = Flx_addmulmul(gcoeff(M,2,1), gcoeff(M,2,2), x, y, p, pi);
    1894       25998 :   return res;
    1895             : }
    1896             : 
    1897             : #if 0
    1898             : static GEN
    1899             : FlxM_mul2_old(GEN M, GEN N, ulong p)
    1900             : {
    1901             :   GEN res = cgetg(3, t_MAT);
    1902             :   gel(res, 1) = FlxM_Flx_mul2(M,gcoeff(N,1,1),gcoeff(N,2,1),p);
    1903             :   gel(res, 2) = FlxM_Flx_mul2(M,gcoeff(N,1,2),gcoeff(N,2,2),p);
    1904             :   return res;
    1905             : }
    1906             : #endif
    1907             : /* A,B are 2x2 matrices, Flx entries. Return A x B using Strassen 7M formula */
    1908             : static GEN
    1909        7099 : FlxM_mul2(GEN A, GEN B, ulong p, ulong pi)
    1910             : {
    1911        7099 :   GEN A11=gcoeff(A,1,1),A12=gcoeff(A,1,2), B11=gcoeff(B,1,1),B12=gcoeff(B,1,2);
    1912        7099 :   GEN A21=gcoeff(A,2,1),A22=gcoeff(A,2,2), B21=gcoeff(B,2,1),B22=gcoeff(B,2,2);
    1913        7099 :   GEN M1 = Flx_mul_pre(Flx_add(A11,A22, p), Flx_add(B11,B22, p), p, pi);
    1914        7099 :   GEN M2 = Flx_mul_pre(Flx_add(A21,A22, p), B11, p, pi);
    1915        7099 :   GEN M3 = Flx_mul_pre(A11, Flx_sub(B12,B22, p), p, pi);
    1916        7099 :   GEN M4 = Flx_mul_pre(A22, Flx_sub(B21,B11, p), p, pi);
    1917        7099 :   GEN M5 = Flx_mul_pre(Flx_add(A11,A12, p), B22, p, pi);
    1918        7099 :   GEN M6 = Flx_mul_pre(Flx_sub(A21,A11, p), Flx_add(B11,B12, p), p, pi);
    1919        7099 :   GEN M7 = Flx_mul_pre(Flx_sub(A12,A22, p), Flx_add(B21,B22, p), p, pi);
    1920        7099 :   GEN T1 = Flx_add(M1,M4, p), T2 = Flx_sub(M7,M5, p);
    1921        7099 :   GEN T3 = Flx_sub(M1,M2, p), T4 = Flx_add(M3,M6, p);
    1922        7099 :   retmkmat22(Flx_add(T1,T2, p), Flx_add(M3,M5, p),
    1923             :              Flx_add(M2,M4, p), Flx_add(T3,T4, p));
    1924             : }
    1925             : 
    1926             : /* Return [0,1;1,-q]*M */
    1927             : static GEN
    1928        6927 : Flx_FlxM_qmul(GEN q, GEN M, ulong p, ulong pi)
    1929             : {
    1930        6927 :   GEN u = Flx_mul_pre(gcoeff(M,2,1), q, p, pi);
    1931        6927 :   GEN v = Flx_mul_pre(gcoeff(M,2,2), q, p, pi);
    1932        6927 :   retmkmat22(gcoeff(M,2,1), gcoeff(M,2,2),
    1933             :     Flx_sub(gcoeff(M,1,1), u, p), Flx_sub(gcoeff(M,1,2), v, p));
    1934             : }
    1935             : 
    1936             : static GEN
    1937         911 : matid2_FlxM(long v)
    1938         911 : { retmkmat22(pol1_Flx(v),pol0_Flx(v),pol0_Flx(v),pol1_Flx(v)); }
    1939             : 
    1940             : static GEN
    1941          13 : matJ2_FlxM(long v)
    1942          13 : { retmkmat22(pol0_Flx(v),pol1_Flx(v),pol1_Flx(v),pol0_Flx(v)); }
    1943             : 
    1944             : struct Flx_res
    1945             : {
    1946             :    ulong res, lc;
    1947             :    long deg0, deg1, off;
    1948             : };
    1949             : 
    1950             : INLINE void
    1951        9405 : Flx_halfres_update_pre(long da, long db, long dr, ulong p, ulong pi, struct Flx_res *res)
    1952             : {
    1953        9405 :   if (dr >= 0)
    1954             :   {
    1955        9405 :     if (res->lc != 1)
    1956             :     {
    1957        7596 :       if (pi)
    1958             :       {
    1959        3127 :         res->lc  = Fl_powu_pre(res->lc, da - dr, p, pi);
    1960        3127 :         res->res = Fl_mul_pre(res->res, res->lc, p, pi);
    1961             :       } else
    1962             :       {
    1963        4469 :         res->lc  = Fl_powu(res->lc, da - dr, p);
    1964        4469 :         res->res = Fl_mul(res->res, res->lc, p);
    1965             :       }
    1966             :     }
    1967        9405 :     if (both_odd(da + res->off, db + res->off))
    1968          63 :       res->res = Fl_neg(res->res, p);
    1969             :   } else
    1970             :   {
    1971           0 :     if (db == 0)
    1972             :     {
    1973           0 :       if (res->lc != 1)
    1974             :       {
    1975           0 :         if (pi)
    1976             :         {
    1977           0 :           res->lc  = Fl_powu_pre(res->lc, da, p, pi);
    1978           0 :           res->res = Fl_mul_pre(res->res, res->lc, p, pi);
    1979             :         } else
    1980             :         {
    1981           0 :           res->lc  = Fl_powu(res->lc, da, p);
    1982           0 :           res->res = Fl_mul(res->res, res->lc, p);
    1983             :         }
    1984             :       }
    1985             :     } else
    1986           0 :       res->res = 0;
    1987             :   }
    1988        9405 : }
    1989             : 
    1990             : static GEN
    1991     1136867 : Flx_halfres_basecase(GEN a, GEN b, ulong p, ulong pi, GEN *pa, GEN *pb, struct Flx_res *res)
    1992             : {
    1993     1136867 :   pari_sp av = avma;
    1994             :   GEN u, u1, v, v1, M;
    1995     1136867 :   long vx = a[1], n = lgpol(a)>>1;
    1996     1136865 :   u1 = v = pol0_Flx(vx);
    1997     1136855 :   u = v1 = pol1_Flx(vx);
    1998     6950069 :   while (lgpol(b)>n)
    1999             :   {
    2000             :     GEN r, q;
    2001     5813263 :     q = Flx_divrem_pre(a,b,p,pi, &r);
    2002     5813359 :     if (res)
    2003             :     {
    2004        8362 :       long da = degpol(a), db=degpol(b), dr = degpol(r);
    2005        8362 :       res->lc = b[db+2];
    2006        8362 :       if (dr >= n)
    2007        7133 :         Flx_halfres_update_pre(da, db, dr, p, pi, res);
    2008             :       else
    2009             :       {
    2010        1229 :         res->deg0 = da;
    2011        1229 :         res->deg1 = db;
    2012             :       }
    2013             :     }
    2014     5813359 :     a = b; b = r; swap(u,u1); swap(v,v1);
    2015     5813359 :     u1 = Flx_sub(u1, Flx_mul(u, q, p), p);
    2016     5813167 :     v1 = Flx_sub(v1, Flx_mul(v, q, p), p);
    2017     5813212 :     if (gc_needed(av,2))
    2018             :     {
    2019           0 :       if (DEBUGMEM>1) pari_warn(warnmem,"Flx_halfgcd (d = %ld)",degpol(b));
    2020           0 :       (void)gc_all(av,6, &a,&b,&u1,&v1,&u,&v);
    2021             :     }
    2022             :   }
    2023     1136691 :   M = mkmat22(u,v,u1,v1); *pa = a; *pb = b;
    2024     1136837 :   return gc_all(av,3, &M, pa, pb);
    2025             : }
    2026             : 
    2027             : static GEN Flx_halfres_i(GEN x, GEN y, ulong p, ulong pi, GEN *a, GEN *b, struct Flx_res *res);
    2028             : 
    2029             : static GEN
    2030       19964 : Flx_halfres_split(GEN x, GEN y, ulong p, ulong pi, GEN *a, GEN *b, struct Flx_res *res)
    2031             : {
    2032       19964 :   pari_sp av = avma;
    2033             :   GEN R, S, T, V1, V2;
    2034             :   GEN x1, y1, r, q;
    2035       19964 :   long l = lgpol(x), n = l>>1, k;
    2036       19964 :   if (lgpol(y) <= n)
    2037         871 :     { *a = Flx_copy(x); *b = Flx_copy(y); return matid2_FlxM(x[1]); }
    2038       19093 :   if (res)
    2039             :   {
    2040        3263 :      res->lc = Flx_lead(y);
    2041        3263 :      res->deg0 -= n;
    2042        3263 :      res->deg1 -= n;
    2043        3263 :      res->off += n;
    2044             :   }
    2045       19093 :   R = Flx_halfres_i(Flx_shift(x,-n),Flx_shift(y,-n),p,pi,a,b,res);
    2046       19093 :   if (res)
    2047             :   {
    2048        3263 :     res->off -= n;
    2049        3263 :     res->deg0 += n;
    2050        3263 :     res->deg1 += n;
    2051             :   }
    2052       19093 :   V1 = FlxM_Flx_mul2(R, Flxn_red(x,n), Flxn_red(y,n), p, pi);
    2053       19091 :   x1 = Flx_add(Flx_shift(*a,n), gel(V1,1), p);
    2054       19093 :   y1 = Flx_add(Flx_shift(*b,n), gel(V1,2), p);
    2055       19093 :   if (lgpol(y1) <= n)
    2056       12186 :     { *a = x1; *b = y1; return gc_all(av, 3, &R, a, b); }
    2057        6907 :   k = 2*n-degpol(y1);
    2058        6907 :   q = Flx_divrem_pre(x1, y1, p, pi, &r);
    2059        6907 :   if (res)
    2060             :   {
    2061        1043 :     long dx1 = degpol(x1), dy1 = degpol(y1), dr = degpol(r);
    2062        1043 :     if (dy1 < degpol(y))
    2063         185 :       Flx_halfres_update_pre(res->deg0, res->deg1, dy1, p, pi, res);
    2064        1043 :     res->lc = uel(y1, dy1+2);
    2065        1043 :     res->deg0 = dx1;
    2066        1043 :     res->deg1 = dy1;
    2067        1043 :     if (dr >= n)
    2068             :     {
    2069        1043 :       Flx_halfres_update_pre(dx1, dy1, dr, p, pi, res);
    2070        1043 :       res->deg0 = dy1;
    2071        1043 :       res->deg1 = dr;
    2072             :     }
    2073        1043 :     res->deg0 -= k;
    2074        1043 :     res->deg1 -= k;
    2075        1043 :     res->off += k;
    2076             :   }
    2077        6907 :   S = Flx_halfres_i(Flx_shift(y1,-k), Flx_shift(r,-k), p, pi, a, b, res);
    2078        6907 :   if (res)
    2079             :   {
    2080        1043 :     res->deg0 += k;
    2081        1043 :     res->deg1 += k;
    2082        1043 :     res->off -= k;
    2083             :   }
    2084        6907 :   T = FlxM_mul2(S, Flx_FlxM_qmul(q, R, p,pi), p, pi);
    2085        6906 :   V2 = FlxM_Flx_mul2(S, Flxn_red(y1,k), Flxn_red(r,k), p, pi);
    2086        6907 :   *a = Flx_add(Flx_shift(*a,k), gel(V2,1), p);
    2087        6907 :   *b = Flx_add(Flx_shift(*b,k), gel(V2,2), p);
    2088        6907 :   return gc_all(av, 3, &T, a, b);
    2089             : }
    2090             : 
    2091             : static GEN
    2092     1156834 : Flx_halfres_i(GEN x, GEN y, ulong p, ulong pi, GEN *a, GEN *b, struct Flx_res *res)
    2093             : {
    2094     1156834 :   if (lgpol(x) < get_Fl_threshold(p, Flx_HALFGCD_LIMIT, Flx_HALFGCD2_LIMIT))
    2095     1136867 :     return Flx_halfres_basecase(x, y, p, pi, a, b, res);
    2096       19964 :   return Flx_halfres_split(x, y, p, pi, a, b, res);
    2097             : }
    2098             : 
    2099             : static GEN
    2100     1129790 : Flx_halfgcd_all_i(GEN x, GEN y, ulong p, ulong pi, GEN *pa, GEN *pb)
    2101             : {
    2102             :   GEN a, b, R;
    2103     1129790 :   R = Flx_halfres_i(x, y, p, pi, &a, &b, NULL);
    2104     1129800 :   if (pa) *pa = a;
    2105     1129800 :   if (pb) *pb = b;
    2106     1129800 :   return R;
    2107             : }
    2108             : 
    2109             : /* Return M in GL_2(Fl[X]) such that:
    2110             : if [a',b']~=M*[a,b]~ then degpol(a')>= (lgpol(a)>>1) >degpol(b')
    2111             : */
    2112             : 
    2113             : GEN
    2114     1129795 : Flx_halfgcd_all_pre(GEN x, GEN y, ulong p, ulong pi, GEN *a, GEN *b)
    2115             : {
    2116             :   pari_sp av;
    2117             :   GEN R, q ,r;
    2118     1129795 :   long lx = lgpol(x), ly = lgpol(y);
    2119     1129790 :   if (!lx)
    2120             :   {
    2121           0 :     if (a) *a = Flx_copy(y);
    2122           0 :     if (b) *b = Flx_copy(x);
    2123           0 :     return matJ2_FlxM(x[1]);
    2124             :   }
    2125     1129790 :   if (ly < lx) return Flx_halfgcd_all_i(x, y, p, pi, a, b);
    2126        8387 :   av = avma;
    2127        8387 :   q = Flx_divrem(y,x,p,&r);
    2128        8387 :   R = Flx_halfgcd_all_i(x, r, p, pi, a, b);
    2129        8387 :   gcoeff(R,1,1) = Flx_sub(gcoeff(R,1,1), Flx_mul_pre(q,gcoeff(R,1,2), p,pi), p);
    2130        8387 :   gcoeff(R,2,1) = Flx_sub(gcoeff(R,2,1), Flx_mul_pre(q,gcoeff(R,2,2), p,pi), p);
    2131        8387 :   return !a && b ? gc_all(av, 2, &R, b): gc_all(av, 1+!!a+!!b, &R, a, b);
    2132             : }
    2133             : 
    2134             : GEN
    2135         154 : Flx_halfgcd_all(GEN x, GEN y, ulong p, GEN *a, GEN *b)
    2136         154 : { return Flx_halfgcd_all_pre(x, y, p, SMALL_ULONG(p)? 0: get_Fl_red(p), a, b); }
    2137             : 
    2138             : GEN
    2139      875635 : Flx_halfgcd_pre(GEN x, GEN y, ulong p, ulong pi)
    2140      875635 : { return Flx_halfgcd_all_pre(x, y, p, pi, NULL, NULL); }
    2141             : 
    2142             : GEN
    2143           0 : Flx_halfgcd(GEN x, GEN y, ulong p)
    2144           0 : { return Flx_halfgcd_pre(x, y, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    2145             : 
    2146             : /*Do not garbage collect*/
    2147             : static GEN
    2148    85210617 : Flx_gcd_basecase(GEN a, GEN b, ulong p, ulong pi)
    2149             : {
    2150    85210617 :   pari_sp av = avma;
    2151    85210617 :   ulong iter = 0;
    2152    85210617 :   if (lg(b) > lg(a)) swap(a, b);
    2153   293408195 :   while (lgpol(b))
    2154             :   {
    2155   207828718 :     GEN c = Flx_rem_pre(a,b,p,pi);
    2156   208197578 :     iter++; a = b; b = c;
    2157   208197578 :     if (gc_needed(av,2))
    2158             :     {
    2159           0 :       if (DEBUGMEM>1) pari_warn(warnmem,"Flx_gcd (d = %ld)",degpol(c));
    2160           0 :       (void)gc_all(av,2, &a,&b);
    2161             :     }
    2162             :   }
    2163    85168761 :   return iter < 2 ? Flx_copy(a) : a;
    2164             : }
    2165             : 
    2166             : GEN
    2167    86876582 : Flx_gcd_pre(GEN x, GEN y, ulong p, ulong pi)
    2168             : {
    2169    86876582 :   pari_sp av = avma;
    2170             :   long lim;
    2171    86876582 :   if (!lgpol(x)) return Flx_copy(y);
    2172    85212841 :   lim = get_Fl_threshold(p, Flx_GCD_LIMIT, Flx_GCD2_LIMIT);
    2173    85219364 :   while (lgpol(y) >= lim)
    2174             :   {
    2175         229 :     if (lgpol(y)<=(lgpol(x)>>1))
    2176             :     {
    2177           0 :       GEN r = Flx_rem_pre(x, y, p, pi);
    2178           0 :       x = y; y = r;
    2179             :     }
    2180         229 :     (void) Flx_halfgcd_all_pre(x, y, p, pi, &x, &y);
    2181         229 :     if (gc_needed(av,2))
    2182             :     {
    2183           0 :       if (DEBUGMEM>1) pari_warn(warnmem,"Flx_gcd (y = %ld)",degpol(y));
    2184           0 :       (void)gc_all(av,2,&x,&y);
    2185             :     }
    2186             :   }
    2187    85209352 :   return gc_leaf(av, Flx_gcd_basecase(x,y,p,pi));
    2188             : }
    2189             : GEN
    2190    34259984 : Flx_gcd(GEN x, GEN y, ulong p)
    2191    34259984 : { return Flx_gcd_pre(x, y, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    2192             : 
    2193             : int
    2194     9184122 : Flx_is_squarefree(GEN z, ulong p)
    2195             : {
    2196     9184122 :   pari_sp av = avma;
    2197     9184122 :   GEN d = Flx_gcd(z, Flx_deriv(z,p) , p);
    2198     9184013 :   return gc_bool(av, degpol(d) == 0);
    2199             : }
    2200             : 
    2201             : static long
    2202      127204 : Flx_is_smooth_squarefree(GEN f, long r, ulong p, ulong pi)
    2203             : {
    2204      127204 :   pari_sp av = avma;
    2205             :   long i;
    2206      127204 :   GEN sx = polx_Flx(f[1]), a = sx;
    2207      536309 :   for(i=1;;i++)
    2208             :   {
    2209      536309 :     if (degpol(f)<=r) return gc_long(av,1);
    2210      514421 :     a = Flxq_powu_pre(Flx_rem_pre(a,f,p,pi), p, f, p, pi);
    2211      514456 :     if (Flx_equal(a, sx)) return gc_long(av,1);
    2212      510700 :     if (i==r) return gc_long(av,0);
    2213      408776 :     f = Flx_div_pre(f, Flx_gcd_pre(Flx_sub(a,sx,p),f,p,pi),p,pi);
    2214             :   }
    2215             : }
    2216             : 
    2217             : static long
    2218        8204 : Flx_is_l_pow(GEN x, ulong p)
    2219             : {
    2220        8204 :   ulong i, lx = lgpol(x);
    2221       16384 :   for (i=1; i<lx; i++)
    2222       14699 :     if (x[i+2] && i%p) return 0;
    2223        1685 :   return 1;
    2224             : }
    2225             : 
    2226             : int
    2227      127169 : Flx_is_smooth_pre(GEN g, long r, ulong p, ulong pi)
    2228             : {
    2229             :   while (1)
    2230        8204 :   {
    2231      127169 :     GEN f = Flx_gcd_pre(g, Flx_deriv(g, p), p, pi);
    2232      127015 :     if (!Flx_is_smooth_squarefree(Flx_div_pre(g, f, p, pi), r, p, pi))
    2233      101926 :       return 0;
    2234       25274 :     if (degpol(f)==0) return 1;
    2235        8193 :     g = Flx_is_l_pow(f,p) ? Flx_deflate(f, p): f;
    2236             :   }
    2237             : }
    2238             : int
    2239       74256 : Flx_is_smooth(GEN g, long r, ulong p)
    2240       74256 : { return Flx_is_smooth_pre(g, r, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    2241             : 
    2242             : static GEN
    2243     6289645 : Flx_extgcd_basecase(GEN a, GEN b, ulong p, ulong pi, GEN *ptu, GEN *ptv)
    2244             : {
    2245     6289645 :   pari_sp av=avma;
    2246             :   GEN u,v,u1,v1;
    2247     6289645 :   long vx = a[1];
    2248     6289645 :   v = pol0_Flx(vx); v1 = pol1_Flx(vx);
    2249     6289495 :   if (ptu) { u = pol1_Flx(vx); u1 = pol0_Flx(vx); }
    2250    28085469 :   while (lgpol(b))
    2251             :   {
    2252    21795005 :     GEN r, q = Flx_divrem_pre(a,b,p,pi, &r);
    2253    21796492 :     a = b; b = r;
    2254    21796492 :     if (ptu)
    2255             :     {
    2256     2431103 :       swap(u,u1);
    2257     2431103 :       u1 = Flx_sub(u1, Flx_mul_pre(u, q, p, pi), p);
    2258             :     }
    2259    21796479 :     swap(v,v1);
    2260    21796479 :     v1 = Flx_sub(v1, Flx_mul_pre(v, q, p, pi), p);
    2261    21795986 :     if (gc_needed(av,2))
    2262             :     {
    2263           0 :       if (DEBUGMEM>1) pari_warn(warnmem,"Flx_extgcd (d = %ld)",degpol(a));
    2264           0 :       (void)gc_all(av,ptu ? 6: 4, &a,&b,&v,&v1,&u,&u1);
    2265             :     }
    2266             :   }
    2267     6289567 :   if (ptu) *ptu = u;
    2268     6289567 :   *ptv = v;
    2269     6289567 :   return a;
    2270             : }
    2271             : 
    2272             : static GEN
    2273      146649 : Flx_extgcd_halfgcd(GEN x, GEN y, ulong p, ulong pi, GEN *ptu, GEN *ptv)
    2274             : {
    2275             :   GEN u, v;
    2276      146649 :   long lim = get_Fl_threshold(p, Flx_EXTGCD_LIMIT, Flx_EXTGCD2_LIMIT);
    2277      146649 :   GEN V = cgetg(expu(lgpol(y))+2,t_VEC);
    2278      146649 :   long i, n = 0, vs = x[1];
    2279      399033 :   while (lgpol(y) >= lim)
    2280             :   {
    2281      252384 :     if (lgpol(y)<=(lgpol(x)>>1))
    2282             :     {
    2283          26 :       GEN r, q = Flx_divrem_pre(x, y, p, pi, &r);
    2284          26 :       x = y; y = r;
    2285          26 :       gel(V,++n) = mkmat22(pol0_Flx(vs),pol1_Flx(vs),pol1_Flx(vs),Flx_neg(q,p));
    2286             :     } else
    2287      252358 :       gel(V,++n) = Flx_halfgcd_all_pre(x, y, p, pi, &x, &y);
    2288             :   }
    2289      146649 :   y = Flx_extgcd_basecase(x,y,p,pi,&u,&v);
    2290      252384 :   for (i = n; i>1; i--)
    2291             :   {
    2292      105735 :     GEN R = gel(V,i);
    2293      105735 :     GEN u1 = Flx_addmulmul(u, v, gcoeff(R,1,1), gcoeff(R,2,1), p, pi);
    2294      105735 :     GEN v1 = Flx_addmulmul(u, v, gcoeff(R,1,2), gcoeff(R,2,2), p, pi);
    2295      105735 :     u = u1; v = v1;
    2296             :   }
    2297             :   {
    2298      146649 :     GEN R = gel(V,1);
    2299      146649 :     if (ptu)
    2300        6574 :       *ptu = Flx_addmulmul(u, v, gcoeff(R,1,1), gcoeff(R,2,1), p, pi);
    2301      146649 :     *ptv   = Flx_addmulmul(u, v, gcoeff(R,1,2), gcoeff(R,2,2), p, pi);
    2302             :   }
    2303      146649 :   return y;
    2304             : }
    2305             : 
    2306             : /* x and y in Z[X], return lift(gcd(x mod p, y mod p)). Set u and v st
    2307             :  * ux + vy = gcd (mod p) */
    2308             : GEN
    2309     6289656 : Flx_extgcd_pre(GEN x, GEN y, ulong p, ulong pi, GEN *ptu, GEN *ptv)
    2310             : {
    2311     6289656 :   pari_sp av = avma;
    2312             :   GEN d;
    2313     6289656 :   long lim = get_Fl_threshold(p, Flx_EXTGCD_LIMIT, Flx_EXTGCD2_LIMIT);
    2314     6289649 :   if (lgpol(y) >= lim)
    2315      146649 :     d = Flx_extgcd_halfgcd(x, y, p, pi, ptu, ptv);
    2316             :   else
    2317     6142992 :     d = Flx_extgcd_basecase(x, y, p, pi, ptu, ptv);
    2318     6289562 :   return gc_all(av, ptu?3:2, &d, ptv, ptu);
    2319             : }
    2320             : GEN
    2321      857258 : Flx_extgcd(GEN x, GEN y, ulong p, GEN *ptu, GEN *ptv)
    2322      857258 : { return Flx_extgcd_pre(x, y, p, SMALL_ULONG(p)? 0: get_Fl_red(p), ptu, ptv); }
    2323             : 
    2324             : static GEN
    2325        1044 : Flx_halfres_pre(GEN x, GEN y, ulong p, ulong pi, GEN *a, GEN *b, ulong *r)
    2326             : {
    2327             :   struct Flx_res res;
    2328             :   GEN R;
    2329             :   long dB;
    2330             : 
    2331        1044 :   res.res  = *r;
    2332        1044 :   res.lc   = Flx_lead(y);
    2333        1044 :   res.deg0 = degpol(x);
    2334        1044 :   res.deg1 = degpol(y);
    2335        1044 :   res.off = 0;
    2336        1044 :   R = Flx_halfres_i(x, y, p, pi, a, b, &res);
    2337        1044 :   dB = degpol(*b);
    2338        1044 :   if (dB < degpol(y))
    2339        1044 :     Flx_halfres_update_pre(res.deg0, res.deg1, dB, p, pi, &res);
    2340        1044 :   *r = res.res;
    2341        1044 :   return R;
    2342             : }
    2343             : 
    2344             : static ulong
    2345    14621521 : Flx_resultant_basecase_pre(GEN a, GEN b, ulong p, ulong pi)
    2346             : {
    2347             :   pari_sp av;
    2348             :   long da,db,dc;
    2349    14621521 :   ulong lb, res = 1UL;
    2350             :   GEN c;
    2351             : 
    2352    14621521 :   da = degpol(a);
    2353    14621362 :   db = degpol(b);
    2354    14621389 :   if (db > da)
    2355             :   {
    2356           0 :     swapspec(a,b, da,db);
    2357           0 :     if (both_odd(da,db)) res = p-res;
    2358             :   }
    2359    14621389 :   else if (!da) return 1; /* = res * a[2] ^ db, since 0 <= db <= da = 0 */
    2360    14621389 :   av = avma;
    2361   119640013 :   while (db)
    2362             :   {
    2363   105040113 :     lb = b[db+2];
    2364   105040113 :     c = Flx_rem_pre(a,b, p,pi);
    2365   104744354 :     a = b; b = c; dc = degpol(c);
    2366   104721988 :     if (dc < 0) return gc_long(av,0);
    2367             : 
    2368   104714458 :     if (both_odd(da,db)) res = p - res;
    2369   104705421 :     if (lb != 1) res = Fl_mul(res, Fl_powu_pre(lb, da - dc, p, pi), p);
    2370   105017752 :     if (gc_needed(av,2))
    2371             :     {
    2372           0 :       if (DEBUGMEM>1) pari_warn(warnmem,"Flx_resultant (da = %ld)",da);
    2373           0 :       (void)gc_all(av,2, &a,&b);
    2374             :     }
    2375   105018624 :     da = db; /* = degpol(a) */
    2376   105018624 :     db = dc; /* = degpol(b) */
    2377             :   }
    2378    14599900 :   return gc_ulong(av, Fl_mul(res, Fl_powu_pre(b[2], da, p, pi), p));
    2379             : }
    2380             : 
    2381             : ulong
    2382    14623476 : Flx_resultant_pre(GEN x, GEN y, ulong p, ulong pi)
    2383             : {
    2384    14623476 :   pari_sp av = avma;
    2385             :   long lim;
    2386    14623476 :   ulong res = 1;
    2387    14623476 :   long dx = degpol(x), dy = degpol(y);
    2388    14623077 :   if (dx < 0 || dy < 0) return 0;
    2389    14621621 :   if (dx < dy)
    2390             :   {
    2391     1065978 :     swap(x,y);
    2392     1065978 :     if (both_odd(dx, dy))
    2393        1906 :       res = Fl_neg(res, p);
    2394             :   }
    2395    14621621 :   lim = get_Fl_threshold(p, Flx_GCD_LIMIT, Flx_GCD2_LIMIT);
    2396    14622515 :   while (lgpol(y) >= lim)
    2397             :   {
    2398         852 :     if (lgpol(y)<=(lgpol(x)>>1))
    2399             :     {
    2400           0 :       GEN r = Flx_rem_pre(x, y, p, pi);
    2401           0 :       long dx = degpol(x), dy = degpol(y), dr = degpol(r);
    2402           0 :       ulong ly = y[dy+2];
    2403           0 :       if (ly != 1) res = Fl_mul(res, Fl_powu_pre(ly, dx - dr, p, pi), p);
    2404           0 :       if (both_odd(dx, dy))
    2405           0 :         res = Fl_neg(res, p);
    2406           0 :       x = y; y = r;
    2407             :     }
    2408         852 :     (void) Flx_halfres_pre(x, y, p, pi, &x, &y, &res);
    2409         852 :     if (gc_needed(av,2))
    2410             :     {
    2411           0 :       if (DEBUGMEM>1) pari_warn(warnmem,"Flx_res (y = %ld)",degpol(y));
    2412           0 :       (void)gc_all(av,2,&x,&y);
    2413             :     }
    2414             :   }
    2415    14621534 :   return gc_ulong(av, Fl_mul(res, Flx_resultant_basecase_pre(x, y, p, pi), p));
    2416             : }
    2417             : 
    2418             : ulong
    2419     4735167 : Flx_resultant(GEN a, GEN b, ulong p)
    2420     4735167 : { return Flx_resultant_pre(a, b, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    2421             : 
    2422             : /* If resultant is 0, *ptU and *ptV are not set */
    2423             : static ulong
    2424          53 : Flx_extresultant_basecase(GEN a, GEN b, ulong p, ulong pi, GEN *ptU, GEN *ptV)
    2425             : {
    2426          53 :   GEN z,q,u,v, x = a, y = b;
    2427          53 :   ulong lb, res = 1UL;
    2428          53 :   pari_sp av = avma;
    2429             :   long dx, dy, dz;
    2430          53 :   long vs = a[1];
    2431             : 
    2432          53 :   u = pol0_Flx(vs);
    2433          53 :   v = pol1_Flx(vs); /* v = 1 */
    2434          53 :   dx = degpol(x);
    2435          53 :   dy = degpol(y);
    2436         764 :   while (dy)
    2437             :   { /* b u = x (a), b v = y (a) */
    2438         711 :     lb = y[dy+2];
    2439         711 :     q = Flx_divrem_pre(x,y, p, pi, &z);
    2440         711 :     x = y; y = z; /* (x,y) = (y, x - q y) */
    2441         711 :     dz = degpol(z); if (dz < 0) return gc_ulong(av,0);
    2442         711 :     z = Flx_sub(u, Flx_mul_pre(q,v, p, pi), p);
    2443         711 :     u = v; v = z; /* (u,v) = (v, u - q v) */
    2444             : 
    2445         711 :     if (both_odd(dx,dy)) res = p - res;
    2446         711 :     if (lb != 1) res = Fl_mul(res, Fl_powu_pre(lb, dx-dz, p, pi), p);
    2447         711 :     dx = dy; /* = degpol(x) */
    2448         711 :     dy = dz; /* = degpol(y) */
    2449             :   }
    2450          53 :   res = Fl_mul(res, Fl_powu_pre(y[2], dx, p, pi), p);
    2451          53 :   lb = Fl_mul(res, Fl_inv(y[2],p), p);
    2452          53 :   v = gc_leaf(av, Flx_Fl_mul_pre(v, lb, p, pi));
    2453          53 :   av = avma;
    2454          53 :   u = Flx_sub(Fl_to_Flx(res,vs), Flx_mul_pre(b,v,p,pi), p);
    2455          53 :   u = gc_leaf(av, Flx_div_pre(u,a,p,pi)); /* = (res - b v) / a */
    2456          53 :   *ptU = u;
    2457          53 :   *ptV = v; return res;
    2458             : }
    2459             : 
    2460             : ulong
    2461          53 : Flx_extresultant_pre(GEN x, GEN y, ulong p, ulong pi, GEN *ptU, GEN *ptV)
    2462             : {
    2463          53 :   pari_sp av=avma;
    2464             :   GEN u, v, R;
    2465          53 :   long lim = get_Fl_threshold(p, Flx_EXTGCD_LIMIT, Flx_EXTGCD2_LIMIT);
    2466          53 :   ulong res = 1, res1;
    2467          53 :   long dx = degpol(x), dy = degpol(y);
    2468          53 :   if (dy > dx)
    2469             :   {
    2470          13 :     swap(x,y); lswap(dx,dy);
    2471          13 :     if (both_odd(dx,dy)) res = p-res;
    2472          13 :     R = matJ2_FlxM(x[1]);
    2473          40 :   } else R = matid2_FlxM(x[1]);
    2474          53 :   if (dy < 0) return 0;
    2475         245 :   while (lgpol(y) >= lim)
    2476             :   {
    2477             :     GEN M;
    2478         192 :     if (lgpol(y)<=(lgpol(x)>>1))
    2479             :     {
    2480          20 :       GEN r, q = Flx_divrem_pre(x, y, p, pi, &r);
    2481          20 :       long dx = degpol(x), dy = degpol(y), dr = degpol(r);
    2482          20 :       ulong ly = y[dy+2];
    2483          20 :       if (ly != 1) res = Fl_mul(res, Fl_powu_pre(ly, dx - dr, p, pi), p);
    2484          20 :       if (both_odd(dx, dy))
    2485           0 :         res = Fl_neg(res, p);
    2486          20 :       x = y; y = r;
    2487          20 :       R = Flx_FlxM_qmul(q, R, p,pi);
    2488             :     }
    2489         192 :     M = Flx_halfres_pre(x, y, p, pi, &x, &y, &res);
    2490         192 :     if (!res) return gc_ulong(av, 0);
    2491         192 :     R = FlxM_mul2(M, R, p, pi);
    2492         192 :     (void)gc_all(av,3,&x,&y,&R);
    2493             :   }
    2494          53 :   res1 = Flx_extresultant_basecase(x,y,p,pi,&u,&v);
    2495          53 :   if (!res1) return gc_ulong(av, 0);
    2496          53 :   *ptU = Flx_Fl_mul_pre(Flx_addmulmul(u, v, gcoeff(R,1,1), gcoeff(R,2,1), p, pi), res, p, pi);
    2497          53 :   *ptV = Flx_Fl_mul_pre(Flx_addmulmul(u, v, gcoeff(R,1,2), gcoeff(R,2,2), p, pi), res, p, pi);
    2498          53 :   (void)gc_all(av, 2, ptU, ptV);
    2499          53 :   return Fl_mul(res1,res,p);
    2500             : }
    2501             : 
    2502             : ulong
    2503          53 : Flx_extresultant(GEN a, GEN b, ulong p, GEN *ptU, GEN *ptV)
    2504          53 : { return Flx_extresultant_pre(a, b, p, SMALL_ULONG(p)? 0: get_Fl_red(p), ptU, ptV); }
    2505             : 
    2506             : /* allow pi = 0 (SMALL_ULONG) */
    2507             : ulong
    2508    48633124 : Flx_eval_powers_pre(GEN x, GEN y, ulong p, ulong pi)
    2509             : {
    2510    48633124 :   ulong l0, l1, h0, h1, v1,  i = 1, lx = lg(x)-1;
    2511             : 
    2512    48633124 :   if (lx == 1) return 0;
    2513    45573871 :   x++;
    2514    45573871 :   if (pi)
    2515             :   {
    2516             :     LOCAL_OVERFLOW;
    2517             :     LOCAL_HIREMAINDER;
    2518    45510384 :     l1 = mulll(uel(x,i), uel(y,i)); h1 = hiremainder; v1 = 0;
    2519   115369497 :     while (++i < lx)
    2520             :     {
    2521    69859113 :       l0 = mulll(uel(x,i), uel(y,i)); h0 = hiremainder;
    2522    69859113 :       l1 = addll(l0, l1); h1 = addllx(h0, h1); v1 += overflow;
    2523             :     }
    2524       81325 :     return v1? remlll_pre(v1, h1, l1, p, pi)
    2525    45591709 :              : remll_pre(h1, l1, p, pi);
    2526             :   }
    2527             :   else
    2528             :   {
    2529       63487 :     l1 = x[i] * y[i];
    2530    30927114 :     while (++i < lx) { l1 += x[i] * y[i]; if (l1 & HIGHBIT) l1 %= p; }
    2531       63487 :     return l1 % p;
    2532             :   }
    2533             : }
    2534             : 
    2535             : /* allow pi = 0 (SMALL_ULONG) */
    2536             : ulong
    2537   136394121 : Flx_eval_pre(GEN x, ulong y, ulong p, ulong pi)
    2538             : {
    2539   136394121 :   long i, n = degpol(x);
    2540             :   ulong t;
    2541   136386875 :   if (n <= 0) return n? 0: x[2];
    2542    39476069 :   if (n > 15)
    2543             :   {
    2544      180191 :     pari_sp av = avma;
    2545      180191 :     GEN v = Fl_powers_pre(y, n, p, pi);
    2546      180189 :     return gc_ulong(av, Flx_eval_powers_pre(x, v, p, pi));
    2547             :   }
    2548    39295878 :   i = n+2; t = x[i];
    2549    39295878 :   if (pi)
    2550             :   {
    2551   136133181 :     for (i--; i>=2; i--) t = Fl_addmul_pre(uel(x, i), t, y, p, pi);
    2552    38158333 :     return t;
    2553             :   }
    2554     2741182 :   for (i--; i>=2; i--) t = (t * y + x[i]) % p;
    2555     1136123 :   return t %= p;
    2556             : }
    2557             : ulong
    2558    20416697 : Flx_eval(GEN x, ulong y, ulong p)
    2559    20416697 : { return Flx_eval_pre(x, y, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    2560             : 
    2561             : ulong
    2562        3304 : Flv_prod_pre(GEN x, ulong p, ulong pi)
    2563             : {
    2564        3304 :   pari_sp ltop = avma;
    2565             :   GEN v;
    2566        3304 :   long i,k,lx = lg(x);
    2567        3304 :   if (lx == 1) return 1UL;
    2568        3304 :   if (lx == 2) return uel(x,1);
    2569        2863 :   v = cgetg(1+(lx << 1), t_VECSMALL);
    2570        2863 :   k = 1;
    2571       26955 :   for (i=1; i<lx-1; i+=2)
    2572       24092 :     uel(v,k++) = Fl_mul_pre(uel(x,i), uel(x,i+1), p, pi);
    2573        2863 :   if (i < lx) uel(v,k++) = uel(x,i);
    2574       12836 :   while (k > 2)
    2575             :   {
    2576        9973 :     lx = k; k = 1;
    2577       34065 :     for (i=1; i<lx-1; i+=2)
    2578       24092 :       uel(v,k++) = Fl_mul_pre(uel(v,i), uel(v,i+1), p, pi);
    2579        9973 :     if (i < lx) uel(v,k++) = uel(v,i);
    2580             :   }
    2581        2863 :   return gc_ulong(ltop, uel(v,1));
    2582             : }
    2583             : 
    2584             : ulong
    2585           0 : Flv_prod(GEN v, ulong p)
    2586             : {
    2587           0 :   return Flv_prod_pre(v, p, get_Fl_red(p));
    2588             : }
    2589             : 
    2590             : GEN
    2591           0 : FlxV_prod(GEN V, ulong p)
    2592             : {
    2593             :   struct _Flxq D;
    2594           0 :   D.T = NULL; D.aut = NULL; D.p = p; D.pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    2595           0 :   return gen_product(V, (void *)&D, &_Flx_mul);
    2596             : }
    2597             : 
    2598             : /* compute prod (x - a[i]) */
    2599             : GEN
    2600      795613 : Flv_roots_to_pol(GEN a, ulong p, long vs)
    2601             : {
    2602             :   struct _Flxq D;
    2603      795613 :   long i,k,lx = lg(a);
    2604             :   GEN p1;
    2605      795613 :   if (lx == 1) return pol1_Flx(vs);
    2606      795613 :   p1 = cgetg(lx, t_VEC);
    2607    12541931 :   for (k=1,i=1; i<lx-1; i+=2)
    2608    11744197 :     gel(p1,k++) = mkvecsmall4(vs, Fl_mul(a[i], a[i+1], p),
    2609    11746627 :                               Fl_neg(Fl_add(a[i],a[i+1],p),p), 1);
    2610      795304 :   if (i < lx)
    2611       64187 :     gel(p1,k++) = mkvecsmall3(vs, Fl_neg(a[i],p), 1);
    2612      795303 :   D.T = NULL; D.aut = NULL; D.p = p; D.pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    2613      795301 :   setlg(p1, k); return gen_product(p1, (void *)&D, _Flx_mul);
    2614             : }
    2615             : 
    2616             : /* set v[i] = w[i]^{-1}; may be called with w = v, suitable for "large" p */
    2617             : INLINE void
    2618    21441888 : Flv_inv_pre_indir(GEN w, GEN v, ulong p, ulong pi)
    2619             : {
    2620    21441888 :   pari_sp av = avma;
    2621    21441888 :   long n = lg(w), i;
    2622             :   ulong u;
    2623             :   GEN c;
    2624             : 
    2625    21441888 :   if (n == 1) return;
    2626    21441888 :   c = cgetg(n, t_VECSMALL); c[1] = w[1];
    2627    90797116 :   for (i = 2; i < n; ++i) c[i] = Fl_mul_pre(w[i], c[i-1], p, pi);
    2628    21599228 :   i = n-1; u = Fl_inv(c[i], p);
    2629    91167927 :   for ( ; i > 1; --i)
    2630             :   {
    2631    69524879 :     ulong t = Fl_mul_pre(u, c[i-1], p, pi);
    2632    69463474 :     u = Fl_mul_pre(u, w[i], p, pi); v[i] = t;
    2633             :   }
    2634    21643048 :   v[1] = u; set_avma(av);
    2635             : }
    2636             : 
    2637             : void
    2638    19717681 : Flv_inv_pre_inplace(GEN v, ulong p, ulong pi) { Flv_inv_pre_indir(v,v, p, pi); }
    2639             : 
    2640             : GEN
    2641       10048 : Flv_inv_pre(GEN w, ulong p, ulong pi)
    2642       10048 : { GEN v = cgetg(lg(w), t_VECSMALL); Flv_inv_pre_indir(w, v, p, pi); return v; }
    2643             : 
    2644             : /* set v[i] = w[i]^{-1}; may be called with w = v, suitable for SMALL_ULONG p */
    2645             : INLINE void
    2646       51282 : Flv_inv_indir(GEN w, GEN v, ulong p)
    2647             : {
    2648       51282 :   pari_sp av = avma;
    2649       51282 :   long n = lg(w), i;
    2650             :   ulong u;
    2651             :   GEN c;
    2652             : 
    2653       51282 :   if (n == 1) return;
    2654       51282 :   c = cgetg(n, t_VECSMALL); c[1] = w[1];
    2655     1755523 :   for (i = 2; i < n; ++i) c[i] = Fl_mul(w[i], c[i-1], p);
    2656       51282 :   i = n-1; u = Fl_inv(c[i], p);
    2657     1755528 :   for ( ; i > 1; --i)
    2658             :   {
    2659     1704244 :     ulong t = Fl_mul(u, c[i-1], p);
    2660     1704242 :     u = Fl_mul(u, w[i], p); v[i] = t;
    2661             :   }
    2662       51284 :   v[1] = u; set_avma(av);
    2663             : }
    2664             : static void
    2665     1756812 : Flv_inv_i(GEN v, GEN w, ulong p)
    2666             : {
    2667     1756812 :   if (SMALL_ULONG(p)) Flv_inv_indir(w, v, p);
    2668     1705530 :   else Flv_inv_pre_indir(w, v, p, get_Fl_red(p));
    2669     1756815 : }
    2670             : void
    2671       12017 : Flv_inv_inplace(GEN v, ulong p) { Flv_inv_i(v, v, p); }
    2672             : GEN
    2673     1744798 : Flv_inv(GEN w, ulong p)
    2674     1744798 : { GEN v = cgetg(lg(w), t_VECSMALL); Flv_inv_i(v, w, p); return v; }
    2675             : 
    2676             : GEN
    2677    34755052 : Flx_div_by_X_x(GEN a, ulong x, ulong p, ulong *rem)
    2678             : {
    2679    34755052 :   long l = lg(a), i;
    2680             :   GEN a0, z0, z;
    2681    34755052 :   if (l <= 3)
    2682             :   {
    2683           0 :     if (rem) *rem = l == 2? 0: a[2];
    2684           0 :     return zero_Flx(a[1]);
    2685             :   }
    2686    34755052 :   z = cgetg(l-1,t_VECSMALL); z[1] = a[1];
    2687    34607823 :   a0 = a + l-1;
    2688    34607823 :   z0 = z + l-2; *z0 = *a0--;
    2689    34607823 :   if (SMALL_ULONG(p))
    2690             :   {
    2691    84430085 :     for (i=l-3; i>1; i--) /* z[i] = (a[i+1] + x*z[i+1]) % p */
    2692             :     {
    2693    62234653 :       ulong t = (*a0-- + x *  *z0--) % p;
    2694    62234653 :       *z0 = (long)t;
    2695             :     }
    2696    22195432 :     if (rem) *rem = (*a0 + x *  *z0) % p;
    2697             :   }
    2698             :   else
    2699             :   {
    2700    48765115 :     for (i=l-3; i>1; i--)
    2701             :     {
    2702    36349196 :       ulong t = Fl_add((ulong)*a0--, Fl_mul(x, *z0--, p), p);
    2703    36352724 :       *z0 = (long)t;
    2704             :     }
    2705    12415919 :     if (rem) *rem = Fl_add((ulong)*a0, Fl_mul(x, *z0, p), p);
    2706             :   }
    2707    34615551 :   return z;
    2708             : }
    2709             : 
    2710             : /* xa, ya = t_VECSMALL */
    2711             : static GEN
    2712     1746001 : Flv_producttree(GEN xa, GEN s, ulong p, ulong pi, long vs)
    2713             : {
    2714     1746001 :   long n = lg(xa)-1;
    2715     1746001 :   long m = n==1 ? 1: expu(n-1)+1;
    2716     1745998 :   long i, j, k, ls = lg(s);
    2717     1745998 :   GEN T = cgetg(m+1, t_VEC);
    2718     1745991 :   GEN t = cgetg(ls, t_VEC);
    2719    11596242 :   for (j=1, k=1; j<ls; k+=s[j++])
    2720     9850116 :     gel(t, j) = s[j] == 1 ?
    2721     9850255 :              mkvecsmall3(vs, Fl_neg(xa[k], p), 1):
    2722     3277553 :              mkvecsmall4(vs, Fl_mul(xa[k], xa[k+1], p),
    2723     3277557 :                  Fl_neg(Fl_add(xa[k],xa[k+1],p),p), 1);
    2724     1745987 :   gel(T,1) = t;
    2725     4768953 :   for (i=2; i<=m; i++)
    2726             :   {
    2727     3023024 :     GEN u = gel(T, i-1);
    2728     3023024 :     long n = lg(u)-1;
    2729     3023024 :     GEN t = cgetg(((n+1)>>1)+1, t_VEC);
    2730    11126464 :     for (j=1, k=1; k<n; j++, k+=2)
    2731     8103498 :       gel(t, j) = Flx_mul_pre(gel(u, k), gel(u, k+1), p, pi);
    2732     3022966 :     gel(T, i) = t;
    2733             :   }
    2734     1745929 :   return T;
    2735             : }
    2736             : 
    2737             : static GEN
    2738     1786303 : Flx_Flv_multieval_tree(GEN P, GEN xa, GEN T, ulong p, ulong pi)
    2739             : {
    2740             :   long i,j,k;
    2741     1786303 :   long m = lg(T)-1;
    2742     1786303 :   GEN R = cgetg(lg(xa), t_VECSMALL);
    2743     1786300 :   GEN Tp = cgetg(m+1, t_VEC), t;
    2744     1786300 :   gel(Tp, m) = mkvec(P);
    2745     4994663 :   for (i=m-1; i>=1; i--)
    2746             :   {
    2747     3208368 :     GEN u = gel(T, i), v = gel(Tp, i+1);
    2748     3208368 :     long n = lg(u)-1;
    2749     3208368 :     t = cgetg(n+1, t_VEC);
    2750    12342220 :     for (j=1, k=1; k<n; j++, k+=2)
    2751             :     {
    2752     9133859 :       gel(t, k)   = Flx_rem_pre(gel(v, j), gel(u, k), p, pi);
    2753     9133838 :       gel(t, k+1) = Flx_rem_pre(gel(v, j), gel(u, k+1), p, pi);
    2754             :     }
    2755     3208361 :     gel(Tp, i) = t;
    2756             :   }
    2757             :   {
    2758     1786295 :     GEN u = gel(T, i+1), v = gel(Tp, i+1);
    2759     1786295 :     long n = lg(u)-1;
    2760    12708788 :     for (j=1, k=1; j<=n; j++)
    2761             :     {
    2762    10922482 :       long c, d = degpol(gel(u,j));
    2763    25371709 :       for (c=1; c<=d; c++, k++) R[k] = Flx_eval_pre(gel(v, j), xa[k], p, pi);
    2764             :     }
    2765     1786306 :     return gc_const((pari_sp)R, R);
    2766             :   }
    2767             : }
    2768             : 
    2769             : static GEN
    2770     2540750 : FlvV_polint_tree(GEN T, GEN R, GEN s, GEN xa, GEN ya, ulong p, ulong pi, long vs)
    2771             : {
    2772     2540750 :   pari_sp av = avma;
    2773     2540750 :   long m = lg(T)-1;
    2774     2540750 :   long i, j, k, ls = lg(s);
    2775     2540750 :   GEN Tp = cgetg(m+1, t_VEC);
    2776     2540309 :   GEN t = cgetg(ls, t_VEC);
    2777    29430607 :   for (j=1, k=1; j<ls; k+=s[j++])
    2778    26890383 :     if (s[j]==2)
    2779             :     {
    2780     8933439 :       ulong a = Fl_mul(ya[k], R[k], p);
    2781     8932751 :       ulong b = Fl_mul(ya[k+1], R[k+1], p);
    2782     8938352 :       gel(t, j) = mkvecsmall3(vs, Fl_neg(Fl_add(Fl_mul(xa[k], b, p ),
    2783     8932488 :                   Fl_mul(xa[k+1], a, p), p), p), Fl_add(a, b, p));
    2784     8936711 :       gel(t, j) = Flx_renormalize(gel(t, j), 4);
    2785             :     }
    2786             :     else
    2787    17956944 :       gel(t, j) = Fl_to_Flx(Fl_mul(ya[k], R[k], p), vs);
    2788     2540224 :   gel(Tp, 1) = t;
    2789     8988671 :   for (i=2; i<=m; i++)
    2790             :   {
    2791     6448599 :     GEN u = gel(T, i-1);
    2792     6448599 :     GEN t = cgetg(lg(gel(T,i)), t_VEC);
    2793     6446160 :     GEN v = gel(Tp, i-1);
    2794     6446160 :     long n = lg(v)-1;
    2795    30710696 :     for (j=1, k=1; k<n; j++, k+=2)
    2796    24271792 :       gel(t, j) = Flx_add(Flx_mul_pre(gel(u, k), gel(v, k+1), p, pi),
    2797    24262249 :                           Flx_mul_pre(gel(u, k+1), gel(v, k), p, pi), p);
    2798     6448447 :     gel(Tp, i) = t;
    2799             :   }
    2800     2540072 :   return gc_leaf(av, gmael(Tp,m,1));
    2801             : }
    2802             : 
    2803             : GEN
    2804           0 : Flx_Flv_multieval(GEN P, GEN xa, ulong p)
    2805             : {
    2806           0 :   pari_sp av = avma;
    2807           0 :   GEN s = producttree_scheme(lg(xa)-1);
    2808           0 :   ulong pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    2809           0 :   GEN T = Flv_producttree(xa, s, p, pi, P[1]);
    2810           0 :   return gc_leaf(av, Flx_Flv_multieval_tree(P, xa, T, p, pi));
    2811             : }
    2812             : 
    2813             : static GEN
    2814        2471 : FlxV_Flv_multieval_tree(GEN x, GEN xa, GEN T, ulong p, ulong pi)
    2815       45248 : { pari_APPLY_same(Flx_Flv_multieval_tree(gel(x,i), xa, T, p, pi)) }
    2816             : 
    2817             : GEN
    2818        2471 : FlxV_Flv_multieval(GEN P, GEN xa, ulong p)
    2819             : {
    2820        2471 :   pari_sp av = avma;
    2821        2471 :   GEN s = producttree_scheme(lg(xa)-1);
    2822        2471 :   ulong pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    2823        2471 :   GEN T = Flv_producttree(xa, s, p, pi, P[1]);
    2824        2471 :   return gc_upto(av, FlxV_Flv_multieval_tree(P, xa, T, p, pi));
    2825             : }
    2826             : 
    2827             : GEN
    2828     1486588 : Flv_polint(GEN xa, GEN ya, ulong p, long vs)
    2829             : {
    2830     1486588 :   pari_sp av = avma;
    2831     1486588 :   GEN s = producttree_scheme(lg(xa)-1);
    2832     1486594 :   ulong pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    2833     1486592 :   GEN T = Flv_producttree(xa, s, p, pi, vs);
    2834     1486591 :   long m = lg(T)-1;
    2835     1486591 :   GEN P = Flx_deriv(gmael(T, m, 1), p);
    2836     1486592 :   GEN R = Flv_inv(Flx_Flv_multieval_tree(P, xa, T, p, pi), p);
    2837     1486590 :   return gc_leaf(av, FlvV_polint_tree(T, R, s, xa, ya, p, pi, vs));
    2838             : }
    2839             : 
    2840             : GEN
    2841      103491 : Flv_Flm_polint(GEN xa, GEN ya, ulong p, long vs)
    2842             : {
    2843      103491 :   pari_sp av = avma;
    2844      103491 :   GEN s = producttree_scheme(lg(xa)-1);
    2845      103493 :   ulong pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    2846      103493 :   GEN T = Flv_producttree(xa, s, p, pi, vs);
    2847      103492 :   long i, m = lg(T)-1, l = lg(ya)-1;
    2848      103492 :   GEN P = Flx_deriv(gmael(T, m, 1), p);
    2849      103489 :   GEN R = Flv_inv(Flx_Flv_multieval_tree(P, xa, T, p, pi), p);
    2850      103491 :   GEN M = cgetg(l+1, t_VEC);
    2851     1157472 :   for (i=1; i<=l; i++)
    2852     1053988 :     gel(M,i) = FlvV_polint_tree(T, R, s, xa, gel(ya,i), p, pi, vs);
    2853      103484 :   return gc_upto(av, M);
    2854             : }
    2855             : 
    2856             : GEN
    2857      153445 : Flv_invVandermonde(GEN L, ulong den, ulong p)
    2858             : {
    2859      153445 :   pari_sp av = avma;
    2860      153445 :   long i, n = lg(L);
    2861             :   GEN M, R;
    2862      153445 :   GEN s = producttree_scheme(n-1);
    2863      153445 :   ulong pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    2864      153445 :   GEN tree = Flv_producttree(L, s, p, pi, 0);
    2865      153445 :   long m = lg(tree)-1;
    2866      153445 :   GEN T = gmael(tree, m, 1);
    2867      153445 :   R = Flv_inv(Flx_Flv_multieval_tree(Flx_deriv(T, p), L, tree, p, pi), p);
    2868      153445 :   if (den!=1) R = Flv_Fl_mul(R, den, p);
    2869      153445 :   M = cgetg(n, t_MAT);
    2870      603585 :   for (i = 1; i < n; i++)
    2871             :   {
    2872      450140 :     GEN P = Flx_Fl_mul(Flx_div_by_X_x(T, uel(L,i), p, NULL), uel(R,i), p);
    2873      450140 :     gel(M,i) = Flx_to_Flv(P, n-1);
    2874             :   }
    2875      153445 :   return gc_GEN(av, M);
    2876             : }
    2877             : 
    2878             : /***********************************************************************/
    2879             : /**                               Flxq                                **/
    2880             : /***********************************************************************/
    2881             : /* Flxq objects are Flx modulo another Flx called q. */
    2882             : 
    2883             : /* Product of y and x in Z/pZ[X]/(T), as t_VECSMALL. */
    2884             : GEN
    2885   189179206 : Flxq_mul_pre(GEN x,GEN y,GEN T,ulong p,ulong pi)
    2886   189179206 : { return Flx_rem_pre(Flx_mul_pre(x,y,p,pi),T,p,pi); }
    2887             : GEN
    2888    13192538 : Flxq_mul(GEN x,GEN y,GEN T,ulong p)
    2889    13192538 : { return Flxq_mul_pre(x,y,T,p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    2890             : 
    2891             : GEN
    2892   278313111 : Flxq_sqr_pre(GEN x,GEN T,ulong p,ulong pi)
    2893   278313111 : { return Flx_rem_pre(Flx_sqr_pre(x, p,pi), T, p,pi); }
    2894             : /* Square of y in Z/pZ[X]/(T), as t_VECSMALL. */
    2895             : GEN
    2896     2763156 : Flxq_sqr(GEN x,GEN T,ulong p)
    2897     2763156 : { return Flxq_sqr_pre(x,T,p,SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    2898             : 
    2899             : static GEN
    2900     1550928 : _Flxq_red(void *E, GEN x)
    2901     1550928 : { struct _Flxq *s = (struct _Flxq *)E;
    2902     1550928 :   return Flx_rem_pre(x, s->T, s->p, s->pi); }
    2903             : #if 0
    2904             : static GEN
    2905             : _Flx_sub(void *E, GEN x, GEN y)
    2906             : { struct _Flxq *s = (struct _Flxq *)E;
    2907             :   return Flx_sub(x,y,s->p); }
    2908             : #endif
    2909             : static GEN
    2910   270313904 : _Flxq_sqr(void *data, GEN x)
    2911             : {
    2912   270313904 :   struct _Flxq *D = (struct _Flxq*)data;
    2913   270313904 :   return Flxq_sqr_pre(x, D->T, D->p, D->pi);
    2914             : }
    2915             : static GEN
    2916   147934837 : _Flxq_mul(void *data, GEN x, GEN y)
    2917             : {
    2918   147934837 :   struct _Flxq *D = (struct _Flxq*)data;
    2919   147934837 :   return Flxq_mul_pre(x,y, D->T, D->p, D->pi);
    2920             : }
    2921             : static GEN
    2922    22449780 : _Flxq_one(void *data)
    2923             : {
    2924    22449780 :   struct _Flxq *D = (struct _Flxq*)data;
    2925    22449780 :   return pol1_Flx(get_Flx_var(D->T));
    2926             : }
    2927             : 
    2928             : static GEN
    2929    23112568 : _Flxq_powu_i(struct _Flxq *D, GEN x, ulong n)
    2930    23112568 : { return gen_powu_i(x, n, (void*)D, &_Flxq_sqr, &_Flxq_mul); }
    2931             : static GEN
    2932          68 : _Flxq_powu(struct _Flxq *D, GEN x, ulong n)
    2933          68 : { pari_sp av = avma; return gc_leaf(av, _Flxq_powu_i(D, x, n)); }
    2934             : /* n-Power of x in Z/pZ[X]/(T), as t_VECSMALL. */
    2935             : GEN
    2936    24368803 : Flxq_powu_pre(GEN x, ulong n, GEN T, ulong p, ulong pi)
    2937             : {
    2938             :   pari_sp av;
    2939             :   struct _Flxq D;
    2940    24368803 :   switch(n)
    2941             :   {
    2942           0 :     case 0: return pol1_Flx(get_Flx_var(T));
    2943      280637 :     case 1: return Flx_copy(x);
    2944      975074 :     case 2: return Flxq_sqr_pre(x, T, p, pi);
    2945             :   }
    2946    23113092 :   av = avma; set_Flxq_pre(&D, T, p, pi);
    2947    23112393 :   return gc_leaf(av, _Flxq_powu_i(&D, x, n));
    2948             : }
    2949             : GEN
    2950      488412 : Flxq_powu(GEN x, ulong n, GEN T, ulong p)
    2951      488412 : { return Flxq_powu_pre(x, n, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    2952             : 
    2953             : /* n-Power of x in Z/pZ[X]/(T), as t_VECSMALL. */
    2954             : GEN
    2955    23442770 : Flxq_pow_pre(GEN x, GEN n, GEN T, ulong p, ulong pi)
    2956             : {
    2957    23442770 :   pari_sp av = avma;
    2958             :   struct _Flxq D;
    2959             :   GEN y;
    2960    23442770 :   long s = signe(n);
    2961    23442770 :   if (!s) return pol1_Flx(get_Flx_var(T));
    2962    23365069 :   if (s < 0) x = Flxq_inv_pre(x,T,p,pi);
    2963    23365069 :   if (is_pm1(n)) return s < 0 ? x : Flx_copy(x);
    2964    22843707 :   set_Flxq_pre(&D, T, p, pi);
    2965    22843704 :   y = gen_pow_i(x, n, (void*)&D, &_Flxq_sqr, &_Flxq_mul);
    2966    22843649 :   return gc_leaf(av, y);
    2967             : }
    2968             : GEN
    2969      948342 : Flxq_pow(GEN x, GEN n, GEN T, ulong p)
    2970      948342 : { return Flxq_pow_pre(x, n, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    2971             : 
    2972             : GEN
    2973          28 : Flxq_pow_init_pre(GEN x, GEN n, long k, GEN T, ulong p, ulong pi)
    2974             : {
    2975          28 :   struct _Flxq D; set_Flxq_pre(&D, T, p, pi);
    2976          28 :   return gen_pow_init(x, n, k, (void*)&D, &_Flxq_sqr, &_Flxq_mul);
    2977             : }
    2978             : GEN
    2979           0 : Flxq_pow_init(GEN x, GEN n, long k, GEN T, ulong p)
    2980           0 : { return Flxq_pow_init_pre(x, n, k, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    2981             : 
    2982             : GEN
    2983        4393 : Flxq_pow_table_pre(GEN R, GEN n, GEN T, ulong p, ulong pi)
    2984             : {
    2985        4393 :   struct _Flxq D; set_Flxq_pre(&D, T, p, pi);
    2986        4393 :   return gen_pow_table(R, n, (void*)&D, &_Flxq_one, &_Flxq_mul);
    2987             : }
    2988             : GEN
    2989           0 : Flxq_pow_table(GEN R, GEN n, GEN T, ulong p)
    2990           0 : { return Flxq_pow_table_pre(R, n, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    2991             : 
    2992             : /* Inverse of x in Z/lZ[X]/(T) or NULL if inverse doesn't exist
    2993             :  * not stack clean. */
    2994             : GEN
    2995     5432412 : Flxq_invsafe_pre(GEN x, GEN T, ulong p, ulong pi)
    2996             : {
    2997     5432412 :   GEN V, z = Flx_extgcd_pre(get_Flx_mod(T), x, p, pi, NULL, &V);
    2998             :   ulong iz;
    2999     5432494 :   if (degpol(z)) return NULL;
    3000     5431838 :   iz = Fl_inv(uel(z,2), p);
    3001     5431846 :   return Flx_Fl_mul_pre(V, iz, p, pi);
    3002             : }
    3003             : GEN
    3004      670699 : Flxq_invsafe(GEN x, GEN T, ulong p)
    3005      670699 : { return Flxq_invsafe_pre(x, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3006             : 
    3007             : GEN
    3008     4287537 : Flxq_inv_pre(GEN x, GEN T, ulong p, ulong pi)
    3009             : {
    3010     4287537 :   pari_sp av=avma;
    3011     4287537 :   GEN U = Flxq_invsafe_pre(x, T, p, pi);
    3012     4287534 :   if (!U) pari_err_INV("Flxq_inv",Flx_to_ZX(x));
    3013     4287527 :   return gc_leaf(av, U);
    3014             : }
    3015             : GEN
    3016      335772 : Flxq_inv(GEN x, GEN T, ulong p)
    3017      335772 : { return Flxq_inv_pre(x, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3018             : 
    3019             : GEN
    3020     2417763 : Flxq_div_pre(GEN x, GEN y, GEN T, ulong p, ulong pi)
    3021             : {
    3022     2417763 :   pari_sp av = avma;
    3023     2417763 :   return gc_leaf(av, Flxq_mul_pre(x,Flxq_inv_pre(y,T,p,pi),T,p,pi));
    3024             : }
    3025             : GEN
    3026      237864 : Flxq_div(GEN x, GEN y, GEN T, ulong p)
    3027      237864 : { return Flxq_div_pre(x, y, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3028             : 
    3029             : GEN
    3030    22449835 : Flxq_powers_pre(GEN x, long l, GEN T, ulong p, ulong pi)
    3031             : {
    3032    22449835 :   int use_sqr = 2*degpol(x) >= get_Flx_degree(T);
    3033    22447143 :   struct _Flxq D; set_Flxq_pre(&D, T, p, pi);
    3034    22445538 :   return gen_powers(x, l, use_sqr, (void*)&D, &_Flxq_sqr, &_Flxq_mul, &_Flxq_one);
    3035             : }
    3036             : GEN
    3037      232074 : Flxq_powers(GEN x, long l, GEN T, ulong p)
    3038      232074 : { return Flxq_powers_pre(x, l, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3039             : 
    3040             : GEN
    3041      170660 : Flxq_matrix_pow_pre(GEN y, long n, long m, GEN P, ulong l, ulong li)
    3042      170660 : { return FlxV_to_Flm(Flxq_powers_pre(y,m-1,P,l,li),n); }
    3043             : GEN
    3044         399 : Flxq_matrix_pow(GEN y, long n, long m, GEN P, ulong l)
    3045         399 : { return Flxq_matrix_pow_pre(y, n, m, P, l, SMALL_ULONG(l)? 0: get_Fl_red(l)); }
    3046             : 
    3047             : GEN
    3048    13816865 : Flx_Frobenius_pre(GEN T, ulong p, ulong pi)
    3049    13816865 : { return Flxq_powu_pre(polx_Flx(get_Flx_var(T)), p, T, p, pi); }
    3050             : GEN
    3051       86486 : Flx_Frobenius(GEN T, ulong p)
    3052       86486 : { return Flx_Frobenius_pre(T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3053             : 
    3054             : GEN
    3055       86562 : Flx_matFrobenius_pre(GEN T, ulong p, ulong pi)
    3056             : {
    3057       86562 :   long n = get_Flx_degree(T);
    3058       86563 :   return Flxq_matrix_pow_pre(Flx_Frobenius_pre(T, p, pi), n, n, T, p, pi);
    3059             : }
    3060             : GEN
    3061           0 : Flx_matFrobenius(GEN T, ulong p)
    3062           0 : { return Flx_matFrobenius_pre(T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3063             : 
    3064             : static GEN
    3065    12983554 : Flx_blocks_Flm(GEN P, long n, long m)
    3066             : {
    3067    12983554 :   GEN z = cgetg(m+1,t_MAT);
    3068    12983334 :   long i,j, k=2, l = lg(P);
    3069    37132110 :   for(i=1; i<=m; i++)
    3070             :   {
    3071    24152318 :     GEN zi = cgetg(n+1,t_VECSMALL);
    3072    24148776 :     gel(z,i) = zi;
    3073   111853931 :     for(j=1; j<=n; j++)
    3074    87705155 :       uel(zi, j) = k==l ? 0 : uel(P,k++);
    3075             :   }
    3076    12979792 :   return z;
    3077             : }
    3078             : 
    3079             : GEN
    3080      517188 : Flx_blocks(GEN P, long n, long m)
    3081             : {
    3082      517188 :   GEN z = cgetg(m+1,t_VEC);
    3083      516955 :   long i,j, k=2, l = lg(P);
    3084     1549552 :   for(i=1; i<=m; i++)
    3085             :   {
    3086     1032683 :     GEN zi = cgetg(n+2,t_VECSMALL);
    3087     1032058 :     zi[1] = P[1];
    3088     1032058 :     gel(z,i) = zi;
    3089     6475480 :     for(j=2; j<n+2; j++)
    3090     5443422 :       uel(zi, j) = k==l ? 0 : uel(P,k++);
    3091     1032058 :     zi = Flx_renormalize(zi, n+2);
    3092             :   }
    3093      516869 :   return z;
    3094             : }
    3095             : 
    3096             : static GEN
    3097    12984231 : FlxV_to_Flm_lg(GEN x, long m, long n)
    3098             : {
    3099             :   long i;
    3100    12984231 :   GEN y = cgetg(n+1, t_MAT);
    3101    61550861 :   for (i=1; i<=n; i++) gel(y,i) = Flx_to_Flv(gel(x,i), m);
    3102    12981738 :   return y;
    3103             : }
    3104             : 
    3105             : /* allow pi = 0 (SMALL_ULONG) */
    3106             : GEN
    3107    13183091 : Flx_FlxqV_eval_pre(GEN Q, GEN x, GEN T, ulong p, ulong pi)
    3108             : {
    3109    13183091 :   pari_sp btop, av = avma;
    3110    13183091 :   long sv = get_Flx_var(T), m = get_Flx_degree(T);
    3111    13183237 :   long i, l = lg(x)-1, lQ = lgpol(Q), n,  d;
    3112             :   GEN A, B, C, S, g;
    3113    13183897 :   if (lQ == 0) return pol0_Flx(sv);
    3114    12984982 :   if (lQ <= l)
    3115             :   {
    3116     6464840 :     n = l;
    3117     6464840 :     d = 1;
    3118             :   }
    3119             :   else
    3120             :   {
    3121     6520142 :     n = l-1;
    3122     6520142 :     d = (lQ+n-1)/n;
    3123             :   }
    3124    12984982 :   A = FlxV_to_Flm_lg(x, m, n);
    3125    12983440 :   B = Flx_blocks_Flm(Q, n, d);
    3126    12982339 :   C = gc_upto(av, Flm_mul(A, B, p));
    3127    12985367 :   g = gel(x, l);
    3128    12985367 :   if (pi && SMALL_ULONG(p)) pi = 0;
    3129    12985367 :   T = Flx_get_red_pre(T, p, pi);
    3130    12984980 :   btop = avma;
    3131    12984980 :   S = Flv_to_Flx(gel(C, d), sv);
    3132    24156378 :   for (i = d-1; i>0; i--)
    3133             :   {
    3134    11172418 :     S = Flx_add(Flxq_mul_pre(S, g, T, p, pi), Flv_to_Flx(gel(C,i), sv), p);
    3135    11171442 :     if (gc_needed(btop,1))
    3136           0 :       S = gc_leaf(btop, S);
    3137             :   }
    3138    12983960 :   return gc_leaf(av, S);
    3139             : }
    3140             : GEN
    3141        5082 : Flx_FlxqV_eval(GEN Q, GEN x, GEN T, ulong p)
    3142        5082 : { return Flx_FlxqV_eval_pre(Q, x, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3143             : 
    3144             : /* allow pi = 0 (SMALL_ULONG) */
    3145             : GEN
    3146     2448931 : Flx_Flxq_eval_pre(GEN Q, GEN x, GEN T, ulong p, ulong pi)
    3147             : {
    3148     2448931 :   pari_sp av = avma;
    3149             :   GEN z, V;
    3150     2448931 :   long d = degpol(Q), rtd;
    3151     2448922 :   if (d < 0) return pol0_Flx(get_Flx_var(T));
    3152     2448831 :   rtd = (long) sqrt((double)d);
    3153     2448831 :   T = Flx_get_red_pre(T, p, pi);
    3154     2448841 :   V = Flxq_powers_pre(x, rtd, T, p, pi);
    3155     2448897 :   z = Flx_FlxqV_eval_pre(Q, V, T, p, pi);
    3156     2448859 :   return gc_upto(av, z);
    3157             : }
    3158             : GEN
    3159      791721 : Flx_Flxq_eval(GEN Q, GEN x, GEN T, ulong p)
    3160      791721 : { return Flx_Flxq_eval_pre(Q, x, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3161             : 
    3162             : /* allow pi = 0 (SMALL_ULONG) */
    3163             : GEN
    3164           0 : FlxC_FlxqV_eval_pre(GEN x, GEN v, GEN T, ulong p, ulong pi)
    3165           0 : { pari_APPLY_type(t_COL, Flx_FlxqV_eval_pre(gel(x,i), v, T, p, pi)) }
    3166             : GEN
    3167           0 : FlxC_FlxqV_eval(GEN x, GEN v, GEN T, ulong p)
    3168           0 : { return FlxC_FlxqV_eval_pre(x, v, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3169             : 
    3170             : /* allow pi = 0 (SMALL_ULONG) */
    3171             : GEN
    3172           0 : FlxC_Flxq_eval_pre(GEN x, GEN F, GEN T, ulong p, ulong pi)
    3173             : {
    3174           0 :   long d = brent_kung_optpow(get_Flx_degree(T)-1,lg(x)-1,1);
    3175           0 :   GEN Fp = Flxq_powers_pre(F, d, T, p, pi);
    3176           0 :   return FlxC_FlxqV_eval_pre(x, Fp, T, p, pi);
    3177             : }
    3178             : GEN
    3179           0 : FlxC_Flxq_eval(GEN x, GEN F, GEN T, ulong p)
    3180           0 : { return FlxC_Flxq_eval_pre(x, F, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3181             : 
    3182             : #if 0
    3183             : static struct bb_algebra Flxq_algebra = { _Flxq_red, _Flx_add, _Flx_sub,
    3184             :               _Flxq_mul, _Flxq_sqr, _Flxq_one, _Flxq_zero};
    3185             : #endif
    3186             : 
    3187             : static GEN
    3188       47315 : Flxq_autpow_sqr(void *E, GEN x)
    3189             : {
    3190       47315 :   struct _Flxq *D = (struct _Flxq*)E;
    3191       47315 :   return Flx_Flxq_eval_pre(x, x, D->T, D->p, D->pi);
    3192             : }
    3193             : static GEN
    3194       20696 : Flxq_autpow_msqr(void *E, GEN x)
    3195             : {
    3196       20696 :   struct _Flxq *D = (struct _Flxq*)E;
    3197       20696 :   return Flx_FlxqV_eval_pre(Flxq_autpow_sqr(E, x), D->aut, D->T, D->p, D->pi);
    3198             : }
    3199             : 
    3200             : GEN
    3201       69452 : Flxq_autpow_pre(GEN x, ulong n, GEN T, ulong p, ulong pi)
    3202             : {
    3203       69452 :   pari_sp av = avma;
    3204             :   struct _Flxq D;
    3205             :   long d;
    3206       69452 :   if (n==0) return Flx_rem_pre(polx_Flx(x[1]), T, p, pi);
    3207       69445 :   if (n==1) return Flx_rem_pre(x, T, p, pi);
    3208       32443 :   set_Flxq_pre(&D, T, p, pi);
    3209       32443 :   d = brent_kung_optpow(get_Flx_degree(T), hammingu(n)-1, 1);
    3210       32443 :   D.aut = Flxq_powers_pre(x, d, T, p, D.pi);
    3211       32443 :   x = gen_powu_fold_i(x,n,(void*)&D,Flxq_autpow_sqr,Flxq_autpow_msqr);
    3212       32443 :   return gc_GEN(av, x);
    3213             : }
    3214             : GEN
    3215           7 : Flxq_autpow(GEN x, ulong n, GEN T, ulong p)
    3216           7 : { return Flxq_autpow_pre(x, n, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3217             : 
    3218             : GEN
    3219        1667 : Flxq_autpowers(GEN x, ulong l, GEN T, ulong p)
    3220             : {
    3221        1667 :   long d, vT = get_Flx_var(T), dT = get_Flx_degree(T);
    3222             :   ulong i, pi;
    3223        1667 :   pari_sp av = avma;
    3224        1667 :   GEN xp, V = cgetg(l+2,t_VEC);
    3225        1667 :   gel(V,1) = polx_Flx(vT); if (l==0) return V;
    3226        1667 :   gel(V,2) = gcopy(x); if (l==1) return V;
    3227        1667 :   pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    3228        1667 :   T = Flx_get_red_pre(T, p, pi);
    3229        1667 :   d = brent_kung_optpow(dT-1, l-1, 1);
    3230        1667 :   xp = Flxq_powers_pre(x, d, T, p, pi);
    3231        6998 :   for(i = 3; i < l+2; i++)
    3232        5331 :     gel(V,i) = Flx_FlxqV_eval_pre(gel(V,i-1), xp, T, p, pi);
    3233        1667 :   return gc_GEN(av, V);
    3234             : }
    3235             : 
    3236             : static GEN
    3237      112480 : Flxq_autsum_mul(void *E, GEN x, GEN y)
    3238             : {
    3239      112480 :   struct _Flxq *D = (struct _Flxq*)E;
    3240      112480 :   GEN T = D->T;
    3241      112480 :   ulong p = D->p, pi = D->pi;
    3242      112480 :   GEN phi1 = gel(x,1), a1 = gel(x,2);
    3243      112480 :   GEN phi2 = gel(y,1), a2 = gel(y,2);
    3244      112480 :   ulong d = brent_kung_optpow(maxss(degpol(phi1),degpol(a1)),2,1);
    3245      112480 :   GEN V2 = Flxq_powers_pre(phi2, d, T, p, pi);
    3246      112480 :   GEN phi3 = Flx_FlxqV_eval_pre(phi1, V2, T, p, pi);
    3247      112480 :   GEN aphi = Flx_FlxqV_eval_pre(a1, V2, T, p, pi);
    3248      112480 :   GEN a3 = Flxq_mul_pre(aphi, a2, T, p, pi);
    3249      112480 :   return mkvec2(phi3, a3);
    3250             : }
    3251             : static GEN
    3252      105116 : Flxq_autsum_sqr(void *E, GEN x)
    3253      105116 : { return Flxq_autsum_mul(E, x, x); }
    3254             : 
    3255             : static GEN
    3256       98770 : Flxq_autsum_pre(GEN x, ulong n, GEN T, ulong p, ulong pi)
    3257             : {
    3258       98770 :   pari_sp av = avma;
    3259       98770 :   struct _Flxq D; set_Flxq_pre(&D, T, p, pi);
    3260       98770 :   x = gen_powu_i(x,n,(void*)&D,Flxq_autsum_sqr,Flxq_autsum_mul);
    3261       98770 :   return gc_GEN(av, x);
    3262             : }
    3263             : GEN
    3264           0 : Flxq_autsum(GEN x, ulong n, GEN T, ulong p)
    3265           0 : { return Flxq_autsum_pre(x, n, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3266             : 
    3267             : static GEN
    3268      782846 : Flxq_auttrace_mul(void *E, GEN x, GEN y)
    3269             : {
    3270      782846 :   struct _Flxq *D = (struct _Flxq*)E;
    3271      782846 :   GEN T = D->T;
    3272      782846 :   ulong p = D->p, pi = D->pi;
    3273      782846 :   GEN phi1 = gel(x,1), a1 = gel(x,2);
    3274      782846 :   GEN phi2 = gel(y,1), a2 = gel(y,2);
    3275      782846 :   ulong d = brent_kung_optpow(maxss(degpol(phi1),degpol(a1)),2,1);
    3276      782861 :   GEN V1 = Flxq_powers_pre(phi1, d, T, p, pi);
    3277      782823 :   GEN phi3 = Flx_FlxqV_eval_pre(phi2, V1, T, p, pi);
    3278      782822 :   GEN aphi = Flx_FlxqV_eval_pre(a2, V1, T, p, pi);
    3279      782816 :   GEN a3 = Flx_add(a1, aphi, p);
    3280      782827 :   return mkvec2(phi3, a3);
    3281             : }
    3282             : 
    3283             : static GEN
    3284      655326 : Flxq_auttrace_sqr(void *E, GEN x)
    3285      655326 : { return Flxq_auttrace_mul(E, x, x); }
    3286             : 
    3287             : GEN
    3288      962556 : Flxq_auttrace_pre(GEN x, ulong n, GEN T, ulong p, ulong pi)
    3289             : {
    3290      962556 :   pari_sp av = avma;
    3291             :   struct _Flxq D;
    3292      962556 :   set_Flxq_pre(&D, T, p, pi);
    3293      962561 :   x = gen_powu_i(x,n,(void*)&D,Flxq_auttrace_sqr,Flxq_auttrace_mul);
    3294      962534 :   return gc_GEN(av, x);
    3295             : }
    3296             : GEN
    3297           0 : Flxq_auttrace(GEN x, ulong n, GEN T, ulong p)
    3298           0 : { return Flxq_auttrace_pre(x, n, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3299             : 
    3300             : static long
    3301      395387 : bounded_order(ulong p, GEN b, long k)
    3302             : {
    3303      395387 :   GEN a = modii(utoipos(p), b);
    3304             :   long i;
    3305      812476 :   for(i = 1; i < k; i++)
    3306             :   {
    3307      516498 :     if (equali1(a)) return i;
    3308      417089 :     a = modii(muliu(a,p),b);
    3309             :   }
    3310      295978 :   return 0;
    3311             : }
    3312             : 
    3313             : /* n = (p^d-a)\b
    3314             :  * b = bb*p^vb
    3315             :  * p^k = 1 [bb]
    3316             :  * d = m*k+r+vb
    3317             :  * u = (p^k-1)/bb;
    3318             :  * v = (p^(r+vb)-a)/b;
    3319             :  * w = (p^(m*k)-1)/(p^k-1)
    3320             :  * n = p^r*w*u+v
    3321             :  * w*u = p^vb*(p^(m*k)-1)/b
    3322             :  * n = p^(r+vb)*(p^(m*k)-1)/b+(p^(r+vb)-a)/b */
    3323             : static GEN
    3324    22379264 : Flxq_pow_Frobenius(GEN x, GEN n, GEN aut, GEN T, ulong p, ulong pi)
    3325             : {
    3326    22379264 :   pari_sp av=avma;
    3327    22379264 :   long d = get_Flx_degree(T);
    3328    22379264 :   GEN an = absi_shallow(n), z, q;
    3329    22379264 :   if (abscmpiu(an,p)<0 || cmpis(an,d)<=0) return Flxq_pow_pre(x, n, T, p, pi);
    3330      395749 :   q = powuu(p, d);
    3331      395749 :   if (dvdii(q, n))
    3332             :   {
    3333         314 :     long vn = logint(an, utoipos(p));
    3334         314 :     GEN autvn = vn==1 ? aut: Flxq_autpow_pre(aut,vn,T,p,pi);
    3335         314 :     z = Flx_Flxq_eval_pre(x,autvn,T,p,pi);
    3336             :   } else
    3337             :   {
    3338      395435 :     GEN b = diviiround(q, an), a = subii(q, mulii(an,b));
    3339             :     GEN bb, u, v, autk;
    3340      395435 :     long vb = Z_lvalrem(b,p,&bb);
    3341      395435 :     long m, r, k = is_pm1(bb)? 1: bounded_order(p,bb,d);
    3342      395435 :     if (!k || d-vb < k) return Flxq_pow_pre(x,n, T,p,pi);
    3343       99450 :     m = (d-vb)/k; r = (d-vb)%k;
    3344       99450 :     u = diviiexact(subiu(powuu(p,k),1),bb);
    3345       99450 :     v = diviiexact(subii(powuu(p,r+vb),a),b);
    3346       99450 :     autk = k==1 ? aut: Flxq_autpow_pre(aut,k,T,p,pi);
    3347       99450 :     if (r)
    3348             :     {
    3349         487 :       GEN autr = r==1 ? aut: Flxq_autpow_pre(aut,r,T,p,pi);
    3350         487 :       z = Flx_Flxq_eval_pre(x,autr,T,p,pi);
    3351       98963 :     } else z = x;
    3352       99450 :     if (m > 1) z = gel(Flxq_autsum_pre(mkvec2(autk, z), m, T, p, pi), 2);
    3353       99450 :     if (!is_pm1(u)) z = Flxq_pow_pre(z, u, T, p, pi);
    3354       99450 :     if (signe(v)) z = Flxq_mul_pre(z, Flxq_pow_pre(x, v, T, p, pi), T, p, pi);
    3355             :   }
    3356       99764 :   return gc_upto(av,signe(n)>0 ? z : Flxq_inv_pre(z,T,p,pi));
    3357             : }
    3358             : 
    3359             : static GEN
    3360    22371854 : _Flxq_pow(void *data, GEN x, GEN n)
    3361             : {
    3362    22371854 :   struct _Flxq *D = (struct _Flxq*)data;
    3363    22371854 :   return Flxq_pow_Frobenius(x, n, D->aut, D->T, D->p, D->pi);
    3364             : }
    3365             : 
    3366             : static GEN
    3367        6564 : _Flxq_rand(void *data)
    3368             : {
    3369        6564 :   pari_sp av=avma;
    3370        6564 :   struct _Flxq *D = (struct _Flxq*)data;
    3371             :   GEN z;
    3372             :   do
    3373             :   {
    3374        6586 :     set_avma(av);
    3375        6586 :     z = random_Flx(get_Flx_degree(D->T),get_Flx_var(D->T),D->p);
    3376        6586 :   } while (lgpol(z)==0);
    3377        6564 :   return z;
    3378             : }
    3379             : 
    3380             : /* discrete log in FpXQ for a in Fp^*, g in FpXQ^* of order ord */
    3381             : static GEN
    3382       35538 : Fl_Flxq_log(ulong a, GEN g, GEN o, GEN T, ulong p)
    3383             : {
    3384       35538 :   pari_sp av = avma;
    3385             :   GEN q,n_q,ord,ordp, op;
    3386             : 
    3387       35538 :   if (a == 1UL) return gen_0;
    3388             :   /* p > 2 */
    3389             : 
    3390       35538 :   ordp = utoi(p - 1);
    3391       35538 :   ord  = get_arith_Z(o);
    3392       35538 :   if (!ord) ord = T? subiu(powuu(p, get_FpX_degree(T)), 1): ordp;
    3393       35538 :   if (a == p - 1) /* -1 */
    3394        7739 :     return gc_INT(av, shifti(ord,-1));
    3395       27799 :   ordp = gcdii(ordp, ord);
    3396       27799 :   op = typ(o)==t_MAT ? famat_Z_gcd(o, ordp) : ordp;
    3397             : 
    3398       27799 :   q = NULL;
    3399       27799 :   if (T)
    3400             :   { /* we want < g > = Fp^* */
    3401       27799 :     if (!equalii(ord,ordp)) {
    3402       11906 :       q = diviiexact(ord,ordp);
    3403       11906 :       g = Flxq_pow(g,q,T,p);
    3404             :     }
    3405             :   }
    3406       27799 :   n_q = Fp_log(utoi(a), utoipos(uel(g,2)), op, utoipos(p));
    3407       27799 :   if (lg(n_q)==1) return gc_leaf(av, n_q);
    3408       27799 :   if (q) n_q = mulii(q, n_q);
    3409       27799 :   return gc_INT(av, n_q);
    3410             : }
    3411             : 
    3412             : static GEN
    3413      519352 : Flxq_easylog(void* E, GEN a, GEN g, GEN ord)
    3414             : {
    3415      519352 :   struct _Flxq *f = (struct _Flxq *)E;
    3416      519352 :   GEN T = f->T;
    3417      519352 :   ulong p = f->p;
    3418      519352 :   long d = get_Flx_degree(T);
    3419      519352 :   if (Flx_equal1(a)) return gen_0;
    3420      359630 :   if (Flx_equal(a,g)) return gen_1;
    3421      174492 :   if (!degpol(a))
    3422       35538 :     return Fl_Flxq_log(uel(a,2), g, ord, T, p);
    3423      138954 :   if (typ(ord)!=t_INT || d <= 4 || d == 6 || abscmpiu(ord,1UL<<27)<0)
    3424      138926 :     return NULL;
    3425          28 :   return Flxq_log_index(a, g, ord, T, p);
    3426             : }
    3427             : 
    3428             : static const struct bb_group Flxq_star={_Flxq_mul,_Flxq_pow,_Flxq_rand,hash_GEN,Flx_equal,Flx_equal1,Flxq_easylog};
    3429             : 
    3430             : const struct bb_group *
    3431      283446 : get_Flxq_star(void **E, GEN T, ulong p)
    3432             : {
    3433      283446 :   struct _Flxq *e = (struct _Flxq *) stack_malloc(sizeof(struct _Flxq));
    3434      283446 :   e->T = T; e->p  = p; e->pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    3435      283446 :   e->aut =  Flx_Frobenius_pre(T, p, e->pi);
    3436      283446 :   *E = (void*)e; return &Flxq_star;
    3437             : }
    3438             : 
    3439             : GEN
    3440       97328 : Flxq_order(GEN a, GEN ord, GEN T, ulong p)
    3441             : {
    3442             :   void *E;
    3443       97328 :   const struct bb_group *S = get_Flxq_star(&E,T,p);
    3444       97328 :   return gen_order(a,ord,E,S);
    3445             : }
    3446             : 
    3447             : GEN
    3448      164217 : Flxq_log(GEN a, GEN g, GEN ord, GEN T, ulong p)
    3449             : {
    3450             :   void *E;
    3451      164217 :   pari_sp av = avma;
    3452      164217 :   const struct bb_group *S = get_Flxq_star(&E,T,p);
    3453      164217 :   GEN v = get_arith_ZZM(ord), F = gmael(v,2,1);
    3454      164217 :   if (lg(F) > 1 && Flxq_log_use_index(veclast(F), T, p))
    3455       24290 :     v = mkvec2(gel(v, 1), ZM_famat_limit(gel(v, 2), int2n(27)));
    3456      164217 :   return gc_leaf(av, gen_PH_log(a, g, v, E, S));
    3457             : }
    3458             : 
    3459             : static GEN
    3460      295314 : Flxq_sumautsum_sqr(void *E, GEN xzd)
    3461             : {
    3462      295314 :   struct _Flxq *D = (struct _Flxq*)E;
    3463      295314 :   pari_sp av = avma;
    3464             :   GEN xi, zeta, delta, xi2, zeta2, delta2, temp, xipow;
    3465      295314 :   GEN T = D->T;
    3466      295314 :   ulong d, p = D-> p, pi = D->pi;
    3467      295314 :   xi = gel(xzd, 1); zeta = gel(xzd, 2); delta = gel(xzd, 3);
    3468             : 
    3469      295314 :   d = brent_kung_optpow(get_Flx_degree(T)-1,3,1);
    3470      295314 :   xipow = Flxq_powers_pre(xi, d, T, p, pi);
    3471             : 
    3472      295314 :   xi2 = Flx_FlxqV_eval_pre(xi, xipow, T, p, pi);
    3473      295314 :   zeta2 = Flxq_mul_pre(zeta, Flx_FlxqV_eval_pre(zeta,  xipow, T, p, pi), T, p, pi);
    3474      295314 :   temp  = Flxq_mul_pre(zeta, Flx_FlxqV_eval_pre(delta, xipow, T, p, pi), T, p, pi);
    3475      295314 :   delta2 = Flx_add(delta, temp, p);
    3476      295314 :   return gc_GEN(av, mkvec3(xi2, zeta2, delta2));
    3477             : }
    3478             : 
    3479             : static GEN
    3480       40915 : Flxq_sumautsum_msqr(void *E, GEN xzd)
    3481             : {
    3482       40915 :   struct _Flxq *D = (struct _Flxq*)E;
    3483       40915 :   pari_sp av = avma;
    3484             :   GEN xii, zetai, deltai, xzd2;
    3485       40915 :   GEN T = D->T, xi0pow = gel(D->aut, 1), zeta0 = gel(D->aut, 2);
    3486       40915 :   ulong p = D-> p, pi = D->pi;
    3487       40915 :   xzd2 = Flxq_sumautsum_sqr(E, xzd);
    3488       40915 :   xii = Flx_FlxqV_eval_pre(gel(xzd2, 1), xi0pow, T, p, pi);
    3489       40915 :   zetai = Flxq_mul_pre(zeta0, Flx_FlxqV_eval_pre(gel(xzd2, 2), xi0pow, T, p, pi), T, p, pi);
    3490       40915 :   deltai = Flx_add(gel(xzd2, 3), zetai, p);
    3491             : 
    3492       40915 :   return gc_GEN(av, mkvec3(xii, zetai, deltai));
    3493             : }
    3494             : 
    3495             : /*returns a + a^(1+s) + a^(1+s+2s) + ... + a^(1+s+...+is)
    3496             :   where ax = [a,s] with s an automorphism */
    3497             : static GEN
    3498      210713 : Flxq_sumautsum_pre(GEN ax, long i, GEN T, ulong p, ulong pi) {
    3499      210713 :   pari_sp av = avma;
    3500             :   GEN a, xi, zeta, vec, res;
    3501             :   struct _Flxq D;
    3502             :   ulong d;
    3503      210713 :   D.T = Flx_get_red(T, p); D.p = p; D.pi = pi;
    3504      210713 :   a = gel(ax, 1); xi = gel(ax,2);
    3505      210713 :   d = brent_kung_optpow(get_Flx_degree(T)-1,2*(hammingu(i)-1),1);
    3506      210713 :   zeta = Flx_Flxq_eval_pre(a, xi, T, p, pi);
    3507      210713 :   D.aut = mkvec2(Flxq_powers_pre(xi, d, T, p, pi), zeta);
    3508             : 
    3509      210713 :   vec = gen_powu_fold(mkvec3(xi, zeta, zeta), i, (void *)&D, Flxq_sumautsum_sqr, Flxq_sumautsum_msqr);
    3510      210713 :   res = Flxq_mul_pre(a, Flx_add(pol1_Flx(get_Flx_var(T)), gel(vec, 3), p), T, p, pi);
    3511             : 
    3512      210713 :   return gc_GEN(av, res);
    3513             : }
    3514             : 
    3515             : /*algorithm from
    3516             : Doliskani, J., & Schost, E. (2014).
    3517             : Taking roots over high extensions of finite fields
    3518             : https://arxiv.org/abs/1110.4350
    3519             : */
    3520             : static GEN
    3521       37666 : Flxq_sqrtl_spec_pre(GEN z, GEN n, GEN T, ulong p, ulong pi, GEN *zetan)
    3522             : {
    3523       37666 :   pari_sp av = avma;
    3524             :   GEN psn, c, b, new_z, beta, x, y, w, ax, g, zeta;
    3525       37666 :   long s, l, v = get_Flx_var(T), d = get_Flx_degree(T);
    3526             :   ulong zeta2, beta2;
    3527       37666 :   s = itos(Fp_order(utoi(p), stoi(d), n));
    3528       37667 :   if(s >= d || d % s != 0)
    3529           0 :     pari_err(e_MISC, "expected p's order mod n to divide the degree of T");
    3530       37667 :   l = d/s;
    3531       37667 :   if (!lgpol(z)) return pol0_Flx(get_Flx_var(T));
    3532       37667 :   T = Flx_get_red(T, p);
    3533       37667 :   ax = mkvec2(NULL, Flxq_autpow_pre(Flx_Frobenius_pre(T,p,pi), s, T, p,pi));
    3534       37667 :   psn = diviiexact(subiu(powuu(p, s), 1), n);
    3535             :   do {
    3536       41675 :     do c = random_Flx(d, v, p); while (!lgpol(c));
    3537       41170 :     new_z = Flxq_mul_pre(z, Flxq_pow_pre(c, n, T, p,pi), T, p,pi);
    3538       41170 :     gel(ax,1) = Flxq_pow_pre(new_z, psn, T, p,pi);
    3539             : 
    3540             :     /*If l == 2, b has to be 1 + a^((p^s-1)/n)*/
    3541       41169 :     if(l == 2) y = gel(ax, 1);
    3542        3244 :     else y = Flxq_sumautsum_pre(ax, l-2, T, p, pi);
    3543       41169 :     b = Flx_Fl_add(y, 1, p);
    3544       41169 :   } while (!lgpol(b));
    3545             : 
    3546       37665 :   x = Flxq_mul_pre(new_z, Flxq_pow_pre(b, n, T, p,pi), T, p,pi);
    3547       37666 :   if(s == 1) {
    3548       36518 :     if (degpol(x) > 0) return gc_NULL(av);
    3549       36476 :     beta2 = Fl_sqrtn(Flx_constant(x), umodiu(n, p), p, &zeta2);
    3550       36477 :     if (beta2==~0UL) return gc_NULL(av);
    3551       36477 :     if(zetan) *zetan = monomial_Flx(zeta2, 0, get_Flx_var(T));
    3552       36477 :     w = Flx_Fl_mul(Flxq_inv_pre(Flxq_mul_pre(b, c, T, p,pi), T, p,pi), beta2, p);
    3553       36476 :     (void)gc_all(av, zetan? 2: 1, &w, zetan);
    3554       36476 :     return w;
    3555             :   }
    3556        1148 :   g = Flxq_minpoly(x, T, p);
    3557        1148 :   if (degpol(g) > s) return gc_NULL(av);
    3558        1148 :   beta = Flxq_sqrtn(polx_Flx(get_Flx_var(T)), n, g, p, &zeta);
    3559        1148 :   if (!beta) return gc_NULL(av);
    3560             : 
    3561        1148 :   if(zetan) *zetan = Flx_Flxq_eval(zeta, x, T, p);
    3562        1148 :   beta = Flx_Flxq_eval(beta, x, T, p);
    3563        1148 :   w = Flxq_mul_pre(Flxq_inv_pre(Flxq_mul_pre(b, c, T, p,pi), T, p,pi), beta, T, p,pi);
    3564        1148 :   (void)gc_all(av, zetan? 2: 1, &w, zetan);
    3565        1148 :   return w;
    3566             : }
    3567             : 
    3568             : static GEN
    3569       21900 : Flxq_sqrtn_spec_pre(GEN a, GEN n, GEN T, ulong p, ulong pi, GEN q, GEN *zetan)
    3570             : {
    3571       21900 :   pari_sp ltop = avma;
    3572             :   GEN z, m, u1, u2;
    3573             :   int is_1;
    3574       21900 :   if (is_pm1(n))
    3575             :   {
    3576        1918 :     if (zetan) *zetan = pol1_Flx(get_Flx_var(T));
    3577        1918 :     return signe(n) < 0? Flxq_inv_pre(a, T, p,pi): gcopy(a);
    3578             :   }
    3579       19982 :   is_1 = gequal1(a);
    3580       19982 :   if (is_1 && !zetan) return gcopy(a);
    3581       19982 :   z = pol1_Flx(get_Flx_var(T));
    3582       19982 :   m = bezout(n,q,&u1,&u2);
    3583       19983 :   if (!is_pm1(m))
    3584             :   {
    3585       19982 :     GEN F = Z_factor(m);
    3586       19983 :     long i, j, j2 = 0; /* -Wall */
    3587             :     GEN y, l;
    3588       19983 :     pari_sp av1 = avma;
    3589       40050 :     for (i = nbrows(F); i; i--)
    3590             :     {
    3591       20109 :       l = gcoeff(F,i,1);
    3592       20109 :       j = itos(gcoeff(F,i,2));
    3593       20109 :       if(zetan) {
    3594         104 :         a = Flxq_sqrtl_spec_pre(a,l,T,p,pi,&y);
    3595         146 :         if (!a) return gc_NULL(ltop);
    3596         104 :         j--;
    3597         104 :         j2 = j;
    3598             :       }
    3599       20109 :       if (!is_1 && j > 0) {
    3600             :         do
    3601             :         {
    3602       37450 :           a = Flxq_sqrtl_spec_pre(a,l,T,p,pi,NULL);
    3603       37450 :           if (!a) return gc_NULL(ltop);
    3604       37408 :         } while (--j);
    3605             :       }
    3606             :       /*This is below finding a's root,
    3607             :       so we don't spend time doing this, if a is not n-th root*/
    3608       20067 :       if(zetan) {
    3609         216 :         for(; j2>0; j2--) y = Flxq_sqrtl_spec_pre(y, l, T, p,pi,NULL);
    3610         104 :         z = Flxq_mul_pre(z, y, T, p,pi);
    3611             :       }
    3612       20067 :       if (gc_needed(ltop,1))
    3613             :       { /* n can have lots of prime factors*/
    3614           0 :         if(DEBUGMEM>1) pari_warn(warnmem,"Flxq_sqrtn_spec");
    3615           0 :         (void)gc_all(av1, zetan? 2: 1, &a, &z);
    3616             :       }
    3617             :     }
    3618             :   }
    3619             : 
    3620       19941 :   if (!equalii(m, n))
    3621         434 :     a = Flxq_pow_pre(a,modii(u1,q), T, p,pi);
    3622       19941 :   if (zetan)
    3623             :   {
    3624         104 :     *zetan = z;
    3625         104 :     (void)gc_all(ltop,2,&a,zetan);
    3626             :   }
    3627             :   else /* is_1 is 0: a was modified above -> gc_upto valid */
    3628       19837 :     a = gc_upto(ltop, a);
    3629       19941 :   return a;
    3630             : }
    3631             : 
    3632             : GEN
    3633       23095 : Flxq_sqrtn(GEN a, GEN n, GEN T, ulong p, GEN *zeta)
    3634             : {
    3635       23095 :   if (!lgpol(a))
    3636             :   {
    3637           7 :     if (signe(n) < 0) pari_err_INV("Flxq_sqrtn",a);
    3638           0 :     if (zeta)
    3639           0 :       *zeta=pol1_Flx(get_Flx_var(T));
    3640           0 :     return pol0_Flx(get_Flx_var(T));
    3641             :   }
    3642       23088 :   else if(p == 2) {
    3643        1187 :     pari_sp av = avma;
    3644             :     GEN z;
    3645        1187 :     z = F2xq_sqrtn(Flx_to_F2x(a), n, Flx_to_F2x(get_FpX_mod(T)), zeta);
    3646        1187 :     if (!z) return NULL;
    3647        1187 :     z = F2x_to_Flx(z);
    3648        1187 :     if (!zeta) return gc_leaf(av, z);
    3649           0 :     *zeta=F2x_to_Flx(*zeta);
    3650           0 :     return gc_all(av, 2, &z,zeta);
    3651             :   }
    3652             :   else
    3653             :   {
    3654             :     void *E;
    3655       21901 :     pari_sp av = avma;
    3656       21901 :     const struct bb_group *S = get_Flxq_star(&E,T,p);
    3657       21901 :     GEN o = subiu(powuu(p,get_Flx_degree(T)), 1);
    3658             :     GEN m, u1, u2, l, zeta2, F, n2, z;
    3659       21898 :     long i, s, pi, d = get_Flx_degree(T);
    3660       21898 :     pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    3661       21898 :     m = bezout(n,o,&u1,&u2);
    3662       21901 :     F = Z_factor(m);
    3663       46434 :     for (i = nbrows(F); i; i--)
    3664             :     {
    3665       24533 :       l = gcoeff(F,i,1);
    3666       24533 :       s = itos(Fp_order(utoi(p), subiu(l, 1), l));
    3667             :       /*Flxq_sqrtn_spec only works if d > s and s | d
    3668             :       for those factors of m we use Flxq_sqrtn_spec
    3669             :       for the other factor we stay with gen_Shanks_sqrtn*/
    3670       24533 :       if(d <= s || d % s != 0) {
    3671        4424 :         gcoeff(F,i,2) = gen_0;
    3672             :       }
    3673       20109 :       else gcoeff(F,i,2) = stoi(Z_pval(n,l));
    3674             :     }
    3675       21901 :     F = factorback(F);
    3676       21900 :     z = Flxq_sqrtn_spec_pre(a,F,T, p,pi,o,zeta);
    3677       21901 :     if(!z) return gc_NULL(av);
    3678       21859 :     n2 = diviiexact(n, F);
    3679       21859 :     if(!gequal1(n2)) {
    3680        5005 :       if(zeta) zeta2 = gcopy(*zeta);
    3681        5005 :       z = gen_Shanks_sqrtn(z, n2, o, zeta, E, S);
    3682        5005 :       if (!z) return gc_NULL(av);
    3683        5005 :       if(zeta) *zeta = Flxq_mul_pre(*zeta, zeta2, T, p,pi);
    3684             :     }
    3685       21859 :     return gc_all(av, zeta?2:1, &z, zeta);
    3686             :   }
    3687             : }
    3688             : 
    3689             : GEN
    3690      230484 : Flxq_sqrt_pre(GEN z, GEN T, ulong p, ulong pi)
    3691             : {
    3692      230484 :   pari_sp av = avma;
    3693             :   long d;
    3694      230484 :   if (p==2)
    3695             :   {
    3696           0 :     GEN r = F2xq_sqrt(Flx_to_F2x(z), Flx_to_F2x(get_Flx_mod(T)));
    3697           0 :     return gc_upto(av, F2x_to_Flx(r));
    3698             :   }
    3699      230484 :   d = get_Flx_degree(T);
    3700      230484 :   if (d==2)
    3701             :   {
    3702       65765 :     GEN P = get_Flx_mod(T), s;
    3703       65765 :     ulong c = uel(P,2), b = uel(P,3), a = uel(P,4);
    3704       65765 :     ulong y = degpol(z)<1 ? 0: uel(z,3);
    3705       65765 :     if (a==1 && b==0)
    3706       15226 :     {
    3707       16006 :       ulong x = degpol(z)<1 ? Flx_constant(z): uel(z,2);
    3708       16006 :       GEN r = Fl2_sqrt_pre(mkvecsmall2(x, y), Fl_neg(c, p), p, pi);
    3709       16006 :       if (!r) return gc_NULL(av);
    3710       15226 :       s = mkvecsmall3(P[1], uel(r,1), uel(r,2));
    3711             :     }
    3712             :     else
    3713             :     {
    3714       49759 :       ulong b2 = Fl_halve(b, p), t = Fl_div(b2, a, p);
    3715       49759 :       ulong D = Fl_sub(Fl_sqr(b2, p), Fl_mul(a, c, p), p);
    3716       49759 :       ulong x = degpol(z)<1 ? Flx_constant(z): Fl_sub(uel(z,2), Fl_mul(uel(z,3), t, p), p);
    3717       49759 :       GEN r = Fl2_sqrt_pre(mkvecsmall2(x, y), D, p, pi);
    3718       49759 :       if (!r) return gc_NULL(av);
    3719       47365 :       s = mkvecsmall3(P[1], Fl_add(uel(r,1), Fl_mul(uel(r,2),t,p), p), uel(r,2));
    3720             :     }
    3721       62591 :     return gc_leaf(av, Flx_renormalize(s, 4));
    3722             :   }
    3723      164719 :   if (lgpol(z)<=1 && odd(d))
    3724             :   {
    3725       11710 :     pari_sp av = avma;
    3726       11710 :     ulong s = Fl_sqrt(Flx_constant(z), p);
    3727       11710 :     if (s==~0UL) return gc_NULL(av);
    3728       11696 :     return gc_GEN(av, Fl_to_Flx(s, get_Flx_var(T)));
    3729             :   } else
    3730             :   {
    3731             :     GEN c, b, new_z, x, y, w, ax;
    3732             :     ulong p2, beta;
    3733      153009 :     long v = get_Flx_var(T);
    3734      153009 :     if (!lgpol(z)) return pol0_Flx(v);
    3735      152344 :     T = Flx_get_red_pre(T, p, pi);
    3736      152344 :     ax = mkvec2(NULL, Flx_Frobenius_pre(T, p, pi));
    3737      152344 :     p2 = p >> 1; /* (p-1) / 2 */
    3738             :     do {
    3739      208141 :       do c = random_Flx(d, v, p); while (!lgpol(c));
    3740             : 
    3741      207469 :       new_z = Flxq_mul_pre(z, Flxq_sqr_pre(c, T, p, pi), T, p, pi);
    3742      207469 :       gel(ax, 1) = Flxq_powu_pre(new_z, p2, T, p, pi);
    3743      207469 :       y = Flxq_sumautsum_pre(ax, d-2, T, p, pi); /* d > 2 */
    3744      207469 :       b = Flx_Fl_add(y, 1UL, p);
    3745      207469 :     } while (!lgpol(b));
    3746             : 
    3747      152344 :     x = Flxq_mul_pre(new_z, Flxq_sqr_pre(b, T, p, pi), T, p, pi);
    3748      152344 :     if (degpol(x) > 0) return gc_NULL(av);
    3749      145302 :     beta = Fl_sqrt_pre(Flx_constant(x), p, pi);
    3750      145302 :     if (beta==~0UL) return gc_NULL(av);
    3751      145302 :     w = Flx_Fl_mul(Flxq_inv_pre(Flxq_mul_pre(b, c, T,p,pi), T,p,pi), beta, p);
    3752      145302 :     return gc_GEN(av, w);
    3753             :   }
    3754             : }
    3755             : 
    3756             : GEN
    3757      230484 : Flxq_sqrt(GEN a, GEN T, ulong p)
    3758      230484 : { return Flxq_sqrt_pre(a, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3759             : 
    3760             : /* assume T irreducible mod p */
    3761             : int
    3762      404492 : Flxq_issquare(GEN x, GEN T, ulong p)
    3763             : {
    3764      404492 :   if (lgpol(x) == 0 || p == 2) return 1;
    3765      397989 :   return krouu(Flxq_norm(x,T,p), p) == 1;
    3766             : }
    3767             : 
    3768             : /* assume T irreducible mod p */
    3769             : int
    3770           0 : Flxq_is2npower(GEN x, long n, GEN T, ulong p)
    3771             : {
    3772             :   pari_sp av;
    3773             :   GEN m;
    3774           0 :   if (n==1) return Flxq_issquare(x, T, p);
    3775           0 :   if (lgpol(x) == 0 || p == 2) return 1;
    3776           0 :   av = avma;
    3777           0 :   m = shifti(subiu(powuu(p, get_Flx_degree(T)), 1), -n);
    3778           0 :   return gc_bool(av, Flx_equal1(Flxq_pow(x, m, T, p)));
    3779             : }
    3780             : 
    3781             : GEN
    3782      113589 : Flxq_lroot_fast_pre(GEN a, GEN sqx, GEN T, long p, ulong pi)
    3783             : {
    3784      113589 :   pari_sp av=avma;
    3785      113589 :   GEN A = Flx_splitting(a,p);
    3786      113589 :   return gc_leaf(av, FlxqV_dotproduct_pre(A,sqx,T,p,pi));
    3787             : }
    3788             : GEN
    3789           0 : Flxq_lroot_fast(GEN a, GEN sqx, GEN T, long p)
    3790           0 : { return Flxq_lroot_fast_pre(a, sqx, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3791             : 
    3792             : GEN
    3793       25053 : Flxq_lroot_pre(GEN a, GEN T, long p, ulong pi)
    3794             : {
    3795       25053 :   pari_sp av=avma;
    3796       25053 :   long n = get_Flx_degree(T), d = degpol(a);
    3797             :   GEN sqx, V;
    3798       25053 :   if (n==1) return leafcopy(a);
    3799       25053 :   if (n==2) return Flxq_powu_pre(a, p, T, p, pi);
    3800       25053 :   sqx = Flxq_autpow_pre(Flx_Frobenius_pre(T, p, pi), n-1, T, p, pi);
    3801       25053 :   if (d==1 && a[2]==0 && a[3]==1) return gc_leaf(av, sqx);
    3802           0 :   if (d>=p)
    3803             :   {
    3804           0 :     V = Flxq_powers_pre(sqx,p-1,T,p,pi);
    3805           0 :     return gc_leaf(av, Flxq_lroot_fast_pre(a,V,T,p,pi));
    3806             :   } else
    3807           0 :     return gc_leaf(av, Flx_Flxq_eval_pre(a,sqx,T,p,pi));
    3808             : }
    3809             : GEN
    3810           0 : Flxq_lroot(GEN a, GEN T, long p)
    3811           0 : { return Flxq_lroot_pre(a, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3812             : 
    3813             : ulong
    3814      443321 : Flxq_norm(GEN x, GEN TB, ulong p)
    3815             : {
    3816      443321 :   GEN T = get_Flx_mod(TB);
    3817      443321 :   ulong y = Flx_resultant(T, x, p), L = Flx_lead(T);
    3818      443321 :   if (L==1 || lgpol(x)==0) return y;
    3819           0 :   return Fl_div(y, Fl_powu(L, (ulong)degpol(x), p), p);
    3820             : }
    3821             : 
    3822             : ulong
    3823        4696 : Flxq_trace(GEN x, GEN TB, ulong p)
    3824             : {
    3825        4696 :   pari_sp av = avma;
    3826             :   ulong t;
    3827        4696 :   GEN T = get_Flx_mod(TB);
    3828        4696 :   long n = degpol(T)-1;
    3829        4696 :   GEN z = Flxq_mul(x, Flx_deriv(T, p), TB, p);
    3830        4696 :   t = degpol(z)<n ? 0 : Fl_div(z[2+n],T[3+n],p);
    3831        4696 :   return gc_ulong(av, t);
    3832             : }
    3833             : 
    3834             : /*x must be reduced*/
    3835             : GEN
    3836        3624 : Flxq_charpoly(GEN x, GEN TB, ulong p)
    3837             : {
    3838        3624 :   pari_sp ltop=avma;
    3839        3624 :   GEN T = get_Flx_mod(TB);
    3840        3624 :   long vs = evalvarn(fetch_var());
    3841        3624 :   GEN xm1 = deg1pol_shallow(pol1_Flx(x[1]),Flx_neg(x,p),vs);
    3842        3624 :   GEN r = Flx_FlxY_resultant(T, xm1, p);
    3843        3624 :   r[1] = x[1];
    3844        3624 :   (void)delete_var(); return gc_upto(ltop, r);
    3845             : }
    3846             : 
    3847             : /* Computing minimal polynomial :                         */
    3848             : /* cf Shoup 'Efficient Computation of Minimal Polynomials */
    3849             : /*          in Algebraic Extensions of Finite Fields'     */
    3850             : 
    3851             : /* Let v a linear form, return the linear form z->v(tau*z)
    3852             :    that is, v*(M_tau) */
    3853             : 
    3854             : static GEN
    3855     1751250 : Flxq_transmul_init(GEN tau, GEN T, ulong p, ulong pi)
    3856             : {
    3857             :   GEN bht;
    3858     1751250 :   GEN h, Tp = get_Flx_red(T, &h);
    3859     1751243 :   long n = degpol(Tp), vT = Tp[1];
    3860     1751234 :   GEN ft = Flx_recipspec(Tp+2, n+1, n+1);
    3861     1751228 :   GEN bt = Flx_recipspec(tau+2, lgpol(tau), n);
    3862     1751225 :   ft[1] = vT; bt[1] = vT;
    3863     1751225 :   if (h)
    3864        2688 :     bht = Flxn_mul_pre(bt, h, n-1, p, pi);
    3865             :   else
    3866             :   {
    3867     1748537 :     GEN bh = Flx_div_pre(Flx_shift(tau, n-1), T, p, pi);
    3868     1748541 :     bht = Flx_recipspec(bh+2, lgpol(bh), n-1);
    3869     1748542 :     bht[1] = vT;
    3870             :   }
    3871     1751230 :   return mkvec3(bt, bht, ft);
    3872             : }
    3873             : 
    3874             : static GEN
    3875     4224730 : Flxq_transmul(GEN tau, GEN a, long n, ulong p, ulong pi)
    3876             : {
    3877     4224730 :   pari_sp ltop = avma;
    3878             :   GEN t1, t2, t3, vec;
    3879     4224730 :   GEN bt = gel(tau, 1), bht = gel(tau, 2), ft = gel(tau, 3);
    3880     4224730 :   if (lgpol(a)==0) return pol0_Flx(a[1]);
    3881     4193324 :   t2  = Flx_shift(Flx_mul_pre(bt, a, p, pi),1-n);
    3882     4192994 :   if (lgpol(bht)==0) return gc_leaf(ltop, t2);
    3883     3161856 :   t1  = Flx_shift(Flx_mul_pre(ft, a, p, pi),-n);
    3884     3161871 :   t3  = Flxn_mul_pre(t1, bht, n-1, p, pi);
    3885     3161888 :   vec = Flx_sub(t2, Flx_shift(t3, 1), p);
    3886     3161935 :   return gc_leaf(ltop, vec);
    3887             : }
    3888             : 
    3889             : GEN
    3890      812002 : Flxq_minpoly_pre(GEN x, GEN T, ulong p, ulong pi)
    3891             : {
    3892      812002 :   pari_sp ltop = avma;
    3893      812002 :   long vT = get_Flx_var(T), n = get_Flx_degree(T);
    3894             :   GEN v_x;
    3895      812002 :   GEN g = pol1_Flx(vT), tau = pol1_Flx(vT);
    3896      811990 :   T = Flx_get_red_pre(T, p, pi);
    3897      811983 :   v_x = Flxq_powers_pre(x, usqrt(2*n), T, p, pi);
    3898     1687598 :   while (lgpol(tau) != 0)
    3899             :   {
    3900             :     long i, j, m, k1;
    3901             :     GEN M, v, tr, g_prime, c;
    3902      875611 :     if (degpol(g) == n) { tau = pol1_Flx(vT); g = pol1_Flx(vT); }
    3903      875611 :     v = random_Flx(n, vT, p);
    3904      875635 :     tr = Flxq_transmul_init(tau, T, p, pi);
    3905      875608 :     v = Flxq_transmul(tr, v, n, p, pi);
    3906      875622 :     m = 2*(n-degpol(g));
    3907      875623 :     k1 = usqrt(m);
    3908      875623 :     tr = Flxq_transmul_init(gel(v_x,k1+1), T, p, pi);
    3909      875612 :     c = cgetg(m+2,t_VECSMALL);
    3910      875609 :     c[1] = vT;
    3911     4224573 :     for (i=0; i<m; i+=k1)
    3912             :     {
    3913     3348950 :       long mj = minss(m-i, k1);
    3914    13003301 :       for (j=0; j<mj; j++)
    3915     9654056 :         uel(c,m+1-(i+j)) = Flx_dotproduct_pre(v, gel(v_x,j+1), p, pi);
    3916     3349245 :       v = Flxq_transmul(tr, v, n, p, pi);
    3917             :     }
    3918      875623 :     c = Flx_renormalize(c, m+2);
    3919             :     /* now c contains <v,x^i> , i = 0..m-1  */
    3920      875626 :     M = Flx_halfgcd_pre(monomial_Flx(1, m, vT), c, p, pi);
    3921      875639 :     g_prime = gmael(M, 2, 2);
    3922      875639 :     if (degpol(g_prime) < 1) continue;
    3923      862899 :     g = Flx_mul_pre(g, g_prime, p, pi);
    3924      862884 :     tau = Flxq_mul_pre(tau, Flx_FlxqV_eval_pre(g_prime, v_x, T,p,pi), T,p,pi);
    3925             :   }
    3926      811954 :   g = Flx_normalize(g,p);
    3927      812000 :   return gc_leaf(ltop,g);
    3928             : }
    3929             : GEN
    3930       45979 : Flxq_minpoly(GEN x, GEN T, ulong p)
    3931       45979 : { return Flxq_minpoly_pre(x, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3932             : 
    3933             : GEN
    3934          20 : Flxq_conjvec(GEN x, GEN T, ulong p)
    3935             : {
    3936          20 :   long i, l = 1+get_Flx_degree(T);
    3937          20 :   GEN z = cgetg(l,t_COL);
    3938          20 :   struct _Flxq D; set_Flxq(&D, T, p);
    3939          20 :   gel(z,1) = Flx_copy(x);
    3940          88 :   for (i=2; i<l; i++) gel(z,i) = _Flxq_powu(&D, gel(z,i-1), p);
    3941          20 :   return z;
    3942             : }
    3943             : 
    3944             : GEN
    3945        7201 : gener_Flxq(GEN T, ulong p, GEN *po)
    3946             : {
    3947        7201 :   long i, j, vT = get_Flx_var(T), f = get_Flx_degree(T);
    3948             :   ulong p_1, pi;
    3949             :   GEN g, L, L2, o, q, F;
    3950             :   pari_sp av0, av;
    3951             : 
    3952        7201 :   if (f == 1) {
    3953             :     GEN fa;
    3954          28 :     o = utoipos(p-1);
    3955          28 :     fa = Z_factor(o);
    3956          28 :     L = gel(fa,1);
    3957          28 :     L = vecslice(L, 2, lg(L)-1); /* remove 2 for efficiency */
    3958          28 :     g = Fl_to_Flx(pgener_Fl_local(p, vec_to_vecsmall(L)), vT);
    3959          28 :     if (po) *po = mkvec2(o, fa);
    3960          28 :     return g;
    3961             :   }
    3962             : 
    3963        7173 :   av0 = avma; p_1 = p - 1;
    3964        7173 :   q = diviuexact(subiu(powuu(p,f), 1), p_1);
    3965             : 
    3966        7173 :   L = cgetg(1, t_VECSMALL);
    3967        7173 :   if (p > 3)
    3968             :   {
    3969        2371 :     ulong t = p_1 >> vals(p_1);
    3970        2371 :     GEN P = gel(factoru(t), 1);
    3971        2371 :     L = cgetg_copy(P, &i);
    3972        3787 :     while (--i) L[i] = p_1 / P[i];
    3973             :   }
    3974        7173 :   o = factor_pn_1(utoipos(p),f);
    3975        7173 :   L2 = leafcopy( gel(o, 1) );
    3976       19212 :   for (i = j = 1; i < lg(L2); i++)
    3977             :   {
    3978       12039 :     if (umodui(p_1, gel(L2,i)) == 0) continue;
    3979        6488 :     gel(L2,j++) = diviiexact(q, gel(L2,i));
    3980             :   }
    3981        7173 :   setlg(L2, j); pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    3982        7173 :   F = Flx_Frobenius_pre(T, p, pi);
    3983       17703 :   for (av = avma;; set_avma(av))
    3984       10530 :   {
    3985             :     GEN tt;
    3986       17703 :     g = random_Flx(f, vT, p);
    3987       17703 :     if (degpol(g) < 1) continue;
    3988       12107 :     if (p == 2) tt = g;
    3989             :     else
    3990             :     {
    3991        8908 :       ulong t = Flxq_norm(g, T, p);
    3992        8908 :       if (t == 1 || !is_gener_Fl(t, p, p_1, L)) continue;
    3993        4774 :       tt = Flxq_powu_pre(g, p_1>>1, T, p, pi);
    3994             :     }
    3995       14583 :     for (i = 1; i < j; i++)
    3996             :     {
    3997        7410 :       GEN a = Flxq_pow_Frobenius(tt, gel(L2,i), F, T, p, pi);
    3998        7410 :       if (!degpol(a) && uel(a,2) == p_1) break;
    3999             :     }
    4000        7973 :     if (i == j) break;
    4001             :   }
    4002        7173 :   if (!po)
    4003             :   {
    4004         187 :     set_avma((pari_sp)g);
    4005         187 :     g = gc_leaf(av0, g);
    4006             :   }
    4007             :   else {
    4008        6986 :     *po = mkvec2(subiu(powuu(p,f), 1), o);
    4009        6986 :     (void)gc_all(av0, 2, &g, po);
    4010             :   }
    4011        7173 :   return g;
    4012             : }
    4013             : 
    4014             : static GEN
    4015      366572 : _Flxq_neg(void *E, GEN x)
    4016      366572 : { struct _Flxq *s = (struct _Flxq *)E;
    4017      366572 :   return Flx_neg(x,s->p); }
    4018             : 
    4019             : static GEN
    4020     1461838 : _Flxq_rmul(void *E, GEN x, GEN y)
    4021     1461838 : { struct _Flxq *s = (struct _Flxq *)E;
    4022     1461838 :   return Flx_mul_pre(x,y,s->p,s->pi); }
    4023             : 
    4024             : static GEN
    4025        9460 : _Flxq_inv(void *E, GEN x)
    4026        9460 : { struct _Flxq *s = (struct _Flxq *)E;
    4027        9460 :   return Flxq_inv(x,s->T,s->p); }
    4028             : 
    4029             : static int
    4030       69139 : _Flxq_equal0(GEN x) { return lgpol(x)==0; }
    4031             : 
    4032             : static GEN
    4033        6567 : _Flxq_s(void *E, long x)
    4034        6567 : { struct _Flxq *s = (struct _Flxq *)E;
    4035        6567 :   ulong u = x<0 ? s->p+x: (ulong)x;
    4036        6567 :   return Fl_to_Flx(u, get_Flx_var(s->T));
    4037             : }
    4038             : 
    4039             : static const struct bb_field Flxq_field={_Flxq_red,_Flx_add,_Flxq_rmul,_Flxq_neg,
    4040             :                                          _Flxq_inv,_Flxq_equal0,_Flxq_s};
    4041             : 
    4042       68902 : const struct bb_field *get_Flxq_field(void **E, GEN T, ulong p)
    4043             : {
    4044       68902 :   GEN z = new_chunk(sizeof(struct _Flxq));
    4045       68902 :   set_Flxq((struct _Flxq *)z, T, p); *E = (void*)z; return &Flxq_field;
    4046             : }
    4047             : 
    4048             : /***********************************************************************/
    4049             : /**                               Flxn                                **/
    4050             : /***********************************************************************/
    4051             : 
    4052             : GEN
    4053       54373 : Flx_invLaplace(GEN x, ulong p)
    4054             : {
    4055       54373 :   long i, d = degpol(x);
    4056             :   ulong t;
    4057             :   GEN y;
    4058       54372 :   if (d <= 1) return Flx_copy(x);
    4059       54372 :   t = Fl_inv(factorial_Fl(d, p), p);
    4060       54417 :   y = cgetg(d+3, t_VECSMALL);
    4061       54382 :   y[1] = x[1];
    4062     1332500 :   for (i=d; i>=2; i--)
    4063             :   {
    4064     1278105 :     uel(y,i+2) = Fl_mul(uel(x,i+2), t, p);
    4065     1278095 :     t = Fl_mul(t, i, p);
    4066             :   }
    4067       54395 :   uel(y,3) = uel(x,3);
    4068       54395 :   uel(y,2) = uel(x,2);
    4069       54395 :   return y;
    4070             : }
    4071             : 
    4072             : GEN
    4073       27354 : Flx_Laplace(GEN x, ulong p)
    4074             : {
    4075       27354 :   long i, d = degpol(x);
    4076       27354 :   ulong t = 1;
    4077             :   GEN y;
    4078       27354 :   if (d <= 1) return Flx_copy(x);
    4079       27354 :   y = cgetg(d+3, t_VECSMALL);
    4080       27344 :   y[1] = x[1];
    4081       27344 :   uel(y,2) = uel(x,2);
    4082       27344 :   uel(y,3) = uel(x,3);
    4083      761069 :   for (i=2; i<=d; i++)
    4084             :   {
    4085      733708 :     t = Fl_mul(t, i%p, p);
    4086      733717 :     uel(y,i+2) = Fl_mul(uel(x,i+2), t, p);
    4087             :   }
    4088       27361 :   return y;
    4089             : }
    4090             : 
    4091             : GEN
    4092     6340079 : Flxn_red(GEN a, long n)
    4093             : {
    4094     6340079 :   long i, L, l = lg(a);
    4095             :   GEN  b;
    4096     6340079 :   if (l == 2 || !n) return zero_Flx(a[1]);
    4097     5948716 :   L = n+2; if (L > l) L = l;
    4098     5948716 :   b = cgetg(L, t_VECSMALL); b[1] = a[1];
    4099    59790348 :   for (i=2; i<L; i++) b[i] = a[i];
    4100     5946910 :   return Flx_renormalize(b,L);
    4101             : }
    4102             : 
    4103             : GEN
    4104     5168832 : Flxn_mul_pre(GEN a, GEN b, long n, ulong p, ulong pi)
    4105     5168832 : { return Flxn_red(Flx_mul_pre(a, b, p, pi), n); }
    4106             : GEN
    4107       75840 : Flxn_mul(GEN a, GEN b, long n, ulong p)
    4108       75840 : { return Flxn_mul_pre(a, b, n, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    4109             : 
    4110             : GEN
    4111           0 : Flxn_sqr_pre(GEN a, long n, ulong p, ulong pi)
    4112           0 : { return Flxn_red(Flx_sqr_pre(a, p, pi), n); }
    4113             : GEN
    4114           0 : Flxn_sqr(GEN a, long n, ulong p)
    4115           0 : { return Flxn_sqr_pre(a, n, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    4116             : 
    4117             : /* (f*g) \/ x^n */
    4118             : static GEN
    4119      939050 : Flx_mulhigh_i(GEN f, GEN g, long n, ulong p, ulong pi)
    4120      939050 : { return Flx_shift(Flx_mul_pre(f, g, p, pi),-n); }
    4121             : 
    4122             : static GEN
    4123      517109 : Flxn_mulhigh(GEN f, GEN g, long n2, long n, ulong p, ulong pi)
    4124             : {
    4125      517109 :   GEN F = Flx_blocks(f, n2, 2), fl = gel(F,1), fh = gel(F,2);
    4126      516942 :   return Flx_add(Flx_mulhigh_i(fl, g, n2, p, pi),
    4127             :                  Flxn_mul_pre(fh, g, n - n2, p, pi), p);
    4128             : }
    4129             : 
    4130             : /* g==NULL -> assume g==1 */
    4131             : GEN
    4132       55210 : Flxn_div_pre(GEN g, GEN f, long e, ulong p, ulong pi)
    4133             : {
    4134       55210 :   pari_sp av = avma, av2;
    4135             :   ulong mask;
    4136             :   GEN W;
    4137       55210 :   long n = 1;
    4138       55210 :   if (lg(f) <= 2) pari_err_INV("Flxn_inv",f);
    4139       55210 :   W = Fl_to_Flx(Fl_inv(uel(f,2),p), f[1]);
    4140       55214 :   mask = quadratic_prec_mask(e);
    4141       55214 :   av2 = avma;
    4142      259172 :   for (;mask>1;)
    4143             :   {
    4144             :     GEN u, fr;
    4145      203950 :     long n2 = n;
    4146      203950 :     n<<=1; if (mask & 1) n--;
    4147      203950 :     mask >>= 1;
    4148      203950 :     fr = Flxn_red(f, n);
    4149      203889 :     if (mask>1 || !g)
    4150             :     {
    4151      149747 :       u = Flxn_mul_pre(W, Flxn_mulhigh(fr, W, n2, n, p, pi), n-n2, p, pi);
    4152      149928 :       W = Flx_sub(W, Flx_shift(u, n2), p);
    4153             :     } else
    4154             :     {
    4155       54142 :       GEN y = Flxn_mul_pre(g, W, n, p, pi), yt =  Flxn_red(y, n-n2);
    4156       54138 :       u = Flxn_mul_pre(yt, Flxn_mulhigh(fr,  W, n2, n, p, pi), n-n2, p, pi);
    4157       54146 :       W = Flx_sub(y, Flx_shift(u, n2), p);
    4158             :     }
    4159      203953 :     if (gc_needed(av2,2))
    4160             :     {
    4161           0 :       if(DEBUGMEM>1) pari_warn(warnmem,"Flxn_div, e = %ld", n);
    4162           0 :       W = gc_upto(av2, W);
    4163             :     }
    4164             :   }
    4165       55222 :   return gc_upto(av, W);
    4166             : }
    4167             : GEN
    4168       55195 : Flxn_div(GEN g, GEN f, long e, ulong p)
    4169       55195 : { return Flxn_div_pre(g, f, e, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    4170             : 
    4171             : GEN
    4172        1037 : Flxn_inv(GEN f, long e, ulong p)
    4173        1037 : { return Flxn_div(NULL, f, e, p); }
    4174             : 
    4175             : GEN
    4176      109399 : Flxn_expint(GEN h, long e, ulong p)
    4177             : {
    4178      109399 :   pari_sp av = avma, av2;
    4179      109399 :   long v = h[1], n=1;
    4180      109399 :   GEN f = pol1_Flx(v), g = pol1_Flx(v);
    4181      109377 :   ulong mask = quadratic_prec_mask(e), pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    4182      109379 :   av2 = avma;
    4183      422847 :   for (;mask>1;)
    4184             :   {
    4185             :     GEN u, w;
    4186      422809 :     long n2 = n;
    4187      422809 :     n<<=1; if (mask & 1) n--;
    4188      422809 :     mask >>= 1;
    4189      422809 :     u = Flxn_mul_pre(g, Flx_mulhigh_i(f, Flxn_red(h, n2-1), n2-1, p,pi), n-n2, p,pi);
    4190      422757 :     u = Flx_add(u, Flx_shift(Flxn_red(h, n-1), 1-n2), p);
    4191      422788 :     w = Flxn_mul_pre(f, Flx_integXn(u, n2-1, p), n-n2, p, pi);
    4192      422759 :     f = Flx_add(f, Flx_shift(w, n2), p);
    4193      422853 :     if (mask<=1) break;
    4194      313458 :     u = Flxn_mul_pre(g, Flxn_mulhigh(f, g, n2, n, p, pi), n-n2, p, pi);
    4195      313444 :     g = Flx_sub(g, Flx_shift(u, n2), p);
    4196      313468 :     if (gc_needed(av2,2))
    4197             :     {
    4198           0 :       if (DEBUGMEM>1) pari_warn(warnmem,"Flxn_exp, e = %ld", n);
    4199           0 :       (void)gc_all(av2, 2, &f, &g);
    4200             :     }
    4201             :   }
    4202      109433 :   return gc_upto(av, f);
    4203             : }
    4204             : 
    4205             : GEN
    4206           0 : Flxn_exp(GEN h, long e, ulong p)
    4207             : {
    4208           0 :   if (degpol(h)<1 || uel(h,2)!=0)
    4209           0 :     pari_err_DOMAIN("Flxn_exp","valuation", "<", gen_1, h);
    4210           0 :   return Flxn_expint(Flx_deriv(h, p), e, p);
    4211             : }
    4212             : 
    4213             : INLINE GEN
    4214      217401 : Flxn_recip(GEN x, long n)
    4215             : {
    4216      217401 :   GEN z=Flx_recipspec(x+2,lgpol(x),n);
    4217      217326 :   z[1]=x[1];
    4218      217326 :   return z;
    4219             : }
    4220             : 
    4221             : GEN
    4222       54101 : Flx_Newton(GEN P, long n, ulong p)
    4223             : {
    4224       54101 :   pari_sp av = avma;
    4225       54101 :   long d = degpol(P);
    4226       54096 :   GEN dP = Flxn_recip(Flx_deriv(P, p), d);
    4227       54068 :   GEN Q = Flxn_div(dP, Flxn_recip(P, d+1), n, p);
    4228       54068 :   return gc_leaf(av, Q);
    4229             : }
    4230             : 
    4231             : GEN
    4232      109403 : Flx_fromNewton(GEN P, ulong p)
    4233             : {
    4234      109403 :   pari_sp av = avma;
    4235      109403 :   ulong n = Flx_constant(P)+1;
    4236      109402 :   GEN z = Flx_neg(Flx_shift(P, -1), p);
    4237      109399 :   GEN Q = Flxn_recip(Flxn_expint(z, n, p), n);
    4238      109394 :   return gc_leaf(av, Q);
    4239             : }
    4240             : 
    4241             : static void
    4242       12514 : init_invlaplace(long d, ulong p, GEN *pt_P, GEN *pt_V)
    4243             : {
    4244             :   long i;
    4245             :   ulong e;
    4246       12514 :   GEN P = cgetg(d+1, t_VECSMALL);
    4247       12514 :   GEN V = cgetg(d+1, t_VECSMALL);
    4248     1396581 :   for (i=1, e=1; i<=d; i++, e++)
    4249             :   {
    4250     1384067 :     if (e==p)
    4251             :     {
    4252      459153 :       e = 0;
    4253      459153 :       V[i] = u_lvalrem(i, p, &uel(P,i));
    4254             :     } else
    4255             :     {
    4256      924914 :       V[i] = 0; uel(P,i) = i;
    4257             :     }
    4258             :   }
    4259       12514 :   *pt_P = P; *pt_V = V;
    4260       12514 : }
    4261             : 
    4262             : /* return p^val * FpX_invLaplace(1+x+...x^(n-1), q), with q a power of p and
    4263             :  * val large enough to compensate for the power of p in the factorials */
    4264             : 
    4265             : static GEN
    4266         497 : ZpX_invLaplace_init(long n, GEN q, ulong p, long v, long sv)
    4267             : {
    4268         497 :   pari_sp av = avma;
    4269         497 :   long i, d = n-1, w;
    4270             :   GEN y, W, E, t;
    4271         497 :   init_invlaplace(d, p, &E, &W);
    4272         497 :   t = Fp_inv(FpV_prod(Flv_to_ZV(E), q), q);
    4273         497 :   w = zv_sum(W);
    4274         497 :   if (v > w) t = Fp_mul(t, powuu(p, v-w), q);
    4275         497 :   y = cgetg(d+3,t_POL);
    4276         497 :   y[1] = evalsigne(1) | sv;
    4277       28882 :   for (i=d; i>=1; i--)
    4278             :   {
    4279       28385 :     gel(y,i+2) = t;
    4280       28385 :     t = Fp_mulu(t, uel(E,i), q);
    4281       28385 :     if (uel(W,i)) t = Fp_mul(t, powuu(p, uel(W,i)), q);
    4282             :   }
    4283         497 :   gel(y,2) = t;
    4284         497 :   return gc_GEN(av, ZX_renormalize(y, d+3));
    4285             : }
    4286             : 
    4287             : GEN
    4288       27551 : Flx_composedsum(GEN P, GEN Q, ulong p)
    4289             : {
    4290       27551 :   pari_sp av = avma;
    4291       27551 :   long n = 1 + degpol(P)*degpol(Q);
    4292       27546 :   ulong lead = Fl_mul(Fl_powu(Flx_lead(P), degpol(Q), p),
    4293       27547 :                       Fl_powu(Flx_lead(Q), degpol(P), p), p);
    4294             :   GEN R;
    4295       27548 :   if (p >= (ulong)n)
    4296             :   {
    4297       27051 :     GEN Pl = Flx_invLaplace(Flx_Newton(P,n,p), p);
    4298       27057 :     GEN Ql = Flx_invLaplace(Flx_Newton(Q,n,p), p);
    4299       27051 :     GEN L  = Flx_Laplace(Flxn_mul(Pl, Ql, n, p), p);
    4300       27059 :     R = Flx_fromNewton(L, p);
    4301             :   } else
    4302             :   {
    4303         497 :     long v = factorial_lval(n-1, p);
    4304         497 :     long w = 1 + ulogint(n-1, p);
    4305         497 :     GEN pv = powuu(p, v);
    4306         497 :     GEN qf = powuu(p, w), q = mulii(pv, qf), q2 = mulii(q, pv);
    4307         497 :     GEN iL = ZpX_invLaplace_init(n, q, p, v, P[1]);
    4308         497 :     GEN Pl = FpX_convol(iL, FpX_Newton(Flx_to_ZX(P), n, qf), q);
    4309         497 :     GEN Ql = FpX_convol(iL, FpX_Newton(Flx_to_ZX(Q), n, qf), q);
    4310         497 :     GEN Ln = ZX_Z_divexact(FpXn_mul(Pl, Ql, n, q2), pv);
    4311         497 :     GEN L  = ZX_Z_divexact(FpX_Laplace(Ln, q), pv);
    4312         497 :     R = ZX_to_Flx(FpX_fromNewton(L, qf), p);
    4313             :   }
    4314       27549 :   return gc_leaf(av, Flx_Fl_mul(R, lead, p));
    4315             : }
    4316             : 
    4317             : static GEN
    4318        3882 : _Flx_composedsum(void *E, GEN a, GEN b)
    4319        3882 : { return Flx_composedsum(a, b, (ulong)E); }
    4320             : 
    4321             : GEN
    4322       28962 : FlxV_composedsum(GEN V, ulong p)
    4323       28962 : { return gen_product(V, (void *)p, &_Flx_composedsum); }
    4324             : 
    4325             : GEN
    4326           0 : Flx_composedprod(GEN P, GEN Q, ulong p)
    4327             : {
    4328           0 :   pari_sp av = avma;
    4329           0 :   long n = 1+ degpol(P)*degpol(Q);
    4330           0 :   ulong lead = Fl_mul(Fl_powu(Flx_lead(P), degpol(Q), p),
    4331           0 :                       Fl_powu(Flx_lead(Q), degpol(P), p), p);
    4332             :   GEN R;
    4333           0 :   if (p >= (ulong)n)
    4334             :   {
    4335           0 :     GEN L = Flx_convol(Flx_Newton(P,n,p), Flx_Newton(Q,n,p), p);
    4336           0 :     R = Flx_fromNewton(L, p);
    4337             :   } else
    4338             :   {
    4339           0 :     long w = 1 + ulogint(n, p);
    4340           0 :     GEN qf = powuu(p, w);
    4341           0 :     GEN Pl = FpX_convol(FpX_Newton(Flx_to_ZX(P), n, qf), FpX_Newton(Flx_to_ZX(Q), n, qf), qf);
    4342           0 :     R = ZX_to_Flx(FpX_fromNewton(Pl, qf), p);
    4343             :   }
    4344           0 :   return gc_leaf(av, Flx_Fl_mul(R, lead, p));
    4345             : 
    4346             : }
    4347             : 
    4348             : /* (x+1)^n mod p; assume 2 <= n < 2p prime */
    4349             : static GEN
    4350           0 : Fl_Xp1_powu(ulong n, ulong p, long v)
    4351             : {
    4352           0 :   ulong k, d = (n + 1) >> 1;
    4353           0 :   GEN C, V = identity_zv(d);
    4354             : 
    4355           0 :   Flv_inv_inplace(V, p); /* could restrict to odd integers in [3,d] */
    4356           0 :   C = cgetg(n+3, t_VECSMALL);
    4357           0 :   C[1] = v;
    4358           0 :   uel(C,2) = 1UL;
    4359           0 :   uel(C,3) = n%p;
    4360           0 :   uel(C,4) = Fl_mul(odd(n)? n: n-1, n >> 1, p);
    4361             :     /* binom(n,k) = binom(n,k-1) * (n-k+1) / k */
    4362           0 :   if (SMALL_ULONG(p))
    4363           0 :     for (k = 3; k <= d; k++)
    4364           0 :       uel(C,k+2) = Fl_mul(Fl_mul(n-k+1, uel(C,k+1), p), uel(V,k), p);
    4365             :   else
    4366             :   {
    4367           0 :     ulong pi  = get_Fl_red(p);
    4368           0 :     for (k = 3; k <= d; k++)
    4369           0 :       uel(C,k+2) = Fl_mul_pre(Fl_mul(n-k+1, uel(C,k+1), p), uel(V,k), p, pi);
    4370             :   }
    4371           0 :   for (   ; k <= n; k++) uel(C,2+k) = uel(C,2+n-k);
    4372           0 :   return C; /* normalized */
    4373             : }
    4374             : 
    4375             : /* p arbitrary */
    4376             : GEN
    4377       29202 : Flx_translate1_basecase(GEN P, ulong p)
    4378             : {
    4379       29202 :   GEN R = Flx_copy(P);
    4380       29202 :   long i, k, n = degpol(P);
    4381      659170 :   for (i = 1; i <= n; i++)
    4382    14859060 :     for (k = n-i; k < n; k++) uel(R,k+2) = Fl_add(uel(R,k+2), uel(R,k+3), p);
    4383       29202 :   return R;
    4384             : }
    4385             : 
    4386             : static int
    4387       42367 : translate_basecase(long n, ulong p)
    4388             : {
    4389             : #ifdef LONG_IS_64BIT
    4390       36930 :   if (p <= 19) return n < 40;
    4391       30522 :   if (p < 1UL<<30) return n < 58;
    4392           0 :   if (p < 1UL<<59) return n < 100;
    4393           0 :   if (p < 1UL<<62) return n < 120;
    4394           0 :   if (p < 1UL<<63) return n < 240;
    4395           0 :   return n < 250;
    4396             : #else
    4397        5437 :   if (p <= 13) return n < 18;
    4398        4250 :   if (p <= 17) return n < 22;
    4399        4186 :   if (p <= 29) return n < 39;
    4400        3976 :   if (p <= 67) return n < 69;
    4401        3703 :   if (p < 1UL<< 15) return n < 80;
    4402        2047 :   if (p < 1UL<< 16) return n < 100;
    4403           0 :   if (p < 1UL<< 28) return n < 300;
    4404           0 :   return n < 650;
    4405             : #endif
    4406             : }
    4407             : /* assume p prime */
    4408             : GEN
    4409       17108 : Flx_translate1(GEN P, ulong p)
    4410             : {
    4411       17108 :   long d, n = degpol(P);
    4412             :   GEN R, Q, S;
    4413       17108 :   if (translate_basecase(n, p)) return Flx_translate1_basecase(P, p);
    4414             :   /* n > 0 */
    4415        1148 :   d = n >> 1;
    4416        1148 :   if ((ulong)n < p)
    4417             :   {
    4418           0 :     R = Flx_translate1(Flxn_red(P, d), p);
    4419           0 :     Q = Flx_translate1(Flx_shift(P, -d), p);
    4420           0 :     S = Fl_Xp1_powu(d, p, P[1]);
    4421           0 :     return Flx_add(Flx_mul(Q, S, p), R, p);
    4422             :   }
    4423             :   else
    4424             :   {
    4425             :     ulong q;
    4426        1148 :     if ((ulong)d > p) (void)ulogintall(d, p, &q); else q = p;
    4427        1148 :     R = Flx_translate1(Flxn_red(P, q), p);
    4428        1148 :     Q = Flx_translate1(Flx_shift(P, -q), p);
    4429        1148 :     S = Flx_add(Flx_shift(Q, q), Q, p);
    4430        1148 :     return Flx_add(S, R, p); /* P(x+1) = Q(x+1) (x^q+1) + R(x+1) */
    4431             :   }
    4432             : }
    4433             : 
    4434             : GEN
    4435           0 : Flx_Fl_translate(GEN P, ulong c, ulong p)
    4436             : {
    4437           0 :   pari_sp av = avma;
    4438             :   GEN Q;
    4439           0 :   if (c==0) return Flx_copy(P);
    4440           0 :   if (c==1) return Flx_translate1(P, p);
    4441           0 :   Q = Flx_unscale(Flx_translate1(Flx_unscale(P, c, p), p), Fl_inv(c, p), p);
    4442           0 :   return gc_leaf(av, Q);
    4443             : }
    4444             : 
    4445             : static GEN
    4446       12017 : zl_Xp1_powu(ulong n, ulong p, ulong q, long e, long vs)
    4447             : {
    4448       12017 :   ulong k, d = n >> 1, c, v = 0;
    4449       12017 :   GEN C, V, W, U = upowers(p, e-1);
    4450       12017 :   init_invlaplace(d, p, &V, &W);
    4451       12017 :   Flv_inv_inplace(V, q);
    4452       12017 :   C = cgetg(n+3, t_VECSMALL);
    4453       12017 :   C[1] = vs;
    4454       12017 :   uel(C,2) = 1UL;
    4455       12017 :   uel(C,3) = n%q;
    4456       12017 :   v = u_lvalrem(n, p, &c);
    4457     1355682 :   for (k = 2; k <= d; k++)
    4458             :   {
    4459             :     ulong w;
    4460     1343665 :     v += u_lvalrem(n-k+1, p, &w) - W[k];
    4461     1343665 :     c = Fl_mul(Fl_mul(w%q, c, q), uel(V,k), q);
    4462     1343665 :     uel(C,2+k) = v >= (ulong)e ? 0: v==0 ? c : Fl_mul(c, uel(U, v+1), q);
    4463             :   }
    4464     1374521 :   for (   ; k <= n; k++) uel(C,2+k) = uel(C,2+n-k);
    4465       12017 :   return C; /* normalized */
    4466             : }
    4467             : 
    4468             : GEN
    4469       25259 : zlx_translate1(GEN P, ulong p, long e)
    4470             : {
    4471       25259 :   ulong d, q = upowuu(p,e), n = degpol(P);
    4472             :   GEN R, Q, S;
    4473       25259 :   if (translate_basecase(n, q)) return Flx_translate1_basecase(P, q);
    4474             :   /* n > 0 */
    4475       12017 :   d = n >> 1;
    4476       12017 :   R = zlx_translate1(Flxn_red(P, d), p, e);
    4477       12017 :   Q = zlx_translate1(Flx_shift(P, -d), p, e);
    4478       12017 :   S = zl_Xp1_powu(d, p, q, e, P[1]);
    4479       12017 :   return Flx_add(Flx_mul(Q, S, q), R, q);
    4480             : }
    4481             : 
    4482             : /***********************************************************************/
    4483             : /**                               Fl2                                 **/
    4484             : /***********************************************************************/
    4485             : /* Fl2 objects are Flv of length 2 [a,b] representing a+bsqrt(D) for
    4486             :  * a nonsquare D. */
    4487             : 
    4488             : INLINE GEN
    4489     7569840 : mkF2(ulong a, ulong b) { return mkvecsmall2(a,b); }
    4490             : 
    4491             : /* allow pi = 0 */
    4492             : GEN
    4493     2017077 : Fl2_mul_pre(GEN x, GEN y, ulong D, ulong p, ulong pi)
    4494             : {
    4495             :   ulong xaya, xbyb, Db2, mid, z1, z2;
    4496     2017077 :   ulong x1 = x[1], x2 = x[2], y1 = y[1], y2 = y[2];
    4497     2017077 :   if (pi)
    4498             :   {
    4499     2017104 :     xaya = Fl_mul_pre(x1,y1,p,pi);
    4500     2017727 :     if (x2==0 && y2==0) return mkF2(xaya,0);
    4501     1941469 :     if (x2==0) return mkF2(xaya,Fl_mul_pre(x1,y2,p,pi));
    4502     1915719 :     if (y2==0) return mkF2(xaya,Fl_mul_pre(x2,y1,p,pi));
    4503     1915465 :     xbyb = Fl_mul_pre(x2,y2,p,pi);
    4504     1915284 :     mid = Fl_mul_pre(Fl_add(x1,x2,p), Fl_add(y1,y2,p),p,pi);
    4505     1915447 :     Db2 = Fl_mul_pre(D, xbyb, p,pi);
    4506             :   }
    4507           0 :   else if (p & HIGHMASK)
    4508             :   {
    4509           0 :     xaya = Fl_mul(x1,y1,p);
    4510           0 :     if (x2==0 && y2==0) return mkF2(xaya,0);
    4511           0 :     if (x2==0) return mkF2(xaya,Fl_mul(x1,y2,p));
    4512           0 :     if (y2==0) return mkF2(xaya,Fl_mul(x2,y1,p));
    4513           0 :     xbyb = Fl_mul(x2,y2,p);
    4514           0 :     mid = Fl_mul(Fl_add(x1,x2,p), Fl_add(y1,y2,p),p);
    4515           0 :     Db2 = Fl_mul(D, xbyb, p);
    4516             :   }
    4517             :   else
    4518             :   {
    4519           0 :     xaya = (x1 * y1) % p;
    4520           0 :     if (x2==0 && y2==0) return mkF2(xaya,0);
    4521           0 :     if (x2==0) return mkF2(xaya, (x1 * y2) % p);
    4522           0 :     if (y2==0) return mkF2(xaya, (x2 * y1) % p);
    4523           0 :     xbyb = (x2 * y2) % p;
    4524           0 :     mid = (Fl_add(x1,x2,p) * Fl_add(y1,y2,p)) % p;
    4525           0 :     Db2 = (D * xbyb) % p;
    4526             :   }
    4527     1915372 :   z1 = Fl_add(xaya,Db2,p);
    4528     1915335 :   z2 = Fl_sub(mid,Fl_add(xaya,xbyb,p),p);
    4529     1915214 :   return mkF2(z1,z2);
    4530             : }
    4531             : 
    4532             : /* allow pi = 0 */
    4533             : GEN
    4534     5080633 : Fl2_sqr_pre(GEN x, ulong D, ulong p, ulong pi)
    4535             : {
    4536     5080633 :   ulong a = x[1], b = x[2];
    4537             :   ulong a2, Db2, ab;
    4538     5080633 :   if (pi)
    4539             :   {
    4540     5080675 :     a2 = Fl_sqr_pre(a,p,pi);
    4541     5083813 :     if (b==0) return mkF2(a2,0);
    4542     4847020 :     Db2= Fl_mul_pre(D, Fl_sqr_pre(b,p,pi), p,pi);
    4543     4847116 :     ab = Fl_mul_pre(a,b,p,pi);
    4544             :   }
    4545           0 :   else if (p & HIGHMASK)
    4546             :   {
    4547           0 :     a2 = Fl_sqr(a,p);
    4548           0 :     if (b==0) return mkF2(a2,0);
    4549           0 :     Db2= Fl_mul(D, Fl_sqr(b,p), p);
    4550           0 :     ab = Fl_mul(a,b,p);
    4551             :   }
    4552             :   else
    4553             :   {
    4554           0 :     a2 = (a * a) % p;
    4555           0 :     if (b==0) return mkF2(a2,0);
    4556           0 :     Db2= (D * ((b * b) % p)) % p;
    4557           0 :     ab = (a * b) % p;
    4558             :   }
    4559     4847336 :   return mkF2(Fl_add(a2,Db2,p), Fl_double(ab,p));
    4560             : }
    4561             : 
    4562             : /* allow pi = 0 */
    4563             : ulong
    4564      128225 : Fl2_norm_pre(GEN x, ulong D, ulong p, ulong pi)
    4565             : {
    4566      128225 :   ulong a = x[1], b = x[2], a2;
    4567      128225 :   if (pi)
    4568             :   {
    4569       76346 :     a2 = Fl_sqr_pre(a,p,pi);
    4570       76346 :     return b? Fl_sub(a2, Fl_mul_pre(D, Fl_sqr_pre(b, p,pi), p,pi), p): a2;
    4571             :   }
    4572       51879 :   else if (p & HIGHMASK)
    4573             :   {
    4574           0 :     a2 = Fl_sqr(a,p);
    4575           0 :     return b? Fl_sub(a2, Fl_mul(D, Fl_sqr(b, p), p), p): a2;
    4576             :   }
    4577             :   else
    4578             :   {
    4579       51879 :     a2 = (a * a) % p;
    4580       51879 :     return b? Fl_sub(a2, (D * ((b * b) % p)) % p, p): a2;
    4581             :   }
    4582             : }
    4583             : 
    4584             : /* allow pi = 0 */
    4585             : GEN
    4586      202230 : Fl2_inv_pre(GEN x, ulong D, ulong p, ulong pi)
    4587             : {
    4588      202230 :   ulong a = x[1], b = x[2], n, ni;
    4589      202230 :   if (b == 0) return mkF2(Fl_inv(a,p), 0);
    4590      168236 :   b = Fl_neg(b, p);
    4591      168236 :   if (pi)
    4592             :   {
    4593      168236 :     n = Fl_sub(Fl_sqr_pre(a, p,pi),
    4594             :                Fl_mul_pre(D, Fl_sqr_pre(b, p,pi), p,pi), p);
    4595      168237 :     ni = Fl_inv(n,p);
    4596      168238 :     return mkF2(Fl_mul_pre(a, ni, p,pi), Fl_mul_pre(b, ni, p,pi));
    4597             :   }
    4598           0 :   else if (p & HIGHMASK)
    4599             :   {
    4600           0 :     n = Fl_sub(Fl_sqr(a, p), Fl_mul(D, Fl_sqr(b, p), p), p);
    4601           0 :     ni = Fl_inv(n,p);
    4602           0 :     return mkF2(Fl_mul(a, ni, p), Fl_mul(b, ni, p));
    4603             :   }
    4604             :   else
    4605             :   {
    4606           0 :     n = Fl_sub((a * a) % p, (D * ((b * b) % p)) % p, p);
    4607           0 :     ni = Fl_inv(n,p);
    4608           0 :     return mkF2((a * ni) % p, (b * ni) % p);
    4609             :   }
    4610             : }
    4611             : 
    4612             : int
    4613      463260 : Fl2_equal1(GEN x) { return x[1]==1 && x[2]==0; }
    4614             : 
    4615             : struct _Fl2 {
    4616             :   ulong p, pi, D;
    4617             : };
    4618             : 
    4619             : static GEN
    4620     5080615 : _Fl2_sqr(void *data, GEN x)
    4621             : {
    4622     5080615 :   struct _Fl2 *D = (struct _Fl2*)data;
    4623     5080615 :   return Fl2_sqr_pre(x, D->D, D->p, D->pi);
    4624             : }
    4625             : static GEN
    4626     1988049 : _Fl2_mul(void *data, GEN x, GEN y)
    4627             : {
    4628     1988049 :   struct _Fl2 *D = (struct _Fl2*)data;
    4629     1988049 :   return Fl2_mul_pre(x,y, D->D, D->p, D->pi);
    4630             : }
    4631             : 
    4632             : /* n-Power of x in Z/pZ[X]/(T), as t_VECSMALL; allow pi = 0 */
    4633             : GEN
    4634      691042 : Fl2_pow_pre(GEN x, GEN n, ulong D, ulong p, ulong pi)
    4635             : {
    4636      691042 :   pari_sp av = avma;
    4637             :   struct _Fl2 d;
    4638             :   GEN y;
    4639      691042 :   long s = signe(n);
    4640      691042 :   if (!s) return mkF2(1,0);
    4641      612545 :   if (s < 0)
    4642      202230 :     x = Fl2_inv_pre(x,D,p,pi);
    4643      612544 :   if (is_pm1(n)) return s < 0 ? x : zv_copy(x);
    4644      452186 :   d.p = p; d.pi = pi; d.D=D;
    4645      452186 :   y = gen_pow_i(x, n, (void*)&d, &_Fl2_sqr, &_Fl2_mul);
    4646      452228 :   return gc_leaf(av, y);
    4647             : }
    4648             : 
    4649             : static GEN
    4650      691026 : _Fl2_pow(void *data, GEN x, GEN n)
    4651             : {
    4652      691026 :   struct _Fl2 *D = (struct _Fl2*)data;
    4653      691026 :   return Fl2_pow_pre(x, n, D->D, D->p, D->pi);
    4654             : }
    4655             : 
    4656             : static GEN
    4657      118452 : _Fl2_rand(void *data)
    4658             : {
    4659      118452 :   struct _Fl2 *D = (struct _Fl2*)data;
    4660      118452 :   ulong a = random_Fl(D->p), b=random_Fl(D->p-1)+1;
    4661      118454 :   return mkF2(a,b);
    4662             : }
    4663             : 
    4664             : GEN
    4665       65765 : Fl2_sqrt_pre(GEN z, ulong D, ulong p, ulong pi)
    4666             : {
    4667       65765 :   ulong a = uel(z,1), b = uel(z,2), as2, u, v, s;
    4668       65765 :   ulong y = Fl_2gener_pre_i(D, p, pi);
    4669       65765 :   if (b == 0)
    4670       18930 :     return krouu(a, p)==1 ? mkF2(Fl_sqrt_pre_i(a, y, p, pi), 0)
    4671       18930 :                           : mkF2(0, Fl_sqrt_pre_i(Fl_div(a, D, p), y, p, pi));
    4672       52709 :   s = Fl_sqrt_pre_i(Fl2_norm_pre(z, D, p, pi), y, p, pi);
    4673       52709 :   if (s==~0UL) return NULL;
    4674       49535 :   as2 = Fl_halve(Fl_add(a, s, p), p);
    4675       49535 :   if (krouu(as2, p)==-1) as2 = Fl_sub(as2, s, p);
    4676       49535 :   u = Fl_sqrt_pre_i(as2, y, p, pi);
    4677       49535 :   v = Fl_div(b, Fl_double(u, p), p);
    4678       49535 :   return mkF2(u,v);
    4679             : }
    4680             : 
    4681             : static const struct bb_group Fl2_star={_Fl2_mul, _Fl2_pow, _Fl2_rand,
    4682             :        hash_GEN, zv_equal, Fl2_equal1, NULL};
    4683             : 
    4684             : /* allow pi = 0 */
    4685             : GEN
    4686       78496 : Fl2_sqrtn_pre(GEN a, GEN n, ulong D, ulong p, ulong pi, GEN *zeta)
    4687             : {
    4688             :   struct _Fl2 E;
    4689             :   GEN o;
    4690       78496 :   if (a[1]==0 && a[2]==0)
    4691             :   {
    4692           0 :     if (signe(n) < 0) pari_err_INV("Flxq_sqrtn",a);
    4693           0 :     if (zeta) *zeta=mkF2(1,0);
    4694           0 :     return zv_copy(a);
    4695             :   }
    4696       78496 :   E.p=p; E.pi = pi; E.D = D;
    4697       78496 :   o = subiu(powuu(p,2), 1);
    4698       78494 :   return gen_Shanks_sqrtn(a,n,o,zeta,(void*)&E,&Fl2_star);
    4699             : }
    4700             : 
    4701             : /* allow pi = 0 */
    4702             : GEN
    4703       10773 : Flx_Fl2_eval_pre(GEN x, GEN y, ulong D, ulong p, ulong pi)
    4704             : {
    4705             :   GEN p1;
    4706       10773 :   long i = lg(x)-1;
    4707       10773 :   if (i <= 2)
    4708        2177 :     return mkF2(i == 2? x[2]: 0, 0);
    4709        8596 :   p1 = mkF2(x[i], 0);
    4710       37625 :   for (i--; i>=2; i--)
    4711             :   {
    4712       29029 :     p1 = Fl2_mul_pre(p1, y, D, p, pi);
    4713       29029 :     uel(p1,1) = Fl_add(uel(p1,1), uel(x,i), p);
    4714             :   }
    4715        8596 :   return p1;
    4716             : }
    4717             : 
    4718             : /***********************************************************************/
    4719             : /**                               FlxV                                **/
    4720             : /***********************************************************************/
    4721             : /* FlxV are t_VEC with Flx coefficients. */
    4722             : 
    4723             : GEN
    4724       34482 : FlxV_Flc_mul(GEN V, GEN W, ulong p)
    4725             : {
    4726       34482 :   pari_sp ltop=avma;
    4727             :   long i;
    4728       34482 :   GEN z = Flx_Fl_mul(gel(V,1),W[1],p);
    4729      257068 :   for(i=2;i<lg(V);i++)
    4730      222586 :     z=Flx_add(z,Flx_Fl_mul(gel(V,i),W[i],p),p);
    4731       34482 :   return gc_leaf(ltop,z);
    4732             : }
    4733             : 
    4734             : GEN
    4735           0 : ZXV_to_FlxV(GEN x, ulong p)
    4736           0 : { pari_APPLY_type(t_VEC, ZX_to_Flx(gel(x,i), p)) }
    4737             : 
    4738             : GEN
    4739     3813841 : ZXT_to_FlxT(GEN x, ulong p)
    4740             : {
    4741     3813841 :   if (typ(x) == t_POL)
    4742     3755058 :     return ZX_to_Flx(x, p);
    4743             :   else
    4744      192959 :     pari_APPLY_type(t_VEC, ZXT_to_FlxT(gel(x,i), p))
    4745             : }
    4746             : 
    4747             : GEN
    4748      171879 : FlxV_to_Flm(GEN x, long n)
    4749      927553 : { pari_APPLY_type(t_MAT, Flx_to_Flv(gel(x,i), n)) }
    4750             : 
    4751             : GEN
    4752           0 : FlxV_red(GEN x, ulong p)
    4753           0 : { pari_APPLY_type(t_VEC, Flx_red(gel(x,i), p)) }
    4754             : 
    4755             : GEN
    4756      295153 : FlxT_red(GEN x, ulong p)
    4757             : {
    4758      295153 :   if (typ(x) == t_VECSMALL)
    4759      198588 :     return Flx_red(x, p);
    4760             :   else
    4761      323798 :     pari_APPLY_type(t_VEC, FlxT_red(gel(x,i), p))
    4762             : }
    4763             : 
    4764             : GEN
    4765      113589 : FlxqV_dotproduct_pre(GEN x, GEN y, GEN T, ulong p, ulong pi)
    4766             : {
    4767      113589 :   long i, lx = lg(x);
    4768             :   pari_sp av;
    4769             :   GEN c;
    4770      113589 :   if (lx == 1) return pol0_Flx(get_Flx_var(T));
    4771      113589 :   av = avma; c = Flx_mul_pre(gel(x,1),gel(y,1), p, pi);
    4772      464499 :   for (i=2; i<lx; i++) c = Flx_add(c, Flx_mul_pre(gel(x,i),gel(y,i), p, pi), p);
    4773      113589 :   return gc_leaf(av, Flx_rem_pre(c,T,p,pi));
    4774             : }
    4775             : GEN
    4776           0 : FlxqV_dotproduct(GEN x, GEN y, GEN T, ulong p)
    4777           0 : { return FlxqV_dotproduct_pre(x, y, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    4778             : 
    4779             : GEN
    4780        1918 : FlxqX_dotproduct(GEN x, GEN y, GEN T, ulong p)
    4781             : {
    4782        1918 :   long i, l = minss(lg(x), lg(y));
    4783             :   ulong pi;
    4784             :   pari_sp av;
    4785             :   GEN c;
    4786        1918 :   if (l == 2) return pol0_Flx(get_Flx_var(T));
    4787        1905 :   av = avma; pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    4788        1905 :   c = Flx_mul_pre(gel(x,2),gel(y,2), p, pi);
    4789        6202 :   for (i=3; i<l; i++) c = Flx_add(c, Flx_mul_pre(gel(x,i),gel(y,i), p, pi), p);
    4790        1905 :   return gc_leaf(av, Flx_rem_pre(c,T,p,pi));
    4791             : }
    4792             : 
    4793             : /* allow pi = 0 */
    4794             : GEN
    4795      325153 : FlxC_eval_powers_pre(GEN z, GEN x, ulong p, ulong pi)
    4796             : {
    4797      325153 :   long i, l = lg(z);
    4798      325153 :   GEN y = cgetg(l, t_VECSMALL);
    4799    15066781 :   for (i=1; i<l; i++) uel(y,i) = Flx_eval_powers_pre(gel(z,i), x, p, pi);
    4800      325195 :   return y;
    4801             : }
    4802             : 
    4803             : /***********************************************************************/
    4804             : /**                               FlxM                                **/
    4805             : /***********************************************************************/
    4806             : /* allow pi = 0 */
    4807             : GEN
    4808       22302 : FlxM_eval_powers_pre(GEN z, GEN x, ulong p, ulong pi)
    4809             : {
    4810       22302 :   long i, l = lg(z);
    4811       22302 :   GEN y = cgetg(l, t_MAT);
    4812      347456 :   for (i=1; i<l; i++) gel(y,i) = FlxC_eval_powers_pre(gel(z,i), x, p, pi);
    4813       22302 :   return y;
    4814             : }
    4815             : 
    4816             : GEN
    4817           0 : zero_FlxC(long n, long sv)
    4818             : {
    4819           0 :   GEN x = cgetg(n + 1, t_COL), z = zero_Flx(sv);
    4820             :   long i;
    4821           0 :   for (i = 1; i <= n; i++) gel(x, i) = z;
    4822           0 :   return x;
    4823             : }
    4824             : 
    4825             : GEN
    4826           0 : FlxC_neg(GEN x, ulong p)
    4827           0 : { pari_APPLY_type(t_COL, Flx_neg(gel(x, i), p)) }
    4828             : 
    4829             : GEN
    4830           0 : FlxC_sub(GEN x, GEN y, ulong p)
    4831           0 : { pari_APPLY_type(t_COL, Flx_sub(gel(x, i), gel(y, i), p)) }
    4832             : 
    4833             : GEN
    4834           0 : zero_FlxM(long r, long c, long sv)
    4835             : {
    4836           0 :   GEN x = cgetg(c + 1, t_MAT), z = zero_FlxC(r, sv);
    4837             :   long j;
    4838           0 :   for (j = 1; j <= c; j++) gel(x, j) = z;
    4839           0 :   return x;
    4840             : }
    4841             : 
    4842             : GEN
    4843           0 : zero_FlxM_copy(long r, long c, long sv)
    4844             : {
    4845           0 :   GEN x = cgetg(c + 1, t_MAT);
    4846             :   long j;
    4847           0 :   for (j = 1; j <= c; j++) gel(x, j) = zero_FlxC(r, sv);
    4848           0 :   return x;
    4849             : }
    4850             : 
    4851             : GEN
    4852           0 : FlxM_neg(GEN x, ulong p)
    4853           0 : { pari_APPLY_same(FlxC_neg(gel(x, i), p)) }
    4854             : 
    4855             : GEN
    4856           0 : FlxM_sub(GEN x, GEN y, ulong p)
    4857           0 : { pari_APPLY_same(FlxC_sub(gel(x, i), gel(y,i), p)) }
    4858             : 
    4859             : GEN
    4860           0 : FlxC_Fl_translate(GEN x, ulong c, ulong p)
    4861           0 : { pari_APPLY_type(t_COL, Flx_Fl_translate(gel(x,i), c, p)) }
    4862             : 
    4863             : GEN
    4864           0 : FlxM_Fl_translate(GEN x, ulong c, ulong p)
    4865           0 : { pari_APPLY_same(FlxC_Fl_translate(gel(x,i), c, p)) }
    4866             : 
    4867             : GEN
    4868      234845 : FlxqC_red_pre(GEN x, GEN T, ulong p, ulong pi)
    4869     4060693 : { pari_APPLY_type(t_COL, Flx_rem_pre(gel(x,i), T, p, pi)) }
    4870             : 
    4871             : GEN
    4872       81581 : FlxqM_red_pre(GEN x, GEN T, ulong p, ulong pi)
    4873      316426 : { pari_APPLY_same(FlxqC_red_pre(gel(x,i), T, p, pi)) }
    4874             : 
    4875             : GEN
    4876           0 : FlxqC_Flxq_mul(GEN x, GEN y, GEN T, ulong p)
    4877           0 : { pari_APPLY_type(t_COL, Flxq_mul(gel(x, i), y, T, p)) }
    4878             : 
    4879             : GEN
    4880           0 : FlxqM_Flxq_mul(GEN x, GEN y, GEN T, ulong p)
    4881           0 : { pari_APPLY_same(FlxqC_Flxq_mul(gel(x, i), y, T, p)) }
    4882             : 
    4883             : static GEN
    4884       46835 : FlxM_pack_ZM(GEN M, GEN (*pack)(GEN, long)) {
    4885             :   long i, j, l, lc;
    4886       46835 :   GEN N = cgetg_copy(M, &l), x;
    4887       46835 :   if (l == 1)
    4888           0 :     return N;
    4889       46835 :   lc = lgcols(M);
    4890      205007 :   for (j = 1; j < l; j++) {
    4891      158172 :     gel(N, j) = cgetg(lc, t_COL);
    4892      902833 :     for (i = 1; i < lc; i++) {
    4893      744661 :       x = gcoeff(M, i, j);
    4894      744661 :       gcoeff(N, i, j) = pack(x + 2, lgpol(x));
    4895             :     }
    4896             :   }
    4897       46835 :   return N;
    4898             : }
    4899             : 
    4900             : static GEN
    4901      688104 : kron_pack_Flx_spec_half(GEN x, long l) {
    4902      688104 :   if (l == 0) return gen_0;
    4903      457528 :   return Flx_to_int_halfspec(x, l);
    4904             : }
    4905             : 
    4906             : static GEN
    4907       53168 : kron_pack_Flx_spec(GEN x, long l) {
    4908             :   long i;
    4909             :   GEN w, y;
    4910       53168 :   if (l == 0)
    4911        9964 :     return gen_0;
    4912       43204 :   y = cgetipos(l + 2);
    4913      157864 :   for (i = 0, w = int_LSW(y); i < l; i++, w = int_nextW(w))
    4914      114660 :     *w = x[i];
    4915       43204 :   return y;
    4916             : }
    4917             : 
    4918             : static GEN
    4919        3389 : kron_pack_Flx_spec_2(GEN x, long l) { return Flx_eval2BILspec(x, 2, l); }
    4920             : 
    4921             : static GEN
    4922           0 : kron_pack_Flx_spec_3(GEN x, long l) { return Flx_eval2BILspec(x, 3, l); }
    4923             : 
    4924             : static GEN
    4925       42785 : kron_unpack_Flx(GEN z, ulong p)
    4926             : {
    4927       42785 :   long i, l = lgefint(z);
    4928       42785 :   GEN x = cgetg(l, t_VECSMALL), w;
    4929      201296 :   for (w = int_LSW(z), i = 2; i < l; w = int_nextW(w), i++)
    4930      158511 :     x[i] = ((ulong) *w) % p;
    4931       42785 :   return Flx_renormalize(x, l);
    4932             : }
    4933             : 
    4934             : static GEN
    4935        2930 : kron_unpack_Flx_2(GEN x, ulong p) {
    4936        2930 :   long d = (lgefint(x)-1)/2 - 1;
    4937        2930 :   return Z_mod2BIL_Flx_2(x, d, p);
    4938             : }
    4939             : 
    4940             : static GEN
    4941           0 : kron_unpack_Flx_3(GEN x, ulong p) {
    4942           0 :   long d = lgefint(x)/3 - 1;
    4943           0 :   return Z_mod2BIL_Flx_3(x, d, p);
    4944             : }
    4945             : 
    4946             : static GEN
    4947      116239 : FlxM_pack_ZM_bits(GEN M, long b)
    4948             : {
    4949             :   long i, j, l, lc;
    4950      116239 :   GEN N = cgetg_copy(M, &l), x;
    4951      116239 :   if (l == 1)
    4952           0 :     return N;
    4953      116239 :   lc = lgcols(M);
    4954      479672 :   for (j = 1; j < l; j++) {
    4955      363433 :     gel(N, j) = cgetg(lc, t_COL);
    4956     5955086 :     for (i = 1; i < lc; i++) {
    4957     5591653 :       x = gcoeff(M, i, j);
    4958     5591653 :       gcoeff(N, i, j) = kron_pack_Flx_spec_bits(x + 2, b, lgpol(x));
    4959             :     }
    4960             :   }
    4961      116239 :   return N;
    4962             : }
    4963             : 
    4964             : static GEN
    4965       23421 : ZM_unpack_FlxM(GEN M, ulong p, ulong sv, GEN (*unpack)(GEN, ulong))
    4966             : {
    4967             :   long i, j, l, lc;
    4968       23421 :   GEN N = cgetg_copy(M, &l), x;
    4969       23421 :   if (l == 1)
    4970           0 :     return N;
    4971       23421 :   lc = lgcols(M);
    4972      111236 :   for (j = 1; j < l; j++) {
    4973       87815 :     gel(N, j) = cgetg(lc, t_COL);
    4974      634989 :     for (i = 1; i < lc; i++) {
    4975      547174 :       x = unpack(gcoeff(M, i, j), p);
    4976      547174 :       x[1] = sv;
    4977      547174 :       gcoeff(N, i, j) = x;
    4978             :     }
    4979             :   }
    4980       23421 :   return N;
    4981             : }
    4982             : 
    4983             : static GEN
    4984       58160 : ZM_unpack_FlxM_bits(GEN M, long b, ulong p, ulong pi, long sv)
    4985             : {
    4986             :   long i, j, l, lc;
    4987       58160 :   GEN N = cgetg_copy(M, &l), x;
    4988       58160 :   if (l == 1)
    4989           0 :     return N;
    4990       58160 :   lc = lgcols(M);
    4991       58160 :   if (b < BITS_IN_LONG) {
    4992      195346 :     for (j = 1; j < l; j++) {
    4993      138869 :       gel(N, j) = cgetg(lc, t_COL);
    4994     3250343 :       for (i = 1; i < lc; i++) {
    4995     3111474 :         x = kron_unpack_Flx_bits_narrow(gcoeff(M, i, j), b, p);
    4996     3111474 :         x[1] = sv;
    4997     3111474 :         gcoeff(N, i, j) = x;
    4998             :       }
    4999             :     }
    5000             :   } else {
    5001        1683 :     if (!pi) pi = get_Fl_red(p); /* unset if !SMALL_ULONG(p) */
    5002        9844 :     for (j = 1; j < l; j++) {
    5003        8161 :       gel(N, j) = cgetg(lc, t_COL);
    5004      175361 :       for (i = 1; i < lc; i++) {
    5005      167200 :         x = kron_unpack_Flx_bits_wide(gcoeff(M, i, j), b, p, pi);
    5006      167200 :         x[1] = sv;
    5007      167200 :         gcoeff(N, i, j) = x;
    5008             :       }
    5009             :     }
    5010             :   }
    5011       58160 :   return N;
    5012             : }
    5013             : 
    5014             : static GEN
    5015       81581 : FlxM_mul_Kronecker_i(GEN A, GEN B, ulong p, ulong pi, long d, long sv)
    5016             : {
    5017       81581 :   long b, n = lg(A) - 1;
    5018             :   GEN C, z;
    5019             :   GEN (*pack)(GEN, long), (*unpack)(GEN, ulong);
    5020       81581 :   int is_sqr = A==B;
    5021             : 
    5022       81581 :   z = muliu(muliu(sqru(p - 1), d), n);
    5023       81581 :   b = expi(z) + 1;
    5024             :   /* only do expensive bit-packing if it saves at least 1 limb */
    5025       81581 :   if (b <= BITS_IN_HALFULONG)
    5026       77198 :   { if (nbits2nlong(d*b) == (d + 1)/2) b = BITS_IN_HALFULONG; }
    5027             :   else
    5028             :   {
    5029        4383 :     long l = lgefint(z) - 2;
    5030        4383 :     if (nbits2nlong(d*b) == d*l) b = l*BITS_IN_LONG;
    5031             :   }
    5032             : 
    5033       81581 :   switch (b) {
    5034       22410 :   case BITS_IN_HALFULONG:
    5035       22410 :     pack = kron_pack_Flx_spec_half;
    5036       22410 :     unpack = int_to_Flx_half;
    5037       22410 :     break;
    5038         962 :   case BITS_IN_LONG:
    5039         962 :     pack = kron_pack_Flx_spec;
    5040         962 :     unpack = kron_unpack_Flx;
    5041         962 :     break;
    5042          49 :   case 2*BITS_IN_LONG:
    5043          49 :     pack = kron_pack_Flx_spec_2;
    5044          49 :     unpack = kron_unpack_Flx_2;
    5045          49 :     break;
    5046           0 :   case 3*BITS_IN_LONG:
    5047           0 :     pack = kron_pack_Flx_spec_3;
    5048           0 :     unpack = kron_unpack_Flx_3;
    5049           0 :     break;
    5050       58160 :   default:
    5051       58160 :     A = FlxM_pack_ZM_bits(A, b);
    5052       58160 :     B = is_sqr? A: FlxM_pack_ZM_bits(B, b);
    5053       58160 :     C = ZM_mul(A, B);
    5054       58160 :     return ZM_unpack_FlxM_bits(C, b, p, pi, sv);
    5055             :   }
    5056       23421 :   A = FlxM_pack_ZM(A, pack);
    5057       23421 :   B = is_sqr? A: FlxM_pack_ZM(B, pack);
    5058       23421 :   C = ZM_mul(A, B);
    5059       23421 :   return ZM_unpack_FlxM(C, p, sv, unpack);
    5060             : }
    5061             : 
    5062             : GEN
    5063       81581 : FlxqM_mul_Kronecker(GEN A, GEN B, GEN T, ulong p)
    5064             : {
    5065       81581 :   pari_sp av = avma;
    5066       81581 :   ulong pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    5067       81581 :   long sv = get_Flx_var(T), d = get_Flx_degree(T);
    5068       81581 :   GEN C = FlxM_mul_Kronecker_i(A, B, p, pi, d, sv);
    5069       81581 :   C = FlxqM_red_pre(C, T, p, pi);
    5070       81581 :   return gc_upto(av, C);
    5071             : }
    5072             : 
    5073             : /* assume m > 1 */
    5074             : static long
    5075           0 : FlxV_max_degree_i(GEN x, long m)
    5076             : {
    5077           0 :   long i, l = degpol(gel(x,1));
    5078           0 :   for (i = 2; i < m; i++) l = maxss(l, degpol(gel(x,i)));
    5079           0 :   return l;
    5080             : }
    5081             : 
    5082             : /* assume n > 1 and m > 1 */
    5083             : static long
    5084           0 : FlxM_max_degree_i(GEN x, long n, long m)
    5085             : {
    5086           0 :   long j, l = FlxV_max_degree_i(gel(x,1), m);
    5087           0 :   for (j = 2; j < n; j++) l = maxss(l, FlxV_max_degree_i(gel(x,j), m));
    5088           0 :   return l;
    5089             : }
    5090             : 
    5091             : static long
    5092           0 : FlxM_max_degree(GEN x)
    5093             : {
    5094           0 :   long n = lg(x), m;
    5095           0 :   if (n == 1) return -1;
    5096           0 :   m = lgcols(x); return m == 1? -1: FlxM_max_degree_i(x, n, m);
    5097             : }
    5098             : 
    5099             : GEN
    5100           0 : FlxM_mul(GEN x, GEN y, ulong p)
    5101             : {
    5102           0 :   pari_sp av = avma;
    5103           0 :   ulong pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    5104             :   long sv, d;
    5105           0 :   if (lg(x) == 1) return cgetg(1,t_MAT);
    5106           0 :   if (lg(gel(x,1))==1) return FlxqM_mul(x, y, NULL, p);
    5107           0 :   sv = mael3(x,1,1,1);
    5108           0 :   d = maxss(FlxM_max_degree(x), FlxM_max_degree(y));
    5109           0 :   return gc_GEN(av, FlxM_mul_Kronecker_i(x, y, p, pi, d+1, sv));
    5110             : }

Generated by: LCOV version 1.16