Code coverage tests

This page documents the degree to which the PARI/GP source code is tested by our public test suite, distributed with the source distribution in directory src/test/. This is measured by the gcov utility; we then process gcov output using the lcov frond-end.

We test a few variants depending on Configure flags on the pari.math.u-bordeaux.fr machine (x86_64 architecture), and agregate them in the final report:

The target is to exceed 90% coverage for all mathematical modules (given that branches depending on DEBUGLEVEL or DEBUGMEM are not covered). This script is run to produce the results below.

LCOV - code coverage report
Current view: top level - basemath - ifactor1.c (source / functions) Hit Total Coverage
Test: PARI/GP v2.18.1 lcov report (development 30640-c2c58e18c5) Lines: 1881 2319 81.1 %
Date: 2026-01-27 08:51:18 Functions: 112 127 88.2 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /* Copyright (C) 2000  The PARI group.
       2             : 
       3             : This file is part of the PARI/GP package.
       4             : 
       5             : PARI/GP is free software; you can redistribute it and/or modify it under the
       6             : terms of the GNU General Public License as published by the Free Software
       7             : Foundation; either version 2 of the License, or (at your option) any later
       8             : version. It is distributed in the hope that it will be useful, but WITHOUT
       9             : ANY WARRANTY WHATSOEVER.
      10             : 
      11             : Check the License for details. You should have received a copy of it, along
      12             : with the package; see the file 'COPYING'. If not, write to the Free Software
      13             : Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */
      14             : #include "pari.h"
      15             : #include "paripriv.h"
      16             : 
      17             : #define DEBUGLEVEL DEBUGLEVEL_factorint
      18             : 
      19             : /***********************************************************************/
      20             : /**                       PRIMES IN SUCCESSION                        **/
      21             : /***********************************************************************/
      22             : 
      23             : /* map from prime residue classes mod 210 to their numbers in {0...47}.
      24             :  * Subscripts into this array take the form ((k-1)%210)/2, ranging from
      25             :  * 0 to 104.  Unused entries are */
      26             : #define NPRC 128 /* nonprime residue class */
      27             : 
      28             : static unsigned char prc210_no[] = {
      29             :   0, NPRC, NPRC, NPRC, NPRC, 1, 2, NPRC, 3, 4, NPRC, /* 21 */
      30             :   5, NPRC, NPRC, 6, 7, NPRC, NPRC, 8, NPRC, 9, /* 41 */
      31             :   10, NPRC, 11, NPRC, NPRC, 12, NPRC, NPRC, 13, 14, NPRC, /* 63 */
      32             :   NPRC, 15, NPRC, 16, 17, NPRC, NPRC, 18, NPRC, 19, /* 83 */
      33             :   NPRC, NPRC, 20, NPRC, NPRC, NPRC, 21, NPRC, 22, 23, NPRC, /* 105 */
      34             :   24, 25, NPRC, 26, NPRC, NPRC, NPRC, 27, NPRC, NPRC, /* 125 */
      35             :   28, NPRC, 29, NPRC, NPRC, 30, 31, NPRC, 32, NPRC, NPRC, /* 147 */
      36             :   33, 34, NPRC, NPRC, 35, NPRC, NPRC, 36, NPRC, 37, /* 167 */
      37             :   38, NPRC, 39, NPRC, NPRC, 40, 41, NPRC, NPRC, 42, NPRC, /* 189 */
      38             :   43, 44, NPRC, 45, 46, NPRC, NPRC, NPRC, NPRC, 47, /* 209 */
      39             : };
      40             : 
      41             : /* first differences of the preceding */
      42             : static unsigned char prc210_d1[] = {
      43             :   10, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6,
      44             :   4, 6, 8, 4, 2, 4, 2, 4, 8, 6, 4, 6, 2, 4, 6,
      45             :   2, 6, 6, 4, 2, 4, 6, 2, 6, 4, 2, 4, 2, 10, 2,
      46             : };
      47             : 
      48             : static int
      49      947463 : unextprime_overflow(ulong n)
      50             : {
      51             : #ifdef LONG_IS_64BIT
      52      946877 :   return (n > (ulong)-59);
      53             : #else
      54         586 :   return (n > (ulong)-5);
      55             : #endif
      56             : }
      57             : 
      58             : /* return 0 for overflow */
      59             : ulong
      60     1085387 : unextprime(ulong n)
      61             : {
      62             :   long rc, rc0, rcn;
      63             : 
      64     1085387 :   switch(n) {
      65        7315 :     case 0: case 1: case 2: return 2;
      66        2603 :     case 3: return 3;
      67        1935 :     case 4: case 5: return 5;
      68        1141 :     case 6: case 7: return 7;
      69             :   }
      70     1072393 :   if (n <= maxprime())
      71             :   {
      72      124912 :     long i = PRIMES_search(n);
      73      124912 :     return i > 0? n: pari_PRIMES[-i];
      74             :   }
      75      947464 :   if (unextprime_overflow(n)) return 0;
      76             :   /* here n > 7 */
      77      947432 :   n |= 1; /* make it odd */
      78      947432 :   rc = rc0 = n % 210;
      79             :   /* find next prime residue class mod 210 */
      80             :   for(;;)
      81             :   {
      82     2085157 :     rcn = (long)(prc210_no[rc>>1]);
      83     2085157 :     if (rcn != NPRC) break;
      84     1137725 :     rc += 2; /* cannot wrap since 209 is coprime and rc odd */
      85             :   }
      86      947432 :   if (rc > rc0) n += rc - rc0;
      87             :   /* now find an actual (pseudo)prime */
      88             :   for(;;)
      89             :   {
      90    11200249 :     if (uisprime(n)) break;
      91    10252817 :     n += prc210_d1[rcn];
      92    10252817 :     if (++rcn > 47) rcn = 0;
      93             :   }
      94      947466 :   return n;
      95             : }
      96             : 
      97             : GEN
      98      130788 : nextprime(GEN n)
      99             : {
     100             :   long rc, rc0, rcn;
     101      130788 :   pari_sp av = avma;
     102             : 
     103      130788 :   if (typ(n) != t_INT)
     104             :   {
     105          14 :     n = gceil(n);
     106          14 :     if (typ(n) != t_INT) pari_err_TYPE("nextprime",n);
     107             :   }
     108      130781 :   if (signe(n) <= 0) { set_avma(av); return gen_2; }
     109      130781 :   if (lgefint(n) == 3)
     110             :   {
     111      118710 :     ulong k = unextprime(uel(n,2));
     112      118710 :     set_avma(av);
     113      118710 :     if (k) return utoipos(k);
     114             : #ifdef LONG_IS_64BIT
     115           6 :     return uutoi(1,13);
     116             : #else
     117           1 :     return uutoi(1,15);
     118             : #endif
     119             :   }
     120             :   /* here n > 7 */
     121       12071 :   if (!mod2(n)) n = addui(1,n);
     122       12071 :   rc = rc0 = umodiu(n, 210);
     123             :   /* find next prime residue class mod 210 */
     124             :   for(;;)
     125             :   {
     126       26282 :     rcn = (long)(prc210_no[rc>>1]);
     127       26282 :     if (rcn != NPRC) break;
     128       14211 :     rc += 2; /* cannot wrap since 209 is coprime and rc odd */
     129             :   }
     130       12071 :   if (rc > rc0) n = addui(rc - rc0, n);
     131             :   /* now find an actual (pseudo)prime */
     132             :   for(;;)
     133             :   {
     134      110248 :     if (BPSW_psp(n)) break;
     135       98177 :     n = addui(prc210_d1[rcn], n);
     136       98177 :     if (++rcn > 47) rcn = 0;
     137             :   }
     138       12071 :   if (avma == av) return icopy(n);
     139       12071 :   return gc_INT(av, n);
     140             : }
     141             : 
     142             : GEN
     143      119154 : nextprime0(GEN N, GEN q)
     144             : {
     145      119154 :   pari_sp av = avma;
     146             :   GEN C, D, r;
     147      119154 :   if (!q) return nextprime(N);
     148          35 :   if (typ(N) != t_INT)
     149             :   {
     150           0 :     N = gceil(N);
     151           0 :     if (typ(N) != t_INT) pari_err_TYPE("nextprime",N);
     152             :   }
     153          35 :   switch(typ(q))
     154             :   {
     155          14 :     case t_INT: C = gen_1; D = q; break;
     156          21 :     case t_INTMOD: C = gel(q,2); D = gel(q,1); break;
     157           0 :     default:
     158           0 :       pari_err_TYPE("nextprime", q);
     159             :       return NULL;/*LCOV_EXCL_LINE*/
     160             :   }
     161          35 :   if (signe(D)==0) pari_err_INV("nextprime", D);
     162          35 :   if (signe(N)<0) N = modii(N,D);
     163          35 :   r = modii(subii(C, N), D);
     164          35 :   if (signe(r)) N = addii(N, r);
     165          35 :   if (signe(N)==0) N = D;
     166          35 :   if (!equali1(gcdii(C,D)))
     167             :   {
     168          14 :     if (isprime(N)) return gc_GEN(av, N);
     169           7 :     pari_err_COPRIME("nextprime", C, D);
     170             :   }
     171          21 :   if (equaliu(N,2)) return gc_const(av, gen_2);
     172          21 :   if (mpodd(D))
     173             :   {
     174           7 :     if (!mpodd(N)) N = addii(N, D);
     175           7 :     D = shifti(D,1);
     176             :   }
     177             :   for (;;)
     178             :   {
     179          21 :     if (BPSW_psp(N)) return gc_INT(av, N);
     180           0 :     N = addii(N, D);
     181             :   }
     182             : }
     183             : 
     184             : ulong
     185          38 : uprecprime(ulong n)
     186             : {
     187             :   long rc, rc0, rcn;
     188             :   { /* check if n <= 10 */
     189          38 :     if (n <= 1)  return 0;
     190          31 :     if (n == 2)  return 2;
     191          24 :     if (n <= 4)  return 3;
     192          24 :     if (n <= 6)  return 5;
     193          24 :     if (n <= 10) return 7;
     194             :   }
     195          24 :   if (n <= maxprimelim())
     196             :   {
     197           0 :     long i = PRIMES_search(n);
     198           0 :     return i > 0? n: pari_PRIMES[-i-1];
     199             :   }
     200             :   /* here n >= 11 */
     201          24 :   if (!(n % 2)) n--;
     202          24 :   rc = rc0 = n % 210;
     203             :   /* find previous prime residue class mod 210 */
     204             :   for(;;)
     205             :   {
     206          48 :     rcn = (long)(prc210_no[rc>>1]);
     207          48 :     if (rcn != NPRC) break;
     208          24 :     rc -= 2; /* cannot wrap since 1 is coprime and rc odd */
     209             :   }
     210          24 :   if (rc < rc0) n += rc - rc0;
     211             :   /* now find an actual (pseudo)prime */
     212             :   for(;;)
     213             :   {
     214          48 :     if (uisprime(n)) break;
     215          24 :     if (--rcn < 0) rcn = 47;
     216          24 :     n -= prc210_d1[rcn];
     217             :   }
     218          24 :   return n;
     219             : }
     220             : 
     221             : GEN
     222          56 : precprime(GEN n)
     223             : {
     224             :   long rc, rc0, rcn;
     225          56 :   pari_sp av = avma;
     226             : 
     227          56 :   if (typ(n) != t_INT)
     228             :   {
     229          14 :     n = gfloor(n);
     230          14 :     if (typ(n) != t_INT) pari_err_TYPE("nextprime",n);
     231             :   }
     232          49 :   if (signe(n) <= 0) { set_avma(av); return gen_0; }
     233          49 :   if (lgefint(n) <= 3)
     234             :   {
     235          38 :     ulong k = uel(n,2);
     236          38 :     return gc_utoi(av, uprecprime(k));
     237             :   }
     238          11 :   if (!mod2(n)) n = subiu(n,1);
     239          11 :   rc = rc0 = umodiu(n, 210);
     240             :   /* find previous prime residue class mod 210 */
     241             :   for(;;)
     242             :   {
     243          22 :     rcn = (long)(prc210_no[rc>>1]);
     244          22 :     if (rcn != NPRC) break;
     245          11 :     rc -= 2; /* cannot wrap since 1 is coprime and rc odd */
     246             :   }
     247          11 :   if (rc0 > rc) n = subiu(n, rc0 - rc);
     248             :   /* now find an actual (pseudo)prime */
     249             :   for(;;)
     250             :   {
     251          50 :     if (BPSW_psp(n)) break;
     252          39 :     if (--rcn < 0) rcn = 47;
     253          39 :     n = subiu(n, prc210_d1[rcn]);
     254             :   }
     255          11 :   if (avma == av) return icopy(n);
     256          11 :   return gc_INT(av, n);
     257             : }
     258             : 
     259             : /* Find next single-word prime strictly larger than p.
     260             :  * If *n < pari_PRIMES[0], p is *n-th prime, otherwise imitate nextprime().
     261             :  * *rcn = NPRC or the correct residue class for the current p; we'll use this
     262             :  * to track the current prime residue class mod 210 once we're out of range of
     263             :  * the prime table, and we'll update it before that if it isn't NPRC.
     264             :  *
     265             :  * *q is incremented whenever q!=NULL and we wrap from 209 mod 210 to
     266             :  * 1 mod 210 */
     267             : static ulong
     268     4531317 : snextpr(ulong p, long *n, long *rcn, long *q, int (*ispsp)(ulong))
     269             : {
     270     4531317 :   if (*n < pari_PRIMES[0])
     271             :   {
     272     4531317 :     ulong t, p1 = t = pari_PRIMES[++*n]; /* nextprime(p + 1) */
     273     4531317 :     if (*rcn != NPRC)
     274             :     {
     275    15888894 :       while (t > p)
     276             :       {
     277    11373946 :         t -= prc210_d1[*rcn];
     278    11373946 :         if (++*rcn > 47) { *rcn = 0; if (q) (*q)++; }
     279             :       }
     280             :       /* assert(d1 == p) */
     281             :     }
     282     4531317 :     return p1;
     283             :   }
     284           0 :   if (unextprime_overflow(p)) pari_err_OVERFLOW("snextpr");
     285             :   /* we are beyond the prime table, initialize if needed */
     286           0 :   if (*rcn == NPRC) *rcn = prc210_no[(p % 210) >> 1]; /* != NPRC */
     287             :   /* look for the next one */
     288             :   do {
     289           0 :     p += prc210_d1[*rcn];
     290           0 :     if (++*rcn > 47) { *rcn = 0; if (q) (*q)++; }
     291           0 :   } while (!ispsp(p));
     292           0 :   return p;
     293             : }
     294             : 
     295             : /********************************************************************/
     296             : /**                                                                **/
     297             : /**                     INTEGER FACTORIZATION                      **/
     298             : /**                                                                **/
     299             : /********************************************************************/
     300             : int factor_add_primes = 0, factor_proven = 0;
     301             : 
     302             : /***********************************************************************/
     303             : /**                                                                   **/
     304             : /**                 FACTORIZATION (ECM) -- GN Jul-Aug 1998            **/
     305             : /**   Integer factorization using the elliptic curves method (ECM).   **/
     306             : /**   ellfacteur() returns a non trivial factor of N, assuming N>0,   **/
     307             : /**   is composite, and has no prime divisor below tridiv_bound(N)    **/
     308             : /**   Thanks to Paul Zimmermann for much helpful advice and to        **/
     309             : /**   Guillaume Hanrot and Igor Schein for intensive testing          **/
     310             : /**                                                                   **/
     311             : /***********************************************************************/
     312             : #define nbcmax 64 /* max number of simultaneous curves */
     313             : 
     314             : static const ulong TB1[] = {
     315             :   142,172,208,252,305,370,450,545,661,801,972,1180,1430,
     316             :   1735,2100,2550,3090,3745,4540,5505,6675,8090,9810,11900,
     317             :   14420,17490,21200,25700,31160,37780UL,45810UL,55550UL,67350UL,
     318             :   81660UL,99010UL,120050UL,145550UL,176475UL,213970UL,259430UL,
     319             :   314550UL,381380UL,462415UL,560660UL,679780UL,824220UL,999340UL,
     320             :   1211670UL,1469110UL,1781250UL,2159700UL,2618600UL,3175000UL,
     321             :   3849600UL,4667500UL,5659200UL,6861600UL,8319500UL,10087100UL,
     322             :   12230300UL,14828900UL,17979600UL,21799700UL,26431500UL,
     323             :   32047300UL,38856400UL, /* 110 times that still fits into 32bits */
     324             : #ifdef LONG_IS_64BIT
     325             :   47112200UL,57122100UL,69258800UL,83974200UL,101816200UL,
     326             :   123449000UL,149678200UL,181480300UL,220039400UL,266791100UL,
     327             :   323476100UL,392204900UL,475536500UL,576573500UL,699077800UL,
     328             :   847610500UL,1027701900UL,1246057200UL,1510806400UL,1831806700UL,
     329             :   2221009800UL,2692906700UL,3265067200UL,3958794400UL,4799917500UL
     330             : #endif
     331             : };
     332             : static const ulong TB1_for_stage[] = {
     333             :  /* Start below the optimal B1 for finding factors which would just have been
     334             :   * missed by pollardbrent(), and escalate, changing curves to give good
     335             :   * coverage of the small factor ranges. Entries grow faster than what would
     336             :   * be optimal but a table instead of a 2D array keeps the code simple */
     337             :   500,520,560,620,700,800,900,1000,1150,1300,1450,1600,1800,2000,
     338             :   2200,2450,2700,2950,3250,3600,4000,4400,4850,5300,5800,6400,
     339             :   7100,7850,8700,9600,10600,11700,12900,14200,15700,17300,
     340             :   19000,21000,23200,25500,28000,31000,34500UL,38500UL,43000UL,
     341             :   48000UL,53800UL,60400UL,67750UL,76000UL,85300UL,95700UL,
     342             :   107400UL,120500UL,135400UL,152000UL,170800UL,191800UL,215400UL,
     343             :   241800UL,271400UL,304500UL,341500UL,383100UL,429700UL,481900UL,
     344             :   540400UL,606000UL,679500UL,761800UL,854100UL,957500UL,1073500UL
     345             : };
     346             : 
     347             : /* addition/doubling/multiplication of a point on an 'elliptic curve mod N'
     348             :  * may result in one of three things:
     349             :  * - a new bona fide point
     350             :  * - a point at infinity (denominator divisible by N)
     351             :  * - a point at infinity mod some p | N but finite mod q | N betraying itself
     352             :  *   by a denominator which has nontrivial gcd with N.
     353             :  *
     354             :  * In the second case, addition/doubling aborts, copying one of the summands
     355             :  * to the destination array of points unless they coincide.
     356             :  * Multiplication will stop at some unpredictable intermediate stage:  The
     357             :  * destination will contain _some_ multiple of the input point, but not
     358             :  * necessarily the desired one, which doesn't matter.  As long as we're
     359             :  * multiplying (B1 phase) we simply carry on with the next multiplier.
     360             :  * During the B2 phase, the only additions are the giant steps, and the
     361             :  * worst that can happen here is that we lose one residue class mod 210
     362             :  * of prime multipliers on 4 of the curves, so again, we ignore the problem
     363             :  * and just carry on.)
     364             :  *
     365             :  * Idea: select nbc curves mod N and one point P on each of them. For each
     366             :  * such P, compute [M]P = Q where M is the product of all powers <= B2 of
     367             :  * primes <= nextprime(B1). Then check whether [p]Q for p < nextprime(B2)
     368             :  * betrays a factor. This second stage looks separately at the primes in
     369             :  * each residue class mod 210, four curves at a time, and steps additively
     370             :  * to ever larger multipliers, by comparing X coordinates of points which we
     371             :  * would need to add in order to reach another prime multiplier in the same
     372             :  * residue class. 'Comparing' means that we accumulate a product of
     373             :  * differences of X coordinates, and from time to time take a gcd of this
     374             :  * product with N. Montgomery's multi-inverse trick is used heavily. */
     375             : 
     376             : /* *** auxiliary functions for ellfacteur: *** */
     377             : /* (Rx,Ry) <- (Px,Py)+(Qx,Qy) over Z/NZ, z=1/(Px-Qx). If Ry = NULL, don't set */
     378             : static void
     379     8291496 : FpE_add_i(GEN N, GEN z, GEN Px, GEN Py, GEN Qx, GEN Qy, GEN *Rx, GEN *Ry)
     380             : {
     381     8291496 :   GEN slope = modii(mulii(subii(Py, Qy), z), N);
     382     8291496 :   GEN t = subii(sqri(slope), addii(Qx, Px));
     383     8291496 :   affii(modii(t, N), *Rx);
     384     8291496 :   if (Ry) {
     385     8219188 :     t = subii(mulii(slope, subii(Px, *Rx)), Py);
     386     8219188 :     affii(modii(t, N), *Ry);
     387             :   }
     388     8291496 : }
     389             : /* X -> Z; cannot add on one of the curves: make sure Z contains
     390             :  * something useful before letting caller proceed */
     391             : static void
     392       25650 : ZV_aff(long n, GEN *X, GEN *Z)
     393             : {
     394       25650 :   if (X != Z) {
     395             :     long k;
     396     1569330 :     for (k = n; k--; ) affii(X[k],Z[k]);
     397             :   }
     398       25650 : }
     399             : 
     400             : /* Parallel addition on nbc curves, assigning the result to locations at and
     401             :  * following *X3, *Y3. (If Y-coords of result not desired, set Y=NULL.)
     402             :  * Safe even if (X3,Y3) = (X2,Y2), _not_ if (X1,Y1). It is also safe to
     403             :  * overwrite Y2 with X3. If nbc1 < nbc, the first summand is
     404             :  * assumed to hold only nbc1 distinct points, repeated as often as we need
     405             :  * them  (to add one point on each of a few curves to several other points on
     406             :  * the same curves): only used with nbc1 = nbc or nbc1 = 4 | nbc.
     407             :  *
     408             :  * Return 0 [SUCCESS], 1 [N | den], 2 [gcd(den, N) is a factor of N, preserved
     409             :  * in gl.
     410             :  * Stack space is bounded by a constant multiple of lgefint(N)*nbc:
     411             :  * - Phase 2 creates 12 items on the stack per iteration, of which 4 are twice
     412             :  *   as long and 1 is thrice as long as N, i.e. 18 units per iteration.
     413             :  * - Phase  1 creates 4 units.
     414             :  * Total can be as large as 4*nbcmax + 18*8 units; ecm_elladd2() is
     415             :  * just as bad, and elldouble() comes to 3*nbcmax + 29*8 units. */
     416             : static int
     417      240431 : ecm_elladd0(GEN N, GEN *gl, long nbc, long nbc1,
     418             :             GEN *X1, GEN *Y1, GEN *X2, GEN *Y2, GEN *X3, GEN *Y3)
     419             : {
     420      240431 :   const ulong mask = (nbc1 == 4)? 3: ~0UL; /*nbc1 = 4 or nbc*/
     421      240431 :   GEN W[2*nbcmax], *A = W+nbc; /* W[0],A[0] unused */
     422             :   long i;
     423      240431 :   pari_sp av = avma;
     424             : 
     425      240431 :   W[1] = subii(X1[0], X2[0]);
     426     7825896 :   for (i=1; i<nbc; i++)
     427             :   { /*prepare for multi-inverse*/
     428     7585465 :     A[i] = subii(X1[i&mask], X2[i]); /* don't waste time reducing mod N */
     429     7585465 :     W[i+1] = modii(mulii(A[i], W[i]), N);
     430             :   }
     431      240431 :   if (!invmod(W[nbc], N, gl))
     432             :   {
     433          18 :     if (!equalii(N,*gl)) return 2;
     434           0 :     ZV_aff(nbc, X2,X3);
     435           0 :     if (Y3) ZV_aff(nbc, Y2,Y3);
     436           0 :     return gc_int(av,1);
     437             :   }
     438             : 
     439     7825032 :   while (i--) /* nbc times */
     440             :   {
     441     7825032 :     pari_sp av2 = avma;
     442     7825032 :     GEN Px = X1[i&mask], Py = Y1[i&mask], Qx = X2[i], Qy = Y2[i];
     443     7825032 :     GEN z = i? mulii(*gl,W[i]): *gl; /*1/(Px-Qx)*/
     444     7825032 :     FpE_add_i(N,z,  Px,Py,Qx,Qy, X3+i, Y3? Y3+i: NULL);
     445     7825032 :     if (!i) break;
     446     7584619 :     set_avma(av2); *gl = modii(mulii(*gl, A[i]), N);
     447             :   }
     448      240413 :   return gc_int(av,0);
     449             : }
     450             : 
     451             : /* Shortcut, for use in cases where Y coordinates follow their corresponding
     452             :  * X coordinates, and first summand doesn't need to be repeated */
     453             : static int
     454      234487 : ecm_elladd(GEN N, GEN *gl, long nbc, GEN *X1, GEN *X2, GEN *X3) {
     455      234487 :   return ecm_elladd0(N, gl, nbc, nbc, X1, X1+nbc, X2, X2+nbc, X3, X3+nbc);
     456             : }
     457             : 
     458             : /* As ecm_elladd except it does twice as many additions (and hides even more
     459             :  * of the cost of the modular inverse); the net effect is the same as
     460             :  * ecm_elladd(nbc,X1,X2,X3) && ecm_elladd(nbc,X4,X5,X6). Safe to
     461             :  * have X2=X3, X5=X6, or X1,X2 coincide with X4,X5 in any order. */
     462             : static int
     463        7194 : ecm_elladd2(GEN N, GEN *gl, long nbc,
     464             :             GEN *X1, GEN *X2, GEN *X3, GEN *X4, GEN *X5, GEN *X6)
     465             : {
     466        7194 :   GEN *Y1 = X1+nbc, *Y2 = X2+nbc, *Y3 = X3+nbc;
     467        7194 :   GEN *Y4 = X4+nbc, *Y5 = X5+nbc, *Y6 = X6+nbc;
     468        7194 :   GEN W[4*nbcmax], *A = W+2*nbc; /* W[0],A[0] unused */
     469             :   long i, j;
     470        7194 :   pari_sp av = avma;
     471             : 
     472        7194 :   W[1] = subii(X1[0], X2[0]);
     473      233232 :   for (i=1; i<nbc; i++)
     474             :   {
     475      226038 :     A[i] = subii(X1[i], X2[i]); /* don't waste time reducing mod N here */
     476      226038 :     W[i+1] = modii(mulii(A[i], W[i]), N);
     477             :   }
     478      240426 :   for (j=0; j<nbc; i++,j++)
     479             :   {
     480      233232 :     A[i] = subii(X4[j], X5[j]);
     481      233232 :     W[i+1] = modii(mulii(A[i], W[i]), N);
     482             :   }
     483        7194 :   if (!invmod(W[2*nbc], N, gl))
     484             :   {
     485           0 :     if (!equalii(N,*gl)) return 2;
     486           0 :     ZV_aff(2*nbc, X2,X3); /* hack: 2*nbc => copy Y2->Y3 */
     487           0 :     ZV_aff(2*nbc, X5,X6); /* also copy Y5->Y6 */
     488           0 :     return gc_int(av,1);
     489             :   }
     490             : 
     491      240426 :   while (j--) /* nbc times */
     492             :   {
     493      233232 :     pari_sp av2 = avma;
     494      233232 :     GEN Px = X4[j], Py = Y4[j], Qx = X5[j], Qy = Y5[j];
     495      233232 :     GEN z = mulii(*gl,W[--i]); /*1/(Px-Qx)*/
     496      233232 :     FpE_add_i(N,z, Px,Py, Qx,Qy, X6+j,Y6+j);
     497      233232 :     set_avma(av2); *gl = modii(mulii(*gl, A[i]), N);
     498             :   }
     499      233232 :   while (i--) /* nbc times */
     500             :   {
     501      233232 :     pari_sp av2 = avma;
     502      233232 :     GEN Px = X1[i], Py = Y1[i], Qx = X2[i], Qy = Y2[i];
     503      233232 :     GEN z = i? mulii(*gl, W[i]): *gl; /*1/(Px-Qx)*/
     504      233232 :     FpE_add_i(N,z, Px,Py, Qx,Qy, X3+i,Y3+i);
     505      233232 :     if (!i) break;
     506      226038 :     set_avma(av2); *gl = modii(mulii(*gl, A[i]), N);
     507             :   }
     508        7194 :   return gc_int(av,0);
     509             : }
     510             : 
     511             : /* Parallel doubling on nbc curves, assigning the result to locations at
     512             :  * and following *X2.  Safe to be called with X2 equal to X1.  Return
     513             :  * value as for ecm_elladd.  If we find a point at infinity mod N,
     514             :  * and if X1 != X2, we copy the points at X1 to X2. */
     515             : static int
     516       40073 : elldouble(GEN N, GEN *gl, long nbc, GEN *X1, GEN *X2)
     517             : {
     518       40073 :   GEN *Y1 = X1+nbc, *Y2 = X2+nbc;
     519             :   GEN W[nbcmax+1]; /* W[0] unused */
     520             :   long i;
     521       40073 :   pari_sp av = avma;
     522       40073 :   /*W[0] = gen_1;*/ W[1] = Y1[0];
     523     1233544 :   for (i=1; i<nbc; i++) W[i+1] = modii(mulii(Y1[i], W[i]), N);
     524       40073 :   if (!invmod(W[nbc], N, gl))
     525             :   {
     526           0 :     if (!equalii(N,*gl)) return 2;
     527           0 :     ZV_aff(2*nbc,X1,X2); /* also copies Y1->Y2 */
     528           0 :     return gc_int(av,1);
     529             :   }
     530     1273617 :   while (i--) /* nbc times */
     531             :   {
     532             :     pari_sp av2;
     533     1233544 :     GEN v, w, L, z = i? mulii(*gl,W[i]): *gl;
     534     1233544 :     if (i) *gl = modii(mulii(*gl, Y1[i]), N);
     535     1233544 :     av2 = avma;
     536     1233544 :     L = modii(mulii(addui(1, mului(3, Fp_sqr(X1[i],N))), z), N);
     537     1233544 :     if (signe(L)) /* half of zero is still zero */
     538     1233544 :       L = shifti(mod2(L)? addii(L, N): L, -1);
     539     1233544 :     v = modii(subii(sqri(L), shifti(X1[i],1)), N);
     540     1233544 :     w = modii(subii(mulii(L, subii(X1[i], v)), Y1[i]), N);
     541     1233544 :     affii(v, X2[i]);
     542     1233544 :     affii(w, Y2[i]);
     543     1233544 :     set_avma(av2);
     544             :   }
     545       40073 :   return gc_int(av,0);
     546             : }
     547             : 
     548             : /* Parallel multiplication by an odd prime k on nbc curves, storing the
     549             :  * result to locations at and following *X2. Safe to be called with X2 = X1.
     550             :  * Return values as ecm_elladd. Uses (a simplified variant of) Montgomery's
     551             :  * PRAC algorithm; see ftp://ftp.cwi.nl/pub/pmontgom/Lucas.ps.gz .
     552             :  * With thanks to Paul Zimmermann for the reference.  --GN1998Aug13 */
     553             : static int
     554      208727 : get_rule(ulong d, ulong e)
     555             : {
     556      208727 :   if (d <= e + (e>>2)) /* floor(1.25*e) */
     557             :   {
     558       16630 :     if ((d+e)%3 == 0) return 0; /* rule 1 */
     559        9928 :     if ((d-e)%6 == 0) return 1;  /* rule 2 */
     560             :   }
     561             :   /* d <= 4*e but no ofl */
     562      201971 :   if ((d+3)>>2 <= e) return 2; /* rule 3, common case */
     563       12148 :   if ((d&1)==(e&1))  return 1; /* rule 4 = rule 2 */
     564        6344 :   if (!(d&1))        return 3; /* rule 5 */
     565        1769 :   if (d%3 == 0)      return 4; /* rule 6 */
     566         417 :   if ((d+e)%3 == 0)  return 5; /* rule 7 */
     567           0 :   if ((d-e)%3 == 0)  return 6; /* rule 8 */
     568             :   /* when we get here, e is even, otherwise one of rules 4,5 would apply */
     569           0 :   return 7; /* rule 9 */
     570             : }
     571             : 
     572             : /* PRAC implementation notes - main changes against the paper version:
     573             :  * (1) The general function [m+n]P = f([m]P,[n]P,[m-n]P) collapses (for m!=n)
     574             :  * to an ecm_elladd() which does not depend on the third argument; thus
     575             :  * references to the third variable (C in the paper) can be eliminated.
     576             :  * (2) Since our multipliers are prime, the outer loop of the paper
     577             :  * version executes only once, and thus is invisible above.
     578             :  * (3) The first step in the inner loop of the paper version will always be
     579             :  * rule 3, but the addition requested by this rule amounts to a doubling, and
     580             :  * will always be followed by a swap, so we have unrolled this first iteration.
     581             :  * (4) Simplifications in rules 6 and 7 are possible given the above, and we
     582             :  * save one addition in each of the two cases.  NB none of the other
     583             :  * ecm_elladd()s in the loop can ever degenerate into an elldouble.
     584             :  * (5) I tried to optimize for rule 3, which is used more frequently than all
     585             :  * others together, but it didn't improve things, so I removed the nested
     586             :  * tight loop again.  --GN */
     587             : /* The main loop body of ellfacteur() runs _slower_ under PRAC than under a
     588             :  * straightforward left-shift binary multiplication when N has <30 digits and
     589             :  * B1 is small;  PRAC wins when N and B1 get larger.  Weird. --GN */
     590             : /* k>2 assumed prime, XAUX = scratchpad */
     591             : static int
     592       25650 : ellmult(GEN N, GEN *gl, long nbc, ulong k, GEN *X1, GEN *X2, GEN *XAUX)
     593             : {
     594             :   ulong r, d, e, e1;
     595             :   int res;
     596       25650 :   GEN *A = X2, *B = XAUX, *T = XAUX + 2*nbc;
     597             : 
     598       25650 :   ZV_aff(2*nbc,X1,XAUX);
     599             :   /* first doubling picks up X1;  after this we'll be working in XAUX and
     600             :    * X2 only, mostly via A and B and T */
     601       25650 :   if ((res = elldouble(N, gl, nbc, X1, X2)) != 0) return res;
     602             : 
     603             :   /* split the work at the golden ratio */
     604       25650 :   r = (ulong)(k*0.61803398875 + .5);
     605       25650 :   d = k - r;
     606       25650 :   e = r - d; /* d+e == r, so no danger of ofl below */
     607      234377 :   while (d != e)
     608             :   { /* apply one of the nine transformations from PM's Table 4. */
     609      208727 :     switch(get_rule(d,e))
     610             :     {
     611        6702 :     case 0: /* rule 1 */
     612        6702 :       if ( (res = ecm_elladd(N, gl, nbc, A, B, T)) ) return res;
     613        6702 :       if ( (res = ecm_elladd2(N, gl, nbc, T, A, A, T, B, B)) != 0) return res;
     614        6702 :       e1 = d - e; d = (d + e1)/3; e = (e - e1)/3; break;
     615        5858 :     case 1: /* rules 2 and 4 */
     616        5858 :       if ( (res = ecm_elladd(N, gl, nbc, A, B, B)) ) return res;
     617        5858 :       if ( (res = elldouble(N, gl, nbc, A, A)) ) return res;
     618        5858 :       d = (d-e)>>1; break;
     619        4575 :     case 3: /* rule 5 */
     620        4575 :       if ( (res = elldouble(N, gl, nbc, A, A)) ) return res;
     621        4575 :       d >>= 1; break;
     622        1352 :     case 4: /* rule 6 */
     623        1352 :       if ( (res = elldouble(N, gl, nbc, A, T)) ) return res;
     624        1352 :       if ( (res = ecm_elladd(N, gl, nbc, T, A, A)) ) return res;
     625        1352 :       if ( (res = ecm_elladd(N, gl, nbc, A, B, B)) ) return res;
     626        1352 :       d = d/3 - e; break;
     627      189823 :     case 2: /* rule 3 */
     628      189823 :       if ( (res = ecm_elladd(N, gl, nbc, A, B, B)) ) return res;
     629      189823 :       d -= e; break;
     630         417 :     case 5: /* rule 7 */
     631         417 :       if ( (res = elldouble(N, gl, nbc, A, T)) ) return res;
     632         417 :       if ( (res = ecm_elladd2(N, gl, nbc, T, A, A, T, B, B)) != 0) return res;
     633         417 :       d = (d - 2*e)/3; break;
     634           0 :     case 6: /* rule 8 */
     635           0 :       if ( (res = ecm_elladd(N, gl, nbc, A, B, B)) ) return res;
     636           0 :       if ( (res = elldouble(N, gl, nbc, A, T)) ) return res;
     637           0 :       if ( (res = ecm_elladd(N, gl, nbc, T, A, A)) ) return res;
     638           0 :       d = (d - e)/3; break;
     639           0 :     case 7: /* rule 9 */
     640           0 :       if ( (res = elldouble(N, gl, nbc, B, B)) ) return res;
     641           0 :       e >>= 1; break;
     642             :     }
     643             :     /* swap d <-> e and A <-> B if necessary */
     644      208727 :     if (d < e) { lswap(d,e); pswap(A,B); }
     645             :   }
     646       25650 :   return ecm_elladd(N, gl, nbc, XAUX, X2, X2);
     647             : }
     648             : 
     649             : struct ECM {
     650             :   pari_timer T;
     651             :   long nbc, nbc2, seed;
     652             :   GEN *X, *XAUX, *XT, *XD, *XB, *XB2, *XH, *Xh, *Yh;
     653             : };
     654             : 
     655             : /* memory layout in ellfacteur():  a large array of GEN pointers, and one
     656             :  * huge chunk of memory containing all the actual GEN (t_INT) objects.
     657             :  * nbc is constant throughout the invocation:
     658             :  * - The B1 stage of each iteration through the main loop needs little
     659             :  * space:  enough for the X and Y coordinates of the current points,
     660             :  * and twice as much again as scratchpad for ellmult().
     661             :  * - The B2 stage, starting from some current set of points Q, needs, in
     662             :  * succession:
     663             :  *   + space for [2]Q, [4]Q, ..., [10]Q, and [p]Q for building the helix;
     664             :  *   + space for 48*nbc X and Y coordinates to hold the helix.  This could
     665             :  *   re-use [2]Q,...,[8]Q, but only with difficulty, since we don't
     666             :  *   know in advance which residue class mod 210 our p is going to be in.
     667             :  *   It can and should re-use [p]Q, though;
     668             :  *   + space for (temporarily [30]Q and then) [210]Q, [420]Q, and several
     669             :  *   further doublings until the giant step multiplier is reached.  This
     670             :  *   can re-use the remaining cells from above.  The computation of [210]Q
     671             :  *   will have been the last call to ellmult() within this iteration of the
     672             :  *   main loop, so the scratchpad is now also free to be re-used. We also
     673             :  *   compute [630]Q by a parallel addition;  we'll need it later to get the
     674             :  *   baby-step table bootstrapped a little faster.
     675             :  *   + Finally, for no more than 4 curves at a time, room for up to 1024 X
     676             :  *   coordinates only: the Y coordinates needed whilst setting up this baby
     677             :  *   step table are temporarily stored in the upper half, and overwritten
     678             :  *   during the last series of additions.
     679             :  *
     680             :  * Graphically:  after end of B1 stage (X,Y are the coords of Q):
     681             :  * +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--
     682             :  * | X Y |  scratch  | [2]Q| [4]Q| [6]Q| [8]Q|[10]Q|    ...    | ...
     683             :  * +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--
     684             :  * *X    *XAUX *XT   *XD                                       *XB
     685             :  *
     686             :  * [30]Q is computed from [10]Q.  [210]Q can go into XY, etc:
     687             :  * +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--
     688             :  * |[210]|[420]|[630]|[840]|[1680,3360,6720,...,2048*210]      |bstp table...
     689             :  * +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--
     690             :  * *X    *XAUX *XT   *XD      [*XG, somewhere here]            *XB .... *XH
     691             :  *
     692             :  * So we need (13 + 48) * 2 * nbc slots here + 4096 slots for the baby step
     693             :  * table (not all of which will be used when we start with a small B1, but
     694             :  * better to allocate and initialize ahead of time all the slots that might
     695             :  * be needed later).
     696             :  *
     697             :  * Note on memory locality:  During the B2 phase, accesses to the helix
     698             :  * (once it is set up) will be clustered by curves (4 out of nbc at a time).
     699             :  * Accesses to the baby steps table will wander from one end of the array to
     700             :  * the other and back, one such cycle per giant step, and during a full cycle
     701             :  * we would expect on the order of 2E4 accesses when using the largest giant
     702             :  * step size.  Thus we shouldn't be doing too bad with respect to thrashing
     703             :  * a 512KBy L2 cache.  However, we don't want the baby step table to grow
     704             :  * larger than this, even if it would reduce the number of EC operations by a
     705             :  * few more per cent for very large B2, lest cache thrashing slow down
     706             :  * everything disproportionally. --GN */
     707             : /* Auxiliary routines need < (3*nbc+240)*lN words on the PARI stack, in
     708             :  * addition to the spc*(lN+1) words occupied by our main table. */
     709             : static void
     710          57 : ECM_alloc(struct ECM *E, long lN)
     711             : {
     712          57 :   const long bstpmax = 1024; /* max number of baby step table entries */
     713          57 :   long spc = (13 + 48) * E->nbc2 + bstpmax * 4;
     714          57 :   long len = spc + 385 + spc*lN;
     715          57 :   long i, tw = _evallg(lN) | evaltyp(t_INT);
     716          57 :   GEN w, *X = (GEN*)new_chunk(len);
     717             :   /* hack for X[i] = cgeti(lN). X = current point in B1 phase */
     718          57 :   w = (GEN)(X + spc + 385);
     719      377001 :   for (i = spc-1; i >= 0; i--) { X[i] = w; *w = tw; w += lN; }
     720          57 :   E->X = X;
     721          57 :   E->XAUX = E->X    + E->nbc2; /* scratchpad for ellmult() */
     722          57 :   E->XT   = E->XAUX + E->nbc2; /* ditto, will later hold [3*210]Q */
     723          57 :   E->XD   = E->XT   + E->nbc2; /* room for various multiples */
     724          57 :   E->XB   = E->XD   + 10*E->nbc2; /* start of baby steps table */
     725          57 :   E->XB2  = E->XB   + 2 * bstpmax; /* middle of baby steps table */
     726          57 :   E->XH   = E->XB2  + 2 * bstpmax; /* end of bstps table, start of helix */
     727          57 :   E->Xh   = E->XH   + 48*E->nbc2; /* little helix, X coords */
     728          57 :   E->Yh   = E->XH   + 192;     /* ditto, Y coords */
     729             :   /* XG,YG set inside the main loop, since they depend on B2 */
     730             :   /* E.Xh range of 384 pointers not set; these will later duplicate the pointers
     731             :    * in the E.XH range, 4 curves at a time. Some of the cells reserved here for
     732             :    * the E.XB range will never be used, instead, we'll warp the pointers to
     733             :    * connect to (read-only) GENs in the X/E.XD range */
     734          57 : }
     735             : /* N.B. E->seed is not initialized here */
     736             : static void
     737          57 : ECM_init(struct ECM *E, GEN N, long nbc)
     738             : {
     739          57 :   if (nbc < 0)
     740             :   { /* choose a sensible default */
     741          57 :     const long size = expi(N) + 1;
     742          57 :     nbc = ((size >> 3) << 2) - 80;
     743          57 :     if (nbc < 8) nbc = 8;
     744             :   }
     745          57 :   if (nbc > nbcmax) nbc = nbcmax;
     746          57 :   E->nbc = nbc;
     747          57 :   E->nbc2 = nbc << 1;
     748          57 :   ECM_alloc(E, lgefint(N));
     749          57 : }
     750             : 
     751             : static GEN
     752          93 : ECM_loop(struct ECM *E, GEN N, ulong B1)
     753             : {
     754          93 :   const ulong B2 = 110 * B1, B2_rt = usqrt(B2);
     755          93 :   const ulong nbc = E->nbc, nbc2 = E->nbc2;
     756             :   pari_sp av1, avtmp;
     757             :   long i, np, np0, gse, gss, bstp, bstp0, rcn0, rcn;
     758             :   ulong B2_p, m, p, p0;
     759             :   GEN g, *XG, *YG;
     760          93 :   GEN *X = E->X, *XAUX = E->XAUX, *XT = E->XT, *XD = E->XD;
     761          93 :   GEN *XB = E->XB, *XB2 = E->XB2, *XH = E->XH, *Xh = E->Xh, *Yh = E->Yh;
     762             :   /* pick curves */
     763        4461 :   for (i = nbc2; i--; ) affui(E->seed++, X[i]);
     764             :   /* pick giant step exponent and size */
     765          93 :   gse = B1 < 656
     766             :           ? (B1 < 200? 5: 6)
     767          93 :           : (B1 < 10500
     768             :             ? (B1 < 2625? 7: 8)
     769             :             : (B1 < 42000? 9: 10));
     770          93 :   gss = 1UL << gse;
     771             :   /* With 32 baby steps, a giant step corresponds to 32*420 = 13440,
     772             :    * appropriate for the smallest B2s. With 1024, a giant step will be 430080;
     773             :    * appropriate for B1 >~ 42000, where 512 baby steps would imply roughly
     774             :    * the same number of curve additions. */
     775          93 :   XG = XT + gse*nbc2; /* will later hold [2^(gse+1)*210]Q */
     776          93 :   YG = XG + nbc;
     777             : 
     778          93 :   if (DEBUGLEVEL >= 4) {
     779           0 :     err_printf("ECM: time = %6ld ms\nECM: B1 = %4lu,", timer_delay(&E->T), B1);
     780           0 :     err_printf("\tB2 = %6lu,\tgss = %4ld*420\n", B2, gss);
     781             :   }
     782          93 :   p = 2; np = 1; /* p is np-th prime */
     783             : 
     784             :   /* ---B1 PHASE--- */
     785             :   /* treat p=2 separately */
     786          93 :   B2_p = B2 >> 1;
     787        1603 :   for (m=1; m<=B2_p; m<<=1)
     788             :   {
     789        1510 :     int fl = elldouble(N, &g, nbc, X, X);
     790        1510 :     if (fl > 1) return g; else if (fl) break;
     791             :   }
     792          93 :   rcn = NPRC; /* multipliers begin at the beginning */
     793             :   /* p=3,...,nextprime(B1) */
     794        6538 :   while (p < B1 && p <= B2_rt)
     795             :   {
     796        6445 :     pari_sp av2 = avma;
     797        6445 :     p = snextpr(p, &np, &rcn, NULL, uisprime);
     798        6445 :     B2_p = B2/p; /* beware integer overflow on 32-bit CPUs */
     799       22021 :     for (m=1; m<=B2_p; m*=p)
     800             :     {
     801       15576 :       int fl = ellmult(N, &g, nbc, p, X, X, XAUX);
     802       15576 :       if (fl > 1) return g; else if (fl) break;
     803       15576 :       set_avma(av2);
     804             :     }
     805        6445 :     set_avma(av2);
     806             :   }
     807             :   /* primes p larger than sqrt(B2) appear only to the 1st power */
     808        9924 :   while (p < B1)
     809             :   {
     810        9849 :     pari_sp av2 = avma;
     811        9849 :     p = snextpr(p, &np, &rcn, NULL, uisprime);
     812        9849 :     if (ellmult(N, &g, nbc, p, X, X, XAUX) > 1) return g;
     813        9831 :     set_avma(av2);
     814             :   }
     815          75 :   if (DEBUGLEVEL >= 4) {
     816           0 :     err_printf("ECM: time = %6ld ms, B1 phase done, ", timer_delay(&E->T));
     817           0 :     err_printf("p = %lu, setting up for B2\n", p);
     818             :   }
     819             : 
     820             :   /* ---B2 PHASE--- */
     821             :   /* compute [2]Q,...,[10]Q, needed to build the helix */
     822          75 :   if (elldouble(N, &g, nbc, X, XD) > 1) return g; /*[2]Q*/
     823          75 :   if (elldouble(N, &g, nbc, XD, XD + nbc2) > 1) return g; /*[4]Q*/
     824          75 :   if (ecm_elladd(N, &g, nbc,
     825          75 :         XD, XD + nbc2, XD + (nbc<<2)) > 1) return g; /* [6]Q */
     826          75 :   if (ecm_elladd2(N, &g, nbc,
     827             :         XD, XD + (nbc<<2), XT + (nbc<<3),
     828          75 :         XD + nbc2, XD + (nbc<<2), XD + (nbc<<3)) > 1)
     829           0 :     return g; /* [8]Q and [10]Q */
     830          75 :   if (DEBUGLEVEL >= 7) err_printf("\t(got [2]Q...[10]Q)\n");
     831             : 
     832             :   /* get next prime (still using the foolproof test) */
     833          75 :   p = snextpr(p, &np, &rcn, NULL, uisprime);
     834             :   /* make sure we have the residue class number (mod 210) */
     835          75 :   if (rcn == NPRC)
     836             :   {
     837          75 :     rcn = prc210_no[(p % 210) >> 1];
     838          75 :     if (rcn == NPRC)
     839             :     {
     840           0 :       err_printf("ECM: %lu should have been prime but isn\'t\n", p);
     841           0 :       pari_err_BUG("ellfacteur");
     842             :     }
     843             :   }
     844             : 
     845             :   /* compute [p]Q and put it into its place in the helix */
     846          75 :   if (ellmult(N, &g, nbc, p, X, XH + rcn*nbc2, XAUX) > 1)
     847           0 :     return g;
     848          75 :   if (DEBUGLEVEL >= 7)
     849           0 :     err_printf("\t(got [p]Q, p = %lu = prc210_rp[%ld] mod 210)\n", p, rcn);
     850             : 
     851             :   /* save current p, np, and rcn;  we'll need them more than once below */
     852          75 :   p0 = p; np0 = np; rcn0 = rcn;
     853          75 :   bstp0 = 0; /* p is at baby-step offset 0 from itself */
     854             : 
     855             :   /* fill up the helix, stepping forward through the prime residue classes
     856             :    * mod 210 until we're back at the r'class of p0.  Keep updating p so
     857             :    * that we can print meaningful diagnostics if a factor shows up; don't
     858             :    * bother checking which of these p's are in fact prime */
     859        3600 :   for (i = 47; i; i--) /* 47 iterations */
     860             :   {
     861        3525 :     ulong dp = (ulong)prc210_d1[rcn];
     862        3525 :     p += dp;
     863        3525 :     if (rcn == 47)
     864             :     { /* wrap mod 210 */
     865          75 :       if (ecm_elladd(N, &g, nbc, XT+dp*nbc, XH+rcn*nbc2, XH) > 1) return g;
     866          75 :       rcn = 0; continue;
     867             :     }
     868        3450 :     if (ecm_elladd(N, &g, nbc, XT+dp*nbc, XH+rcn*nbc2, XH+rcn*nbc2+nbc2) > 1)
     869           0 :       return g;
     870        3450 :     rcn++;
     871             :   }
     872          75 :   if (DEBUGLEVEL >= 7) err_printf("\t(got initial helix)\n");
     873             :   /* compute [210]Q etc, needed for the baby step table */
     874          75 :   if (ellmult(N, &g, nbc, 3, XD + (nbc<<3), X, XAUX) > 1) return g;
     875          75 :   if (ellmult(N, &g, nbc, 7, X, X, XAUX) > 1) return g; /* [210]Q */
     876             :   /* this was the last call to ellmult() in the main loop body; may now
     877             :    * overwrite XAUX and slots XD and following */
     878          75 :   if (elldouble(N, &g, nbc, X, XAUX) > 1) return g; /* [420]Q */
     879          75 :   if (ecm_elladd(N, &g, nbc, X, XAUX, XT) > 1) return g;/*[630]Q*/
     880          75 :   if (ecm_elladd(N, &g, nbc, X, XT, XD) > 1) return g;  /*[840]Q*/
     881         561 :   for (i=1; i <= gse; i++)
     882         486 :     if (elldouble(N, &g, nbc, XT + i*nbc2, XD + i*nbc2) > 1) return g;
     883             :   /* (the last iteration has initialized XG to [210*2^(gse+1)]Q) */
     884             : 
     885          75 :   if (DEBUGLEVEL >= 4)
     886           0 :     err_printf("ECM: time = %6ld ms, entering B2 phase, p = %lu\n",
     887             :                timer_delay(&E->T), p);
     888             : 
     889         391 :   for (i = nbc - 4; i >= 0; i -= 4)
     890             :   { /* loop over small sets of 4 curves at a time */
     891             :     GEN *Xb;
     892             :     long j, k;
     893         323 :     if (DEBUGLEVEL >= 6)
     894           0 :       err_printf("ECM: finishing curves %ld...%ld\n", i, i+3);
     895             :     /* Copy relevant pointers from XH to Xh. Memory layout in XH:
     896             :      * nbc X coordinates, nbc Y coordinates for residue class
     897             :      * 1 mod 210, then the same for r.c. 11 mod 210, etc. Memory layout for
     898             :      * Xh is: four X coords for 1 mod 210, four for 11 mod 210, ..., four
     899             :      * for 209 mod 210, then the corresponding Y coordinates in the same
     900             :      * order. This allows a giant step on Xh using just three calls to
     901             :      * ecm_elladd0() each acting on 64 points in parallel */
     902       15827 :     for (j = 48; j--; )
     903             :     {
     904       15504 :       k = nbc2*j + i;
     905       15504 :       m = j << 2; /* X coordinates */
     906       15504 :       Xh[m]   = XH[k];   Xh[m+1] = XH[k+1];
     907       15504 :       Xh[m+2] = XH[k+2]; Xh[m+3] = XH[k+3];
     908       15504 :       k += nbc; /* Y coordinates */
     909       15504 :       Yh[m]   = XH[k];   Yh[m+1] = XH[k+1];
     910       15504 :       Yh[m+2] = XH[k+2]; Yh[m+3] = XH[k+3];
     911             :     }
     912             :     /* Build baby step table of X coords of multiples of [210]Q.  XB[4*j]
     913             :      * will point at X coords on four curves from [(j+1)*210]Q.  Until
     914             :      * we're done, we need some Y coords as well, which we keep in the
     915             :      * second half of the table, overwriting them at the end when gse=10.
     916             :      * Multiples which we already have  (by 1,2,3,4,8,16,...,2^gse) are
     917             :      * entered simply by copying the pointers, ignoring the few slots in w
     918             :      * that were initially reserved for them. Here are the initial entries */
     919         969 :     for (Xb=XB,k=2,j=i; k--; Xb=XB2,j+=nbc) /* first X, then Y coords */
     920             :     {
     921         646 :       Xb[0]  = X[j];      Xb[1]  = X[j+1]; /* [210]Q */
     922         646 :       Xb[2]  = X[j+2];    Xb[3]  = X[j+3];
     923         646 :       Xb[4]  = XAUX[j];   Xb[5]  = XAUX[j+1]; /* [420]Q */
     924         646 :       Xb[6]  = XAUX[j+2]; Xb[7]  = XAUX[j+3];
     925         646 :       Xb[8]  = XT[j];     Xb[9]  = XT[j+1]; /* [630]Q */
     926         646 :       Xb[10] = XT[j+2];   Xb[11] = XT[j+3];
     927         646 :       Xb += 4; /* points at [420]Q */
     928             :       /* ... entries at powers of 2 times 210 .... */
     929        4057 :       for (m = 2; m < (ulong)gse+k; m++) /* omit Y coords of [2^gse*210]Q */
     930             :       {
     931        3411 :         long m2 = m*nbc2 + j;
     932        3411 :         Xb += (2UL<<m); /* points at [2^m*210]Q */
     933        3411 :         Xb[0] = XAUX[m2];   Xb[1] = XAUX[m2+1];
     934        3411 :         Xb[2] = XAUX[m2+2]; Xb[3] = XAUX[m2+3];
     935             :       }
     936             :     }
     937         323 :     if (DEBUGLEVEL >= 7)
     938           0 :       err_printf("\t(extracted precomputed helix / baby step entries)\n");
     939             :     /* ... glue in between, up to 16*210 ... */
     940         323 :     if (ecm_elladd0(N, &g, 12, 4, /* 12 pts + (4 pts replicated thrice) */
     941             :           XB + 12, XB2 + 12,
     942             :           XB,      XB2,
     943           0 :           XB + 16, XB2 + 16) > 1) return g; /*4+{1,2,3} = {5,6,7}*/
     944         323 :     if (ecm_elladd0(N, &g, 28, 4, /* 28 pts + (4 pts replicated 7fold) */
     945             :           XB + 28, XB2 + 28,
     946             :           XB,      XB2,
     947           0 :           XB + 32, XB2 + 32) > 1) return g;/*8+{1...7} = {9...15}*/
     948             :     /* ... and the remainder of the lot */
     949        1221 :     for (m = 5; m <= (ulong)gse; m++)
     950             :     { /* fill in from 2^(m-1)+1 to 2^m-1 in chunks of 64 and 60 points */
     951         898 :       ulong m2 = 2UL << m; /* will point at 2^(m-1)+1 */
     952        1977 :       for (j = 0; (ulong)j < m2-64; j+=64) /* executed 0 times when m = 5 */
     953             :       {
     954        1906 :         if (ecm_elladd0(N, &g, 64, 4,
     955        1079 :               XB + m2-4, XB2 + m2-4,
     956        1079 :               XB + j,    XB2 + j,
     957        1906 :               XB + m2+j, (m<(ulong)gse? XB2+m2+j: NULL)) > 1)
     958           0 :           return g;
     959             :       } /* j = m2-64 here, 60 points left */
     960        1221 :       if (ecm_elladd0(N, &g, 60, 4,
     961         898 :             XB + m2-4, XB2 + m2-4,
     962         898 :             XB + j,    XB2 + j,
     963        1221 :             XB + m2+j, (m<(ulong)gse? XB2+m2+j: NULL)) > 1)
     964           0 :         return g;
     965             :       /* when m=gse, drop Y coords of result, and when both equal 1024,
     966             :        * overwrite Y coords of second argument with X coords of result */
     967             :     }
     968         323 :     if (DEBUGLEVEL >= 7) err_printf("\t(baby step table complete)\n");
     969             :     /* initialize a few other things */
     970         323 :     bstp = bstp0; p = p0; np = np0; rcn = rcn0;
     971         323 :     g = gen_1; av1 = avma;
     972             :     /* scratchspace for prod (x_i-x_j) */
     973         323 :     avtmp = (pari_sp)new_chunk(8 * lgefint(N));
     974             :     /* The correct entry in XB to use depends on bstp and on where we are
     975             :      * on the helix. As we skip from prime to prime, bstp is incremented
     976             :      * by snextpr each time we wrap around through residue class number 0
     977             :      * (1 mod 210), but the baby step should not be taken until rcn>=rcn0,
     978             :      * i.e. until we pass again the residue class of p0.
     979             :      *
     980             :      * The correct signed multiplier is thus k = bstp - (rcn < rcn0),
     981             :      * and the offset from XB is four times (|k| - 1).  When k=0, we ignore
     982             :      * the current prime: if it had led to a factorization, this
     983             :      * would have been noted during the last giant step, or -- when we
     984             :      * first get here -- whilst initializing the helix.  When k > gss,
     985             :      * we must do a giant step and bump bstp back by -2*gss.
     986             :      *
     987             :      * The gcd of the product of X coord differences against N is taken just
     988             :      * before we do a giant step. */
     989     4515264 :     while (p < B2)
     990             :     {/* loop over probable primes p0 < p <= nextprime(B2), inserting giant
     991             :       * steps as necessary */
     992     4514948 :       p = snextpr(p, &np, &rcn, &bstp, uis2psp); /* next probable prime */
     993             :       /* work out the corresponding baby-step multiplier */
     994     4514948 :       k = bstp - (rcn < rcn0 ? 1 : 0);
     995     4514948 :       if (k > gss)
     996             :       { /* giant-step time, take gcd */
     997        1114 :         g = gcdii(g, N);
     998        1114 :         if (!is_pm1(g) && !equalii(g, N)) return g;
     999        1107 :         g = gen_1; set_avma(av1);
    1000        2214 :         while (k > gss)
    1001             :         { /* giant step */
    1002        1107 :           if (DEBUGLEVEL >= 7) err_printf("\t(giant step at p = %lu)\n", p);
    1003        1107 :           if (ecm_elladd0(N, &g, 64, 4, XG + i, YG + i,
    1004           0 :                 Xh, Yh, Xh, Yh) > 1) return g;
    1005        1107 :           if (ecm_elladd0(N, &g, 64, 4, XG + i, YG + i,
    1006             :                 Xh + 64, Yh + 64, Xh + 64, Yh + 64) > 1)
    1007           0 :             return g;
    1008        1107 :           if (ecm_elladd0(N, &g, 64, 4, XG + i, YG + i,
    1009             :                 Xh + 128, Yh + 128, Xh + 128, Yh + 128) > 1)
    1010           0 :             return g;
    1011        1107 :           bstp -= (gss << 1);
    1012        1107 :           k = bstp - (rcn < rcn0? 1: 0); /* recompute multiplier */
    1013             :         }
    1014             :       }
    1015     4514941 :       if (!k) continue; /* point of interest is already in Xh */
    1016     4490276 :       if (k < 0) k = -k;
    1017     4490276 :       m = ((ulong)k - 1) << 2;
    1018             :       /* accumulate product of differences of X coordinates */
    1019     4490276 :       j = rcn<<2;
    1020     4490276 :       avma = avtmp; /* go to garbage zone; don't use set_avma */
    1021     4490276 :       g = modii(mulii(g, subii(XB[m],   Xh[j])), N);
    1022     4490276 :       g = modii(mulii(g, subii(XB[m+1], Xh[j+1])), N);
    1023     4490276 :       g = modii(mulii(g, subii(XB[m+2], Xh[j+2])), N);
    1024     4490276 :       g = mulii(g, subii(XB[m+3], Xh[j+3]));
    1025     4490276 :       set_avma(av1);
    1026     4490276 :       g = modii(g, N);
    1027             :     }
    1028         316 :     set_avma(av1);
    1029             :   }
    1030          68 :   return NULL;
    1031             : }
    1032             : 
    1033             : /* ellfacteur() tuned to be useful as a first stage before MPQS, especially for
    1034             :  * large arguments, when 'insist' is false, and now also for the case when
    1035             :  * 'insist' is true, vaguely following suggestions by Paul Zimmermann
    1036             :  * (http://www.loria.fr/~zimmerma/records/ecmnet.html). --GN 1998Jul,Aug */
    1037             : static GEN
    1038        3262 : ellfacteur(GEN N, int insist)
    1039             : {
    1040        3262 :   const long size = expi(N) + 1;
    1041        3262 :   pari_sp av = avma;
    1042             :   struct ECM E;
    1043        3262 :   long nbc, dsn, dsnmax, rep = 0;
    1044        3262 :   if (insist)
    1045             :   {
    1046           0 :     const long DSNMAX = numberof(TB1)-1;
    1047           0 :     dsnmax = (size >> 2) - 10;
    1048           0 :     if (dsnmax < 0) dsnmax = 0;
    1049           0 :     else if (dsnmax > DSNMAX) dsnmax = DSNMAX;
    1050           0 :     E.seed = 1 + (nbcmax<<7)*(size&0xffff); /* seed for choice of curves */
    1051             : 
    1052           0 :     dsn = (size >> 3) - 5;
    1053           0 :     if (dsn < 0) dsn = 0; else if (dsn > 47) dsn = 47;
    1054             :     /* pick up the torch where noninsistent stage would have given up */
    1055           0 :     nbc = dsn + (dsn >> 2) + 9; /* 8 or more curves in parallel */
    1056           0 :     nbc &= ~3; /* 4 | nbc */
    1057             :   }
    1058             :   else
    1059             :   {
    1060        3262 :     dsn = (size - 140) >> 3;
    1061        3262 :     if (dsn < 0)
    1062             :     {
    1063             : #ifndef __EMX__ /* unless DOS/EMX: MPQS's disk access is abysmally slow */
    1064        3205 :       if (DEBUGLEVEL >= 4)
    1065           0 :         err_printf("ECM: number too small to justify this stage\n");
    1066        3205 :       return NULL; /* too small, decline the task */
    1067             : #endif
    1068             :       dsn = 0;
    1069          57 :     } else if (dsn > 12) dsn = 12;
    1070          57 :     rep = (size <= 248 ?
    1071          57 :            (size <= 176 ? (size - 124) >> 4 : (size - 148) >> 3) :
    1072          18 :            (size - 224) >> 1);
    1073             : #ifdef __EMX__ /* DOS/EMX: extra rounds (shun MPQS) */
    1074             :     rep += 20;
    1075             : #endif
    1076          57 :     dsnmax = 72;
    1077             :     /* Use disjoint sets of curves for non-insist and insist phases; moreover,
    1078             :      * repeated calls acting on factors of the same original number should try
    1079             :      * to use fresh curves. The following achieves this */
    1080          57 :     E.seed = 1 + (nbcmax<<3)*(size & 0xf);
    1081          57 :     nbc = -1;
    1082             :   }
    1083          57 :   ECM_init(&E, N, nbc);
    1084          57 :   if (DEBUGLEVEL >= 4)
    1085             :   {
    1086           0 :     timer_start(&E.T);
    1087           0 :     err_printf("ECM: working on %ld curves at a time; initializing", E.nbc);
    1088           0 :     if (!insist)
    1089             :     {
    1090           0 :       if (rep == 1) err_printf(" for one round");
    1091           0 :       else          err_printf(" for up to %ld rounds", rep);
    1092             :     }
    1093           0 :     err_printf("...\n");
    1094             :   }
    1095          57 :   if (dsn > dsnmax) dsn = dsnmax;
    1096             :   for(;;)
    1097          36 :   {
    1098          93 :     ulong B1 = insist? TB1[dsn]: TB1_for_stage[dsn];
    1099          93 :     GEN g = ECM_loop(&E, N, B1);
    1100          93 :     if (g)
    1101             :     {
    1102          25 :       if (DEBUGLEVEL >= 4)
    1103           0 :         err_printf("ECM: time = %6ld ms\n\tfound factor = %Ps\n",
    1104             :                    timer_delay(&E.T), g);
    1105          25 :       return gc_GEN(av, g);
    1106             :     }
    1107          68 :     if (dsn < dsnmax)
    1108             :     {
    1109          68 :       if (insist) dsn++;
    1110          68 :       else { dsn += 2; if (dsn > dsnmax) dsn = dsnmax; }
    1111             :     }
    1112          68 :     if (!insist && !--rep)
    1113             :     {
    1114          32 :       if (DEBUGLEVEL >= 4)
    1115           0 :         err_printf("ECM: time = %6ld ms,\tellfacteur giving up.\n",
    1116             :                    timer_delay(&E.T));
    1117          32 :       return gc_NULL(av);
    1118             :     }
    1119             :   }
    1120             : }
    1121             : /* assume rounds >= 1, seed >= 1, B1 <= ULONG_MAX / 110 */
    1122             : GEN
    1123           0 : Z_ECM(GEN N, long rounds, long seed, ulong B1)
    1124             : {
    1125           0 :   pari_sp av = avma;
    1126             :   struct ECM E;
    1127             :   long i;
    1128           0 :   E.seed = seed;
    1129           0 :   ECM_init(&E, N, -1);
    1130           0 :   if (DEBUGLEVEL >= 4) timer_start(&E.T);
    1131           0 :   for (i = rounds; i--; )
    1132             :   {
    1133           0 :     GEN g = ECM_loop(&E, N, B1);
    1134           0 :     if (g) return gc_GEN(av, g);
    1135             :   }
    1136           0 :   return gc_NULL(av);
    1137             : }
    1138             : 
    1139             : /***********************************************************************/
    1140             : /**                                                                   **/
    1141             : /**                FACTORIZATION (Pollard-Brent rho) --GN1998Jun18-26 **/
    1142             : /**  pollardbrent() returns a nontrivial factor of n, assuming n is   **/
    1143             : /**  composite and has no small prime divisor, or NULL if going on    **/
    1144             : /**  would take more time than we want to spend.  Sometimes it finds  **/
    1145             : /**  more than one factor, and returns a structure suitable for       **/
    1146             : /**  interpretation by ifac_crack. (Cf Algo 8.5.2 in ACiCNT)          **/
    1147             : /**                                                                   **/
    1148             : /***********************************************************************/
    1149             : #define VALUE(x) gel(x,0)
    1150             : #define EXPON(x) gel(x,1)
    1151             : #define CLASS(x) gel(x,2)
    1152             : 
    1153             : INLINE void
    1154       51470 : INIT(GEN x, GEN v, GEN e, GEN c) {
    1155       51470 :   VALUE(x) = v;
    1156       51470 :   EXPON(x) = e;
    1157       51470 :   CLASS(x) = c;
    1158       51470 : }
    1159             : static void
    1160       45557 : ifac_delete(GEN x) { INIT(x,NULL,NULL,NULL); }
    1161             : 
    1162             : static void
    1163           0 : rho_dbg(pari_timer *T, long c, long msg_mask)
    1164             : {
    1165           0 :   if (c & msg_mask) return;
    1166           0 :   err_printf("Rho: time = %6ld ms,\t%3ld round%s\n",
    1167             :              timer_delay(T), c, (c==1?"":"s"));
    1168             : }
    1169             : 
    1170             : static void
    1171    28246372 : one_iter(GEN *x, GEN *P, GEN x1, GEN n, long delta)
    1172             : {
    1173    28246372 :   *x = addis(remii(sqri(*x), n), delta);
    1174    28174179 :   *P = modii(mulii(*P, subii(x1, *x)), n);
    1175    28241961 : }
    1176             : /* Return NULL when we run out of time, or a single t_INT containing a
    1177             :  * nontrivial factor of n, or a vector of t_INTs, each triple of successive
    1178             :  * entries containing a factor, an exponent (equal to one),  and a factor
    1179             :  * class (NULL for unknown or zero for known composite),  matching the
    1180             :  * internal representation used by the ifac_*() routines below. Repeated
    1181             :  * factors may arise; the caller will sort the factors anyway. Result
    1182             :  * is not GC-able (contains NULL) */
    1183             : static GEN
    1184         802 : pollardbrent_i(GEN n, long size, long c0, long retries)
    1185             : {
    1186         802 :   long tf = lgefint(n), delta, msg_mask, c, k, k1, l;
    1187             :   pari_sp av;
    1188             :   GEN x, x1, y, P, g, g1, res;
    1189             :   pari_timer T;
    1190             : 
    1191         802 :   if (DEBUGLEVEL >= 4) timer_start(&T);
    1192         802 :   c = c0 << 5; /* 2^5 iterations per round */
    1193        1604 :   msg_mask = (size >= 448? 0x1fff:
    1194         802 :                            (size >= 192? (256L<<((size-128)>>6))-1: 0xff));
    1195         802 :   y = cgeti(tf);
    1196         802 :   x1= cgeti(tf);
    1197         802 :   av = avma;
    1198             : 
    1199         802 : PB_RETRY:
    1200             :  /* trick to make a 'random' choice determined by n.  Don't use x^2+0 or
    1201             :   * x^2-2, ever.  Don't use x^2-3 or x^2-7 with a starting value of 2.
    1202             :   * x^2+4, x^2+9 are affine conjugate to x^2+1, so don't use them either.
    1203             :   *
    1204             :   * (the point being that when we get called again on a composite cofactor
    1205             :   * of something we've already seen, we had better avoid the same delta) */
    1206         802 :   switch ((size + retries) & 7)
    1207             :   {
    1208         107 :     case 0:  delta=  1; break;
    1209         177 :     case 1:  delta= -1; break;
    1210          92 :     case 2:  delta=  3; break;
    1211          73 :     case 3:  delta=  5; break;
    1212          72 :     case 4:  delta= -5; break;
    1213          56 :     case 5:  delta=  7; break;
    1214         141 :     case 6:  delta= 11; break;
    1215             :     /* case 7: */
    1216          84 :     default: delta=-11; break;
    1217             :   }
    1218         802 :   if (DEBUGLEVEL >= 4)
    1219             :   {
    1220           0 :     if (!retries)
    1221           0 :       err_printf("Rho: searching small factor of %ld-bit integer\n", size);
    1222             :     else
    1223           0 :       err_printf("Rho: restarting for remaining rounds...\n");
    1224           0 :     err_printf("Rho: using X^2%+1ld for up to %ld rounds of 32 iterations\n",
    1225             :                delta, c >> 5);
    1226             :   }
    1227         802 :   x = gen_2; P = gen_1; g1 = NULL; k = 1; l = 1;
    1228         802 :   affui(2, y);
    1229         802 :   affui(2, x1);
    1230             :   for (;;) /* terminated under the control of c */
    1231             :   { /* use the polynomial  x^2 + delta */
    1232    13201002 :     one_iter(&x, &P, x1, n, delta);
    1233             : 
    1234    13201835 :     if ((--c & 0x1f)==0)
    1235             :     { /* one round complete */
    1236      412568 :       g = gcdii(n, P); if (!is_pm1(g)) goto fin;
    1237      412322 :       if (c <= 0)
    1238             :       { /* getting bored */
    1239         396 :         if (DEBUGLEVEL >= 4)
    1240           0 :           err_printf("Rho: time = %6ld ms,\tPollard-Brent giving up.\n",
    1241             :                      timer_delay(&T));
    1242         396 :         return NULL;
    1243             :       }
    1244      411926 :       P = gen_1;
    1245      411926 :       if (DEBUGLEVEL >= 4) rho_dbg(&T, c0-(c>>5), msg_mask);
    1246      411926 :       affii(x,y); x = y; set_avma(av);
    1247             :     }
    1248             : 
    1249    13200521 :     if (--k) continue; /* normal end of loop body */
    1250             : 
    1251        8613 :     if (c & 0x1f) /* otherwise, we already checked */
    1252             :     {
    1253        4812 :       g = gcdii(n, P); if (!is_pm1(g)) goto fin;
    1254        4812 :       P = gen_1;
    1255             :     }
    1256             : 
    1257             :    /* Fast forward phase, doing l inner iterations without computing gcds.
    1258             :     * Check first whether it would take us beyond the alloted time.
    1259             :     * Fast forward rounds count only half (although they're taking
    1260             :     * more like 2/3 the time of normal rounds).  This to counteract the
    1261             :     * nuisance that all c0 between 4096 and 6144 would act exactly as
    1262             :     * 4096;  with the halving trick only the range 4096..5120 collapses
    1263             :     * (similarly for all other powers of two) */
    1264        8613 :     if ((c -= (l>>1)) <= 0)
    1265             :     { /* got bored */
    1266         179 :       if (DEBUGLEVEL >= 4)
    1267           0 :         err_printf("Rho: time = %6ld ms,\tPollard-Brent giving up.\n",
    1268             :                    timer_delay(&T));
    1269         179 :       return NULL;
    1270             :     }
    1271        8434 :     c &= ~0x1f; /* keep it on multiples of 32 */
    1272             : 
    1273             :     /* Fast forward loop */
    1274        8434 :     affii(x, x1); set_avma(av); x = x1;
    1275        8434 :     k = l; l <<= 1;
    1276             :     /* don't show this for the first several (short) fast forward phases. */
    1277        8434 :     if (DEBUGLEVEL >= 4 && (l>>7) > msg_mask)
    1278           0 :       err_printf("Rho: fast forward phase (%ld rounds of 64)...\n", l>>7);
    1279    15072755 :     for (k1=k; k1; k1--)
    1280             :     {
    1281    15065459 :       one_iter(&x, &P, x1, n, delta);
    1282    15062825 :       if ((k1 & 0x1f) == 0) (void)gc_all(av, 2, &x, &P);
    1283             :     }
    1284        7296 :     if (DEBUGLEVEL >= 4 && (l>>7) > msg_mask)
    1285           0 :       err_printf("Rho: time = %6ld ms,\t%3ld rounds, back to normal mode\n",
    1286           0 :                  timer_delay(&T), c0-(c>>5));
    1287        7296 :     affii(x,y); P = gc_INT(av, P); x = y;
    1288             :   } /* forever */
    1289             : 
    1290         227 : fin:
    1291             :   /* An accumulated gcd was > 1 */
    1292         227 :   if  (!equalii(g,n))
    1293             :   { /* if it isn't n, and looks prime, return it */
    1294         227 :     if (MR_Jaeschke(g))
    1295             :     {
    1296         227 :       if (DEBUGLEVEL >= 4)
    1297             :       {
    1298           0 :         rho_dbg(&T, c0-(c>>5), 0);
    1299           0 :         err_printf("\tfound factor = %Ps\n",g);
    1300             :       }
    1301         227 :       return g;
    1302             :     }
    1303           0 :     set_avma(av); g1 = icopy(g);  /* known composite, keep it safe */
    1304           0 :     av = avma;
    1305             :   }
    1306           0 :   else g1 = n; /* and work modulo g1 for backtracking */
    1307             : 
    1308             :   /* Here g1 is known composite */
    1309           0 :   if (DEBUGLEVEL >= 4 && size > 192)
    1310           0 :     err_printf("Rho: hang on a second, we got something here...\n");
    1311           0 :   x = y;
    1312             :   for(;;)
    1313             :   { /* backtrack until period recovered. Must terminate */
    1314           0 :     x = addis(remii(sqri(x), g1), delta);
    1315           0 :     g = gcdii(subii(x1, x), g1); if (!is_pm1(g)) break;
    1316             : 
    1317           0 :     if (DEBUGLEVEL >= 4 && (--c & 0x1f) == 0) rho_dbg(&T, c0-(c>>5), msg_mask);
    1318             :   }
    1319             : 
    1320           0 :   if (g1 == n || equalii(g,g1))
    1321             :   {
    1322           0 :     if (g1 == n && equalii(g,g1))
    1323             :     { /* out of luck */
    1324           0 :       if (DEBUGLEVEL >= 4)
    1325             :       {
    1326           0 :         rho_dbg(&T, c0-(c>>5), 0);
    1327           0 :         err_printf("\tPollard-Brent failed.\n");
    1328             :       }
    1329           0 :       if (++retries >= 4) pari_err_BUG("");
    1330           0 :       goto PB_RETRY;
    1331             :     }
    1332             :     /* half lucky: we've split n, but g1 equals either g or n */
    1333           0 :     if (DEBUGLEVEL >= 4)
    1334             :     {
    1335           0 :       rho_dbg(&T, c0-(c>>5), 0);
    1336           0 :       err_printf("\tfound %sfactor = %Ps\n", (g1!=n ? "composite " : ""), g);
    1337             :     }
    1338           0 :     res = cgetg(7, t_VEC);
    1339             :     /* g^1: known composite when g1!=n */
    1340           0 :     INIT(res+1, g, gen_1, (g1!=n? gen_0: NULL));
    1341             :     /* cofactor^1: status unknown */
    1342           0 :     INIT(res+4, diviiexact(n,g), gen_1, NULL);
    1343           0 :     return res;
    1344             :   }
    1345             :   /* g < g1 < n : our lucky day -- we've split g1, too */
    1346           0 :   res = cgetg(10, t_VEC);
    1347             :   /* unknown status for all three factors */
    1348           0 :   INIT(res+1, g,                gen_1, NULL);
    1349           0 :   INIT(res+4, diviiexact(g1,g), gen_1, NULL);
    1350           0 :   INIT(res+7, diviiexact(n,g1), gen_1, NULL);
    1351           0 :   if (DEBUGLEVEL >= 4)
    1352             :   {
    1353           0 :     rho_dbg(&T, c0-(c>>5), 0);
    1354           0 :     err_printf("\tfound factors = %Ps, %Ps,\n\tand %Ps\n",
    1355           0 :                gel(res,1), gel(res,4), gel(res,7));
    1356             :   }
    1357           0 :   return res;
    1358             : }
    1359             : /* decline if n < 2^96 */
    1360             : static GEN
    1361        3489 : pollardbrent(GEN n)
    1362             : {
    1363        3489 :   const long tune = 14; /* FIXME: retune this */
    1364        3489 :   long c0, size, tf = lgefint(n);
    1365             : #ifdef LONG_IS_64BIT
    1366        3039 :   if (tf < 4 || (tf == 4 && uel(n,2) < (1UL << 32))) return NULL;
    1367             : #else  /* 32 bits */
    1368         450 :   if (tf < 5) return NULL;
    1369             : #endif
    1370         802 :   size = expi(n) + 1;
    1371             :   /* nonlinear increase in effort, kicking in around 80 bits */
    1372         802 :   if (size <= 301) /* 301 gives 48121 + tune */
    1373         795 :     c0 = tune + size-60 + ((size-73)>>1)*((size-70)>>3)*((size-56)>>4);
    1374             :   else
    1375           7 :     c0 = 49152; /* ECM is faster when it'd take longer */
    1376         802 :   return pollardbrent_i(n, size, c0, 0);
    1377             : }
    1378             : GEN
    1379           0 : Z_pollardbrent(GEN n, long rounds, long seed)
    1380             : {
    1381           0 :   pari_sp av = avma;
    1382           0 :   GEN v = pollardbrent_i(n, expi(n)+1, rounds, seed);
    1383           0 :   if (!v) return NULL;
    1384           0 :   if (typ(v) == t_INT) v = mkvec2(v, diviiexact(n,v));
    1385           0 :   else if (lg(v) == 7) v = mkvec2(gel(v,1), gel(v,4));
    1386           0 :   else v = mkvec3(gel(v,1), gel(v,4), gel(v,7));
    1387           0 :   return gc_GEN(av, v);
    1388             : }
    1389             : 
    1390             : /***********************************************************************/
    1391             : /**              FACTORIZATION (Shanks' SQUFOF) --GN2000Sep30-Oct01   **/
    1392             : /**  squfof() returns a proper factor of n, or NULL (failure). Assume **/
    1393             : /**  n is composite, not a square, and has no small prime divisors.   **/
    1394             : /**  Works on two discriminants at once: n and 5n or 3n and 4n        **/
    1395             : /**  Present implementation is limited to input <2^59, and works most **/
    1396             : /**  of the time in signed arithmetic on integers <2^31 in absolute   **/
    1397             : /**  size. (Cf. Algo 8.7.2 in ACiCNT)                                 **/
    1398             : /***********************************************************************/
    1399             : 
    1400             : /* squfof_ambig walks back along the ambiguous cycle until we hit an ambiguous
    1401             :  * form and thus the desired factor, which it returns. Returs 0 on failure.
    1402             :  *
    1403             :  * Input: a form (A, B, -C) with A = a^2, where a isn't blacklisted and
    1404             :  * (a, B) = 1. We should now proceed reducing the form (a, -B, -aC), but the
    1405             :  * first reduction step always sends this to (-aC, B, a), and the next one,
    1406             :  * with q computed as usual from B and a (occupying the c position), gives a
    1407             :  * reduced form, whose third member is easiest to recover by going back to D.
    1408             :  * From this point onwards, we're once again working with single-word numbers.
    1409             :  * No need to track signs, just work with the abs values of the coefficients.
    1410             :  * HACK: if LONG_IS_64BIT, D is actually a typecast long */
    1411             : static long
    1412        2007 : squfof_ambig(long a, long B, long dd, GEN D)
    1413             : {
    1414             :   long b, c, q, qa, a0, b0, b1;
    1415        2007 :   long cnt = 0; /* count reduction steps on the cycle */
    1416             : 
    1417        2007 :   q = (dd + (B>>1)) / a;
    1418        2007 :   qa = q * a;
    1419        2007 :   b = (qa - B) + qa; /* avoid overflow */
    1420             : #ifdef LONG_IS_64BIT
    1421        1548 :   c = (((long)D - b*b) >> 2) / a;
    1422             : #else
    1423             :   {
    1424         459 :     pari_sp av = avma;
    1425         459 :     c = itos(divis(shifti(subii(D, sqrs(b)), -2), a));
    1426         459 :     set_avma(av);
    1427             :   }
    1428             : #endif
    1429        2007 :   a0 = a; b0 = b1 = b; /* end of loop detection and safeguard */
    1430             :   for (;;)
    1431      957465 :   { /* reduction step */
    1432      959472 :     long c0 = c, qc, qcb;
    1433      959472 :     if (c0 > dd)
    1434      267956 :       q = 1;
    1435             :     else
    1436      691516 :       q = (dd + (b>>1)) / c0;
    1437      959472 :     if (q == 1)
    1438             :     {
    1439      396957 :       qcb = c0 - b; b = c0 + qcb; c = a - qcb;
    1440             :     }
    1441             :     else
    1442             :     {
    1443      562515 :       qc = q*c0; qcb = qc - b; b = qc + qcb; c = a - q*qcb;
    1444             :     }
    1445      959472 :     a = c0;
    1446             : 
    1447      959472 :     cnt++; if (b == b1) break;
    1448             : 
    1449             :     /* safeguard against infinite loop: we walked the cycle in vain.
    1450             :      * (I don't think this can actually happen.) */
    1451      957465 :     if (b == b0 && a == a0) return 0;
    1452             : 
    1453      957465 :     b1 = b;
    1454             :   }
    1455        2007 :   q = a&1 ? a : a>>1;
    1456        2007 :   if (DEBUGLEVEL >= 4)
    1457             :   {
    1458           0 :     if (q > 1)
    1459           0 :       err_printf("SQUFOF: found factor %ld from ambiguous form\n"
    1460             :                  "\tafter %ld steps on the ambiguous cycle\n",
    1461           0 :                  q / ugcd(q,15), cnt);
    1462             :     else
    1463           0 :       err_printf("SQUFOF: ...found nothing on the ambiguous cycle\n"
    1464             :                  "\tafter %ld steps there\n", cnt);
    1465           0 :     if (DEBUGLEVEL >= 6) err_printf("SQUFOF: squfof_ambig returned %ld\n", q);
    1466             :   }
    1467        2007 :   return q;
    1468             : }
    1469             : 
    1470             : #define SQUFOF_BLACKLIST_SZ 64
    1471             : 
    1472             : /* assume (n,30) = 1 */
    1473             : static GEN
    1474        5057 : squfof(GEN n)
    1475             : {
    1476             :   ulong d1, d2;
    1477             : #ifdef LONG_IS_64BIT
    1478             :   ulong uD1, uD2;
    1479             : #endif
    1480        5057 :   long tf = lgefint(n), nm4, cnt = 0;
    1481             :   long a1, b1, c1, dd1, L1, a2, b2, c2, dd2, L2, a, q, c, qc, qcb;
    1482             :   GEN D1, D2;
    1483        5057 :   pari_sp av = avma;
    1484             :   long blacklist1[SQUFOF_BLACKLIST_SZ], blacklist2[SQUFOF_BLACKLIST_SZ];
    1485        5057 :   long blp1 = 0, blp2 = 0;
    1486        5057 :   int act1 = 1, act2 = 1;
    1487             : 
    1488             : #ifdef LONG_IS_64BIT
    1489        4263 :   if (tf > 3 || (tf == 3 && uel(n,2)             >= (1UL << 46)))
    1490             : #else  /* 32 bits */
    1491         794 :   if (tf > 4 || (tf == 4 && (ulong)(*int_MSW(n)) >= (1UL << 17))) /* 49 */
    1492             : #endif
    1493        3489 :     return NULL; /* n too large */
    1494             : 
    1495             :   /* now we have 5 < n < 2^59 */
    1496        1568 :   nm4 = mod4(n);
    1497             : #ifdef LONG_IS_64BIT
    1498        1224 :   if (nm4 == 1)
    1499             :   { /* n = 1 (mod4):  run one iteration on D1 = n, another on D2 = 5n */
    1500         564 :     uD1 = n[2];
    1501         564 :     uD2 = 5 * n[2]; d2 = usqrt(uD2); dd2 = (long)((d2>>1) + (d2&1));
    1502         564 :     b2 = (long)((d2-1) | 1); /* b1, b2 will always stay odd */
    1503             :   }
    1504             :   else
    1505             :   { /* n = 3 (mod4):  run one iteration on D1 = 3n, another on D2 = 4n */
    1506         660 :     uD1 = 3 * n[2];
    1507         660 :     uD2 = 4 * n[2]; dd2 = usqrt(n[2]); d2 =  dd2 << 1;
    1508         660 :     b2 = (long)(d2 & (~1UL)); /* largest even below d2, will stay even */
    1509             :   }
    1510        1224 :   D1 = (GEN)uD1;
    1511        1224 :   D2 = (GEN)uD2;
    1512        1224 :   d1 = usqrt(uD1);
    1513        1224 :   b1 = (long)((d1-1) | 1); /* largest odd number not exceeding d1 */
    1514             :   /* c1 != 0 else n or 3n would be a square */
    1515        1224 :   c1 = (uD1 - b1*b1) / 4;
    1516             :   /* c2 != 0 else 5n would be a square */
    1517        1224 :   c2 = (uD2 - b2*b2) / 4;
    1518             : #else
    1519         344 :   if (nm4 == 1)
    1520             :   { /* n = 1 (mod4):  run one iteration on D1 = n, another on D2 = 5n */
    1521         173 :     D1 = n;
    1522         173 :     D2 = mului(5,n); d2 = itou(sqrti(D2)); dd2 = (long)((d2>>1) + (d2&1));
    1523         173 :     b2 = (long)((d2-1) | 1); /* b1, b2 will always stay odd */
    1524             :   }
    1525             :   else
    1526             :   { /* n = 3 (mod4):  run one iteration on D1 = 3n, another on D2 = 4n */
    1527         171 :     D1 = mului(3,n);
    1528         171 :     D2 = shifti(n,2); dd2 = itou(sqrti(n)); d2 =  dd2 << 1;
    1529         171 :     b2 = (long)(d2 & (~1UL)); /* largest even below d2, will stay even */
    1530             :   }
    1531         344 :   d1 = itou(sqrti(D1));
    1532         344 :   b1 = (long)((d1-1) | 1); /* largest odd number not exceeding d1 */
    1533             :   /* c1 != 0 else n or 3n would be a square */
    1534         344 :   c1 = itos(shifti(subii(D1, sqru((ulong)b1)), -2));
    1535             :   /* c2 != 0 else 5n would be a square */
    1536         344 :   c2 = itos(shifti(subii(D2, sqru((ulong)b2)), -2));
    1537             : #endif
    1538        1568 :   L1 = (long)usqrt(d1);
    1539        1568 :   L2 = (long)usqrt(d2);
    1540             :   /* dd1 used to compute floor((d1+b1)/2) as dd1+floor(b1/2), without
    1541             :    * overflowing the 31bit signed integer size limit. Same for dd2. */
    1542        1568 :   dd1 = (long) ((d1>>1) + (d1&1));
    1543        1568 :   a1 = a2 = 1;
    1544             : 
    1545             :   /* The two (identity) forms (a1,b1,-c1) and (a2,b2,-c2) are now set up.
    1546             :    *
    1547             :    * a1 and c1 represent the absolute values of the a,c coefficients; we keep
    1548             :    * track of the sign separately, via the iteration counter cnt: when cnt is
    1549             :    * even, c < 0 and a > 0, else c > 0 and a < 0.
    1550             :    *
    1551             :    * L1, L2 are the limits for blacklisting small leading coefficients
    1552             :    * on the principal cycle, to guarantee that when we find a square form,
    1553             :    * its square root will belong to an ambiguous cycle, i.e. won't be an
    1554             :    * earlier form on the principal cycle.
    1555             :    *
    1556             :    * When n = 3(mod 4), D2 = 12(mod 16), and b^2 is 0 or 4 mod 16.
    1557             :    * It follows that 4*a*c must be 4 or 8 mod 16, respectively, so at most
    1558             :    * one of a,c can be divisible by 2 at most to the first power. This fact
    1559             :    * is used a couple of times below.
    1560             :    *
    1561             :    * The flags act1, act2 remain true while the respective cycle is still
    1562             :    * active; we drop them to false when we return to the identity form with-
    1563             :    * out having found a square form (or when the blacklist overflows, which
    1564             :    * shouldn't happen). */
    1565        1568 :   if (DEBUGLEVEL >= 4)
    1566           0 :     err_printf("SQUFOF: entering main loop with forms\n"
    1567             :                "\t(1, %ld, %ld) and (1, %ld, %ld)\n", b1, -c1, b2, -c2);
    1568             : 
    1569             :   /* MAIN LOOP: walk around the principal cycle looking for a square form.
    1570             :    * Blacklist small leading coefficients.
    1571             :    *
    1572             :    * The reduction operator can be computed entirely in 32-bit arithmetic:
    1573             :    * Let q = floor(floor((d1+b1)/2)/c1)  (when c1>dd1, q=1, which happens
    1574             :    * often enough to special-case it). Then the new b1 = (q*c1-b1) + q*c1,
    1575             :    * which does not overflow, and the new c1 = a1 - q*(q*c1-b1), which is
    1576             :    * bounded by d1 in abs size since both the old and the new a1 are positive
    1577             :    * and bounded by d1. */
    1578     1388286 :   while (act1 || act2)
    1579             :   {
    1580     1388286 :     if (act1)
    1581             :     { /* send first form through reduction operator if active */
    1582     1388286 :       c = c1;
    1583     1388286 :       q = (c > dd1)? 1: (dd1 + (b1>>1)) / c;
    1584     1388286 :       if (q == 1)
    1585      575778 :       { qcb = c - b1; b1 = c + qcb; c1 = a1 - qcb; }
    1586             :       else
    1587      812508 :       { qc = q*c; qcb = qc - b1; b1 = qc + qcb; c1 = a1 - q*qcb; }
    1588     1388286 :       a1 = c;
    1589             : 
    1590     1388286 :       if (a1 <= L1)
    1591             :       { /* blacklist this */
    1592        1017 :         if (blp1 >= SQUFOF_BLACKLIST_SZ) /* overflows: shouldn't happen */
    1593           0 :           act1 = 0;
    1594             :         else
    1595             :         {
    1596        1017 :           if (DEBUGLEVEL >= 6)
    1597           0 :             err_printf("SQUFOF: blacklisting a = %ld on first cycle\n", a1);
    1598        1017 :           blacklist1[blp1++] = a1;
    1599             :         }
    1600             :       }
    1601             :     }
    1602     1388286 :     if (act2)
    1603             :     { /* send second form through reduction operator if active */
    1604     1388094 :       c = c2;
    1605     1388094 :       q = (c > dd2)? 1: (dd2 + (b2>>1)) / c;
    1606     1388094 :       if (q == 1)
    1607      575488 :       { qcb = c - b2; b2 = c + qcb; c2 = a2 - qcb; }
    1608             :       else
    1609      812606 :       { qc = q*c; qcb = qc - b2; b2 = qc + qcb; c2 = a2 - q*qcb; }
    1610     1388094 :       a2 = c;
    1611             : 
    1612     1388094 :       if (a2 <= L2)
    1613             :       { /* blacklist this */
    1614        1073 :         if (blp2 >= SQUFOF_BLACKLIST_SZ) /* overflows: shouldn't happen */
    1615           0 :           act2 = 0;
    1616             :         else
    1617             :         {
    1618        1073 :           if (DEBUGLEVEL >= 6)
    1619           0 :             err_printf("SQUFOF: blacklisting a = %ld on second cycle\n", a2);
    1620        1073 :           blacklist2[blp2++] = a2;
    1621             :         }
    1622             :       }
    1623             :     }
    1624             : 
    1625     1388286 :     if (++cnt & 1) continue; /* odd iteration */
    1626             :     /* even iteration: the leading coefficients are positive */
    1627             : 
    1628             :     /* examine first form if active */
    1629      694143 :     if (act1 && a1 == 1) /* back to identity */
    1630             :     { /* drop this discriminant */
    1631           0 :       act1 = 0;
    1632           0 :       if (DEBUGLEVEL >= 4)
    1633           0 :         err_printf("SQUFOF: first cycle exhausted after %ld iterations,\n"
    1634             :                    "\tdropping it\n", cnt);
    1635             :     }
    1636      694143 :     if (act1)
    1637             :     {
    1638      694143 :       if (uissquareall((ulong)a1, (ulong*)&a))
    1639             :       { /* square form */
    1640        1274 :         if (DEBUGLEVEL >= 4)
    1641           0 :           err_printf("SQUFOF: square form (%ld^2, %ld, %ld) on first cycle\n"
    1642             :                      "\tafter %ld iterations\n", a, b1, -c1, cnt);
    1643        1274 :         if (a <= L1)
    1644             :         { /* blacklisted? */
    1645             :           long j;
    1646        2394 :           for (j = 0; j < blp1; j++)
    1647        1578 :             if (a == blacklist1[j]) { a = 0; break; }
    1648             :         }
    1649        1274 :         if (a > 0)
    1650             :         { /* not blacklisted */
    1651         816 :           q = ugcd(a, b1); /* imprimitive form? */
    1652         816 :           if (q > 1)
    1653             :           { /* q^2 divides D1 hence n [ assuming n % 3 != 0 ] */
    1654           0 :             set_avma(av);
    1655           0 :             if (DEBUGLEVEL >= 4) err_printf("SQUFOF: found factor %ld^2\n", q);
    1656           0 :             return mkvec3(utoipos(q), gen_2, NULL);/* q^2, unknown status */
    1657             :           }
    1658             :           /* chase the inverse root form back along the ambiguous cycle */
    1659         816 :           q = squfof_ambig(a, b1, dd1, D1);
    1660         816 :           if (q > 3)
    1661             :           {
    1662         670 :             if (nm4 == 3 && q % 3 == 0) q /= 3;
    1663         670 :             return gc_utoipos(av, q); /* SUCCESS! */
    1664             :           }
    1665             :         }
    1666         458 :         else if (DEBUGLEVEL >= 4) /* blacklisted */
    1667           0 :           err_printf("SQUFOF: ...but the root form seems to be on the "
    1668             :                      "principal cycle\n");
    1669             :       }
    1670             :     }
    1671             : 
    1672             :     /* examine second form if active */
    1673      693473 :     if (act2 && a2 == 1) /* back to identity form */
    1674             :     { /* drop this discriminant */
    1675           2 :       act2 = 0;
    1676           2 :       if (DEBUGLEVEL >= 4)
    1677           0 :         err_printf("SQUFOF: second cycle exhausted after %ld iterations,\n"
    1678             :                    "\tdropping it\n", cnt);
    1679             :     }
    1680      693473 :     if (act2)
    1681             :     {
    1682      693377 :       if (uissquareall((ulong)a2, (ulong*)&a))
    1683             :       { /* square form */
    1684        1458 :         if (DEBUGLEVEL >= 4)
    1685           0 :           err_printf("SQUFOF: square form (%ld^2, %ld, %ld) on second cycle\n"
    1686             :                      "\tafter %ld iterations\n", a, b2, -c2, cnt);
    1687        1458 :         if (a <= L2)
    1688             :         { /* blacklisted? */
    1689             :           long j;
    1690        2575 :           for (j = 0; j < blp2; j++)
    1691        1384 :             if (a == blacklist2[j]) { a = 0; break; }
    1692             :         }
    1693        1458 :         if (a > 0)
    1694             :         { /* not blacklisted */
    1695        1191 :           q = ugcd(a, b2); /* imprimitive form? */
    1696             :           /* NB if b2 is even, a is odd, so the gcd is always odd */
    1697        1191 :           if (q > 1)
    1698             :           { /* q^2 divides D2 hence n [ assuming n % 5 != 0 ] */
    1699           0 :             set_avma(av);
    1700           0 :             if (DEBUGLEVEL >= 4) err_printf("SQUFOF: found factor %ld^2\n", q);
    1701           0 :             return mkvec3(utoipos(q), gen_2, NULL);/* q^2, unknown status */
    1702             :           }
    1703             :           /* chase the inverse root form along the ambiguous cycle */
    1704        1191 :           q = squfof_ambig(a, b2, dd2, D2);
    1705        1191 :           if (q > 5)
    1706             :           {
    1707         898 :             if (nm4 == 1 && q % 5 == 0) q /= 5;
    1708         898 :             return gc_utoipos(av, q); /* SUCCESS! */
    1709             :           }
    1710             :         }
    1711         267 :         else if (DEBUGLEVEL >= 4)        /* blacklisted */
    1712           0 :           err_printf("SQUFOF: ...but the root form seems to be on the "
    1713             :                      "principal cycle\n");
    1714             :       }
    1715             :     }
    1716             :   } /* end main loop */
    1717             : 
    1718           0 :   if (DEBUGLEVEL>=4) err_printf("SQUFOF: giving up\n");
    1719           0 :   return gc_NULL(av);
    1720             : }
    1721             : 
    1722             : /***********************************************************************/
    1723             : /*                    DETECTING ODD POWERS  --GN1998Jun28              */
    1724             : /*   Factoring engines like MPQS which ultimately rely on computing    */
    1725             : /*   gcd(N, x^2-y^2) to find a nontrivial factor of N can't split      */
    1726             : /*   N = p^k for an odd prime p, since (Z/p^k)^* is then cyclic. Here  */
    1727             : /*   is an analogue of Z_issquareall() for 3rd, 5th and 7th powers.    */
    1728             : /*   The general case is handled by is_kth_power                       */
    1729             : /***********************************************************************/
    1730             : 
    1731             : /* Multistage sieve. First stages work mod 211, 209, 61, 203 in this order
    1732             :  * (first reduce mod the product of these and then take the remainder apart).
    1733             :  * Second stages use 117, 31, 43, 71. Moduli which are no longer interesting
    1734             :  * are skipped. Everything is encoded in a table of 106 24-bit masks. We only
    1735             :  * need the first half of the residues.  Three bits per modulus indicate which
    1736             :  * residues are 7th (bit 2), 5th (bit 1) or 3rd (bit 0) powers; the eight
    1737             :  * moduli above are assigned right-to-left. The table was generated using: */
    1738             : 
    1739             : #if 0
    1740             : L = [71, 43, 31, [O(3^2),O(13)], [O(7),O(29)], 61, [O(11),O(19)], 211];
    1741             : ispow(x, N, k)=
    1742             : {
    1743             :   if (type(N) == "t_INT", return (ispower(Mod(x,N), k)));
    1744             :   for (i = 1, #N, if (!ispower(x + N[i], k), return (0))); 1
    1745             : }
    1746             : check(r) =
    1747             : {
    1748             :   print1("  0");
    1749             :   for (i=1,#L,
    1750             :     N = 0;
    1751             :     if (ispow(r, L[i], 3), N += 1);
    1752             :     if (ispow(r, L[i], 5), N += 2);
    1753             :     if (ispow(r, L[i], 7), N += 4);
    1754             :     print1(N);
    1755             :   ); print("ul,  /* ", r, " */")
    1756             : }
    1757             : for (r = 0, 105, check(r))
    1758             : #endif
    1759             : static ulong powersmod[106] = {
    1760             :   077777777ul,  /* 0 */
    1761             :   077777777ul,  /* 1 */
    1762             :   013562440ul,  /* 2 */
    1763             :   012402540ul,  /* 3 */
    1764             :   013562440ul,  /* 4 */
    1765             :   052662441ul,  /* 5 */
    1766             :   016603440ul,  /* 6 */
    1767             :   016463450ul,  /* 7 */
    1768             :   013573551ul,  /* 8 */
    1769             :   012462540ul,  /* 9 */
    1770             :   012462464ul,  /* 10 */
    1771             :   013462771ul,  /* 11 */
    1772             :   012406473ul,  /* 12 */
    1773             :   012463641ul,  /* 13 */
    1774             :   052463646ul,  /* 14 */
    1775             :   012503446ul,  /* 15 */
    1776             :   013562440ul,  /* 16 */
    1777             :   052466440ul,  /* 17 */
    1778             :   012472451ul,  /* 18 */
    1779             :   012462454ul,  /* 19 */
    1780             :   032463550ul,  /* 20 */
    1781             :   013403664ul,  /* 21 */
    1782             :   013463460ul,  /* 22 */
    1783             :   032562565ul,  /* 23 */
    1784             :   012402540ul,  /* 24 */
    1785             :   052662441ul,  /* 25 */
    1786             :   032672452ul,  /* 26 */
    1787             :   013573551ul,  /* 27 */
    1788             :   012467541ul,  /* 28 */
    1789             :   012567640ul,  /* 29 */
    1790             :   032706450ul,  /* 30 */
    1791             :   012762452ul,  /* 31 */
    1792             :   033762662ul,  /* 32 */
    1793             :   012502562ul,  /* 33 */
    1794             :   032463562ul,  /* 34 */
    1795             :   013563440ul,  /* 35 */
    1796             :   016663440ul,  /* 36 */
    1797             :   036662550ul,  /* 37 */
    1798             :   012462552ul,  /* 38 */
    1799             :   033502450ul,  /* 39 */
    1800             :   012462643ul,  /* 40 */
    1801             :   033467540ul,  /* 41 */
    1802             :   017403441ul,  /* 42 */
    1803             :   017463462ul,  /* 43 */
    1804             :   017472460ul,  /* 44 */
    1805             :   033462470ul,  /* 45 */
    1806             :   052566450ul,  /* 46 */
    1807             :   013562640ul,  /* 47 */
    1808             :   032403640ul,  /* 48 */
    1809             :   016463450ul,  /* 49 */
    1810             :   016463752ul,  /* 50 */
    1811             :   033402440ul,  /* 51 */
    1812             :   012462540ul,  /* 52 */
    1813             :   012472540ul,  /* 53 */
    1814             :   053562462ul,  /* 54 */
    1815             :   012463465ul,  /* 55 */
    1816             :   012663470ul,  /* 56 */
    1817             :   052607450ul,  /* 57 */
    1818             :   012566553ul,  /* 58 */
    1819             :   013466440ul,  /* 59 */
    1820             :   012502741ul,  /* 60 */
    1821             :   012762744ul,  /* 61 */
    1822             :   012763740ul,  /* 62 */
    1823             :   012763443ul,  /* 63 */
    1824             :   013573551ul,  /* 64 */
    1825             :   013462471ul,  /* 65 */
    1826             :   052502460ul,  /* 66 */
    1827             :   012662463ul,  /* 67 */
    1828             :   012662451ul,  /* 68 */
    1829             :   012403550ul,  /* 69 */
    1830             :   073567540ul,  /* 70 */
    1831             :   072463445ul,  /* 71 */
    1832             :   072462740ul,  /* 72 */
    1833             :   012472442ul,  /* 73 */
    1834             :   012462644ul,  /* 74 */
    1835             :   013406650ul,  /* 75 */
    1836             :   052463471ul,  /* 76 */
    1837             :   012563474ul,  /* 77 */
    1838             :   013503460ul,  /* 78 */
    1839             :   016462441ul,  /* 79 */
    1840             :   016462440ul,  /* 80 */
    1841             :   012462540ul,  /* 81 */
    1842             :   013462641ul,  /* 82 */
    1843             :   012463454ul,  /* 83 */
    1844             :   013403550ul,  /* 84 */
    1845             :   057563540ul,  /* 85 */
    1846             :   017466441ul,  /* 86 */
    1847             :   017606471ul,  /* 87 */
    1848             :   053666573ul,  /* 88 */
    1849             :   012562561ul,  /* 89 */
    1850             :   013473641ul,  /* 90 */
    1851             :   032573440ul,  /* 91 */
    1852             :   016763440ul,  /* 92 */
    1853             :   016702640ul,  /* 93 */
    1854             :   033762552ul,  /* 94 */
    1855             :   012562550ul,  /* 95 */
    1856             :   052402451ul,  /* 96 */
    1857             :   033563441ul,  /* 97 */
    1858             :   012663561ul,  /* 98 */
    1859             :   012677560ul,  /* 99 */
    1860             :   012462464ul,  /* 100 */
    1861             :   032562642ul,  /* 101 */
    1862             :   013402551ul,  /* 102 */
    1863             :   032462450ul,  /* 103 */
    1864             :   012467445ul,  /* 104 */
    1865             :   032403440ul,  /* 105 */
    1866             : };
    1867             : 
    1868             : static int
    1869     3916643 : check_res(ulong x, ulong N, int shift, ulong *mask)
    1870             : {
    1871     3916643 :   long r = x%N; if ((ulong)r> (N>>1)) r = N - r;
    1872     3916643 :   *mask &= (powersmod[r] >> shift);
    1873     3916643 :   return *mask;
    1874             : }
    1875             : 
    1876             : /* is x mod 211*209*61*203*117*31*43*71 a 3rd, 5th or 7th power ? */
    1877             : int
    1878     2416092 : uis_357_powermod(ulong x, ulong *mask)
    1879             : {
    1880     2416092 :   if (             !check_res(x, 211UL, 0, mask)) return 0;
    1881      975028 :   if (*mask & 3 && !check_res(x, 209UL, 3, mask)) return 0;
    1882      398028 :   if (*mask & 3 && !check_res(x,  61UL, 6, mask)) return 0;
    1883      221438 :   if (*mask & 5 && !check_res(x, 203UL, 9, mask)) return 0;
    1884       56613 :   if (*mask & 1 && !check_res(x, 117UL,12, mask)) return 0;
    1885       32750 :   if (*mask & 3 && !check_res(x,  31UL,15, mask)) return 0;
    1886       24547 :   if (*mask & 5 && !check_res(x,  43UL,18, mask)) return 0;
    1887        7407 :   if (*mask & 6 && !check_res(x,  71UL,21, mask)) return 0;
    1888        3957 :   return 1;
    1889             : }
    1890             : /* asume x > 0 and pt != NULL */
    1891             : int
    1892     2365625 : uis_357_power(ulong x, ulong *pt, ulong *mask)
    1893             : {
    1894             :   double logx;
    1895     2365625 :   if (!odd(x))
    1896             :   {
    1897        9039 :     long v = vals(x);
    1898        9039 :     if (v % 7) *mask &= ~4;
    1899        9039 :     if (v % 5) *mask &= ~2;
    1900        9039 :     if (v % 3) *mask &= ~1;
    1901        9039 :     if (!*mask) return 0;
    1902             :   }
    1903     2358032 :   if (!uis_357_powermod(x, mask)) return 0;
    1904        2851 :   logx = log((double)x);
    1905        3723 :   while (*mask)
    1906             :   {
    1907             :     long e, b;
    1908             :     ulong y, ye;
    1909        2851 :     if (*mask & 1)      { b = 1; e = 3; }
    1910         855 :     else if (*mask & 2) { b = 2; e = 5; }
    1911         355 :     else                { b = 4; e = 7; }
    1912        2851 :     y = (ulong)(exp(logx / e) + 0.5);
    1913        2851 :     ye = upowuu(y,e);
    1914        2851 :     if (ye == x) { *pt = y; return e; }
    1915             : #ifdef LONG_IS_64BIT
    1916         750 :     if (ye > x) y--; else y++;
    1917         750 :     ye = upowuu(y,e);
    1918         750 :     if (ye == x) { *pt = y; return e; }
    1919             : #endif
    1920         872 :     *mask &= ~b; /* turn the bit off */
    1921             :   }
    1922         872 :   return 0;
    1923             : }
    1924             : 
    1925             : #ifndef LONG_IS_64BIT
    1926             : /* as above, split in two functions */
    1927             : /* is x mod 211*209*61*203 a 3rd, 5th or 7th power ? */
    1928             : static int
    1929       13724 : uis_357_powermod_32bit_1(ulong x, ulong *mask)
    1930             : {
    1931       13724 :   if (             !check_res(x, 211UL, 0, mask)) return 0;
    1932        7607 :   if (*mask & 3 && !check_res(x, 209UL, 3, mask)) return 0;
    1933        3947 :   if (*mask & 3 && !check_res(x,  61UL, 6, mask)) return 0;
    1934        2847 :   if (*mask & 5 && !check_res(x, 203UL, 9, mask)) return 0;
    1935         837 :   return 1;
    1936             : }
    1937             : /* is x mod 117*31*43*71 a 3rd, 5th or 7th power ? */
    1938             : static int
    1939         837 : uis_357_powermod_32bit_2(ulong x, ulong *mask)
    1940             : {
    1941         837 :   if (*mask & 1 && !check_res(x, 117UL,12, mask)) return 0;
    1942         665 :   if (*mask & 3 && !check_res(x,  31UL,15, mask)) return 0;
    1943         543 :   if (*mask & 5 && !check_res(x,  43UL,18, mask)) return 0;
    1944         286 :   if (*mask & 6 && !check_res(x,  71UL,21, mask)) return 0;
    1945         232 :   return 1;
    1946             : }
    1947             : #endif
    1948             : 
    1949             : /* Returns 3, 5, or 7 if x is a cube (but not a 5th or 7th power),  a 5th
    1950             :  * power (but not a 7th),  or a 7th power, and in this case creates the
    1951             :  * base on the stack and assigns its address to *pt.  Otherwise returns 0.
    1952             :  * x must be of type t_INT and positive;  this is not checked.  The *mask
    1953             :  * argument tells us which things to check -- bit 0: 3rd, bit 1: 5th,
    1954             :  * bit 2: 7th pwr;  set a bit to have the corresponding power examined --
    1955             :  * and is updated appropriately for a possible follow-up call */
    1956             : int
    1957     2794968 : is_357_power(GEN x, GEN *pt, ulong *mask)
    1958             : {
    1959     2794968 :   long lx = lgefint(x);
    1960             :   ulong r;
    1961             :   pari_sp av;
    1962             :   GEN y;
    1963             : 
    1964     2794968 :   if (!*mask) return 0; /* useful when running in a loop */
    1965     2423605 :   if (DEBUGLEVEL>4)
    1966           0 :     err_printf("OddPwrs: examining %ld-bit integer\n", expi(x)+1);
    1967     2423606 :   if (lgefint(x) == 3) {
    1968             :     ulong t;
    1969     2351820 :     long e = uis_357_power(x[2], &t, mask);
    1970     2351820 :     if (e)
    1971             :     {
    1972        1953 :       if (pt) *pt = utoi(t);
    1973        1953 :       return e;
    1974             :     }
    1975     2349867 :     return 0;
    1976             :   }
    1977             : #ifdef LONG_IS_64BIT
    1978       58062 :   r = (lx == 3)? uel(x,2): umodiu(x, 6046846918939827UL);
    1979       58061 :   if (!uis_357_powermod(r, mask)) return 0;
    1980             : #else
    1981       13724 :   r = (lx == 3)? uel(x,2): umodiu(x, 211*209*61*203);
    1982       13724 :   if (!uis_357_powermod_32bit_1(r, mask)) return 0;
    1983         837 :   r = (lx == 3)? uel(x,2): umodiu(x, 117*31*43*71);
    1984         837 :   if (!uis_357_powermod_32bit_2(r, mask)) return 0;
    1985             : #endif
    1986        1342 :   av = avma;
    1987        2606 :   while (*mask)
    1988             :   {
    1989             :     long e, b;
    1990             :     /* priority to higher powers: if we have a 21st, it is easier to rediscover
    1991             :      * that its 7th root is a cube than that its cube root is a 7th power */
    1992        1972 :          if (*mask & 4) { b = 4; e = 7; }
    1993        1410 :     else if (*mask & 2) { b = 2; e = 5; }
    1994         541 :     else                { b = 1; e = 3; }
    1995        1972 :     y = mpround( sqrtnr(itor(x, nbits2prec(64 + bit_accuracy(lx) / e)), e) );
    1996        1972 :     if (equalii(powiu(y,e), x))
    1997             :     {
    1998         708 :       if (!pt) return gc_int(av,e);
    1999         694 :       set_avma((pari_sp)y); *pt = gc_INT(av, y);
    2000         694 :       return e;
    2001             :     }
    2002        1264 :     *mask &= ~b; /* turn the bit off */
    2003        1264 :     set_avma(av);
    2004             :   }
    2005         634 :   return 0;
    2006             : }
    2007             : 
    2008             : /* Is x a n-th power ? If pt != NULL, it receives the n-th root */
    2009             : ulong
    2010      414345 : is_kth_power(GEN x, ulong n, GEN *pt)
    2011             : {
    2012             :   forprime_t T;
    2013             :   long j;
    2014             :   ulong q, residue;
    2015             :   GEN y;
    2016      414345 :   pari_sp av = avma;
    2017             : 
    2018      414345 :   (void)u_forprime_arith_init(&T, odd(n)? 2*n+1: n+1, ULONG_MAX, 1,n);
    2019             :   /* we'll start at q, smallest prime >= n */
    2020             : 
    2021             :   /* Modular checks, use small primes q congruent 1 mod n */
    2022             :   /* A non n-th power nevertheless passes the test with proba n^(-#checks),
    2023             :    * We'd like this < 1e-6 but let j = floor(log(1e-6) / log(n)) which
    2024             :    * ensures much less. */
    2025      413205 :   if (n < 16)
    2026      107617 :     j = 5;
    2027      305588 :   else if (n < 32)
    2028      128442 :     j = 4;
    2029      177146 :   else if (n < 101)
    2030      156972 :     j = 3;
    2031       20174 :   else if (n < 1001)
    2032        4877 :     j = 2;
    2033       15297 :   else if (n < 17886697) /* smallest such that smallest suitable q is > 2^32 */
    2034       16303 :     j = 1;
    2035             :   else
    2036         275 :     j = 0;
    2037      465002 :   for (; j > 0; j--)
    2038             :   {
    2039      460838 :     if (!(q = u_forprime_next(&T))) break;
    2040             :     /* q a prime = 1 mod n */
    2041      458393 :     residue = umodiu(x, q);
    2042      460015 :     if (residue == 0)
    2043             :     {
    2044         471 :       if (Z_lval(x,q) % n) return gc_ulong(av,0);
    2045          37 :       continue;
    2046             :     }
    2047             :     /* n-th power mod q ? */
    2048      459544 :     if (Fl_powu(residue, (q-1)/n, q) != 1) return gc_ulong(av,0);
    2049             :   }
    2050        4164 :   set_avma(av);
    2051             : 
    2052        4038 :   if (DEBUGLEVEL>4) err_printf("\nOddPwrs: [%lu] passed modular checks\n",n);
    2053             :   /* go to the horse's mouth... */
    2054        4038 :   y = roundr( sqrtnr(itor(x, nbits2prec(expi(x)/n + 16)), n) );
    2055        4038 :   if (!equalii(powiu(y, n), x)) {
    2056        3251 :     if (DEBUGLEVEL>4) err_printf("\tBut it wasn't a pure power.\n");
    2057        3251 :     return gc_ulong(av,0);
    2058             :   }
    2059         787 :   if (!pt) set_avma(av); else { set_avma((pari_sp)y); *pt = gc_INT(av,y); }
    2060         787 :   return 1;
    2061             : }
    2062             : 
    2063             : /* is x a p^i-th power, p >= 11 prime ? Similar to is_357_power(), but instead
    2064             :  * of the mask, we keep the current test exponent around. Cut off when
    2065             :  * log_2 x^(1/k) < cutoffbits since we would have found it by trial division.
    2066             :  * Everything needed here (primitive roots etc.) is computed from scratch on
    2067             :  * the fly; compared to the size of numbers under consideration, these
    2068             :  * word-sized computations take negligible time.
    2069             :  * Any cutoffbits > 0 is safe, but direct root extraction attempts are faster
    2070             :  * when trial division has been used to discover very small bases. We become
    2071             :  * competitive at cutoffbits ~ 10 */
    2072             : int
    2073       62820 : is_pth_power(GEN x, GEN *pt, forprime_t *T, ulong cutoffbits)
    2074             : {
    2075       62820 :   long cnt=0, size = expi(x) /* not +1 */;
    2076             :   ulong p;
    2077       62817 :   pari_sp av = avma;
    2078      423402 :   while ((p = u_forprime_next(T)) && size/p >= cutoffbits) {
    2079      360365 :     long v = 1;
    2080      360365 :     if (DEBUGLEVEL>5 && cnt++==2000)
    2081           0 :       { cnt=0; err_printf("%lu%% ", 100*p*cutoffbits/size); }
    2082      360354 :     while (is_kth_power(x, p, pt)) {
    2083          56 :       v *= p; x = *pt;
    2084          56 :       size = expi(x);
    2085             :     }
    2086      360627 :     if (v > 1)
    2087             :     {
    2088          42 :       if (DEBUGLEVEL>5) err_printf("\nOddPwrs: is a %ld power\n",v);
    2089          42 :       return v;
    2090             :     }
    2091             :   }
    2092       62630 :   if (DEBUGLEVEL>5) err_printf("\nOddPwrs: not a power\n",p);
    2093       62630 :   return gc_int(av,0); /* give up */
    2094             : }
    2095             : 
    2096             : /***********************************************************************/
    2097             : /**                FACTORIZATION  (master iteration)                  **/
    2098             : /**      Driver for the various methods of finding large factors      **/
    2099             : /**      (after trial division has cast out the very small ones).     **/
    2100             : /**                        GN1998Jun24--30                            **/
    2101             : /***********************************************************************/
    2102             : 
    2103             : /* Direct use:
    2104             :  *  ifac_start_hint(n,moebius,hint) registers with the iterative factorizer
    2105             :  *  - an integer n (without prime factors  < tridiv_bound(n))
    2106             :  *  - registers whether or not we should terminate early if we find a square
    2107             :  *    factor,
    2108             :  *  - a hint about which method(s) to use.
    2109             :  *  This must always be called first. If input is not composite, oo loop.
    2110             :  *  The routine decomposes n nontrivially into a product of two factors except
    2111             :  *  in squarefreeness ('Moebius') mode.
    2112             :  *
    2113             :  *  ifac_start(n,moebius) same using default hint.
    2114             :  *
    2115             :  *  ifac_primary_factor()  returns a prime divisor (not necessarily the
    2116             :  *    smallest) and the corresponding exponent.
    2117             :  *
    2118             :  * Encapsulated user interface: Many arithmetic functions have a 'contributor'
    2119             :  * ifac_xxx, to be called on any large composite cofactor left over after trial
    2120             :  * division by small primes: xxx is one of moebius, issquarefree, totient, etc.
    2121             :  *
    2122             :  * We never test whether the input number is prime or composite, since
    2123             :  * presumably it will have come out of the small factors finder stage
    2124             :  * (which doesn't really exist yet but which will test the left-over
    2125             :  * cofactor for primality once it does). */
    2126             : 
    2127             : /* The data structure in which we preserve whatever we know about our number N
    2128             :  * is kept on the PARI stack, and updated as needed.
    2129             :  * This makes the machinery re-entrant, and avoids memory leaks when a lengthy
    2130             :  * factorization is interrupted. We try to keep the whole affair connected,
    2131             :  * and the parent object is always older than its children.  This may in
    2132             :  * rare cases lead to some extra copying around, and knowing what is garbage
    2133             :  * at any given time is not trivial. See below for examples how to do it right.
    2134             :  * (Connectedness is destroyed if callers of ifac_main() create stuff on the
    2135             :  * stack in between calls. This is harmless as long as ifac_realloc() is used
    2136             :  * to re-create a connected object at the head of the stack just before
    2137             :  * collecting garbage.)
    2138             :  * A t_INT may well have > 10^6 distinct prime factors larger than 2^16. Since
    2139             :  * we need not find factors in order of increasing size, we must be prepared to
    2140             :  * drag a very large amount of data around.  We start with a small structure
    2141             :  * and extend it when necessary. */
    2142             : 
    2143             : /* The idea of the algorithm is:
    2144             :  * Let N0 be whatever is currently left of N after dividing off all the
    2145             :  * prime powers we have already returned to the caller.  Then we maintain
    2146             :  * N0 as a product
    2147             :  * (1) N0 = \prod_i P_i^{e_i} * \prod_j Q_j^{f_j} * \prod_k C_k^{g_k}
    2148             :  * where the P_i and Q_j are distinct primes, each C_k is known composite,
    2149             :  * none of the P_i divides any C_k, and we also know the total ordering
    2150             :  * of all the P_i, Q_j and C_k; in particular, we will never try to divide
    2151             :  * a C_k by a larger Q_j.  Some of the C_k may have common factors.
    2152             :  *
    2153             :  * Caveat implementor:  Taking gcds among C_k's is very likely to cost at
    2154             :  * least as much time as dividing off any primes as we find them, and book-
    2155             :  * keeping would be tough (since D=gcd(C_1,C_2) can still have common factors
    2156             :  * with both C_1/D and C_2/D, and so on...).
    2157             :  *
    2158             :  * At startup, we just initialize the structure to
    2159             :  * (2) N = C_1^1   (composite).
    2160             :  *
    2161             :  * Whenever ifac_primary_factor() or one of the arithmetic user interface
    2162             :  * routines needs a primary factor, and the smallest thing in our list is P_1,
    2163             :  * we return that and its exponent, and remove it from our list. (When nothing
    2164             :  * is left, we return a sentinel value -- gen_1.  And in Moebius mode, when we
    2165             :  * see something with exponent > 1, whether prime or composite, we return gen_0
    2166             :  * or 0, depending on the function). In all other cases, ifac_main() iterates
    2167             :  * the following steps until we have a P_1 in the smallest position.
    2168             :  *
    2169             :  * When the smallest item is C_1, as it is initially:
    2170             :  * (3.1) Crack C_1 into a nontrivial product  U_1 * U_2  by whatever method
    2171             :  * comes to mind for this size. (U for 'unknown'.)  Cracking will detect
    2172             :  * perfect powers, so we may instead see a power of some U_1 here, or even
    2173             :  * something of the form U_1^k*U_2^k; of course the exponent already attached
    2174             :  * to C_1 is taken into account in the following.
    2175             :  * (3.2) If we have U_1*U_2, sort the two factors (distinct: squares are caught
    2176             :  * in stage 3.1). N.B. U_1 and U_2 are smaller than anything else in our list.
    2177             :  * (3.3) Check U_1 and U_2 for primality, and flag them accordingly.
    2178             :  * (3.4) Iterate.
    2179             :  *
    2180             :  * When the smallest item is Q_1:
    2181             :  * This is the unpleasant case.  We go through the entire list and try to
    2182             :  * divide Q_1 off each of the current C_k's, which usually fails, but may
    2183             :  * succeed several times. When a division was successful, the corresponding
    2184             :  * C_k is removed from our list, and the cofactor becomes a U_l for the moment
    2185             :  * unless it is 1 (which happens when C_k was a power of Q_1).  When we're
    2186             :  * through we upgrade Q_1 to P_1 status, then do a primality check on each U_l
    2187             :  * and sort it back into the list either as a Q_j or as a C_k.  If during the
    2188             :  * insertion sort we discover that some U_l equals some P_i or Q_j or C_k we
    2189             :  * already have, we just add U_l's exponent to that of its twin. (The sorting
    2190             :  * therefore happens before the primality test). Since this may produce one or
    2191             :  * more elements smaller than the P_1 we just confirmed, we may have to repeat
    2192             :  * the iteration.
    2193             :  * A trick avoids some Q_1 instances: just after the sweep classifying
    2194             :  * all current unknowns as either composites or primes, we do another downward
    2195             :  * sweep beginning with the largest current factor and stopping just above the
    2196             :  * largest current composite.  Every Q_j we pass is turned into a P_i.
    2197             :  * (Different primes are automatically coprime among each other, and primes do
    2198             :  * not divide smaller composites.)
    2199             :  * NB: We have no use for comparing the square of a prime to N0.  Normally
    2200             :  * we will get called after casting out only the smallest primes, and
    2201             :  * since we cannot guarantee that we see the large prime factors in as-
    2202             :  * cending order, we cannot stop when we find one larger than sqrt(N0). */
    2203             : 
    2204             : /* Data structure: We keep everything in a single t_VEC of t_INTs.  The
    2205             :  * first 2 components are read-only:
    2206             :  * 1) the first records whether we're doing full (NULL) or Moebius (gen_1)
    2207             :  * factorization; in the latter case subroutines return a sentinel value as
    2208             :  * soon as they spot an exponent > 1.
    2209             :  * 2) the second records the hint from factorint()'s optional flag, for use by
    2210             :  * ifac_crack().
    2211             :  *
    2212             :  * The remaining components (initially 15) are used in groups of three:
    2213             :  * [ factor (t_INT), exponent (t_INT), factor class ], where factor class is
    2214             :  *  NULL : unknown
    2215             :  *  gen_0: known composite C_k
    2216             :  *  gen_1: known prime Q_j awaiting trial division
    2217             :  *  gen_2: finished prime P_i.
    2218             :  * When during the division stage we re-sort a C_k-turned-U_l to a lower
    2219             :  * position, we rotate any intervening material upward towards its old
    2220             :  * slot.  When a C_k was divided down to 1, its slot is left empty at
    2221             :  * first; similarly when the re-sorting detects a repeated factor.
    2222             :  * After the sorting phase, we de-fragment the list and squeeze all the
    2223             :  * occupied slots together to the high end, so that ifac_crack() has room
    2224             :  * for new factors.  When this doesn't suffice, we abandon the current vector
    2225             :  * and allocate a somewhat larger one, defragmenting again while copying.
    2226             :  *
    2227             :  * For internal use: note that all exponents will fit into C longs, given
    2228             :  * PARI's lgefint field size.  When we work with them, we sometimes read
    2229             :  * out the GEN pointer, and sometimes do an itos, whatever is more con-
    2230             :  * venient for the task at hand. */
    2231             : 
    2232             : /*** Overview ***/
    2233             : 
    2234             : /* The '*where' argument in the following points into *partial at the first of
    2235             :  * the three fields of the first occupied slot.  It's there because the caller
    2236             :  * would already know where 'here' is, so we don't want to search for it again.
    2237             :  * We do not preserve this from one user-interface call to the next. */
    2238             : 
    2239             : /* In the most cases, control flows from the user interface to ifac_main() and
    2240             :  * then to a succession of ifac_crack()s and ifac_divide()s, with (typically)
    2241             :  * none of the latter finding anything. */
    2242             : 
    2243             : #define LAST(x) x+lg(x)-3
    2244             : #define FIRST(x) x+3
    2245             : 
    2246             : #define MOEBIUS(x) gel(x,1)
    2247             : #define HINT(x) gel(x,2)
    2248             : 
    2249             : /* y <- x */
    2250             : INLINE void
    2251           0 : SHALLOWCOPY(GEN x, GEN y) {
    2252           0 :   VALUE(y) = VALUE(x);
    2253           0 :   EXPON(y) = EXPON(x);
    2254           0 :   CLASS(y) = CLASS(x);
    2255           0 : }
    2256             : /* y <- x */
    2257             : INLINE void
    2258           0 : COPY(GEN x, GEN y) {
    2259           0 :   icopyifstack(VALUE(x), VALUE(y));
    2260           0 :   icopyifstack(EXPON(x), EXPON(y));
    2261           0 :   CLASS(y) = CLASS(x);
    2262           0 : }
    2263             : 
    2264             : /* Diagnostics */
    2265             : static void
    2266           0 : ifac_factor_dbg(GEN x)
    2267             : {
    2268           0 :   GEN c = CLASS(x), v = VALUE(x);
    2269           0 :   if (c == gen_2) err_printf("IFAC: factor %Ps\n\tis prime (finished)\n", v);
    2270           0 :   else if (c == gen_1) err_printf("IFAC: factor %Ps\n\tis prime\n", v);
    2271           0 :   else if (c == gen_0) err_printf("IFAC: factor %Ps\n\tis composite\n", v);
    2272           0 : }
    2273             : static void
    2274           0 : ifac_check(GEN partial, GEN where)
    2275             : {
    2276           0 :   if (!where || where < FIRST(partial) || where > LAST(partial))
    2277           0 :     pari_err_BUG("ifac_check ['where' out of bounds]");
    2278           0 : }
    2279             : static void
    2280           0 : ifac_print(GEN part, GEN where)
    2281             : {
    2282           0 :   long l = lg(part);
    2283             :   GEN p;
    2284             : 
    2285           0 :   err_printf("ifac partial factorization structure: %ld slots, ", (l-3)/3);
    2286           0 :   if (MOEBIUS(part)) err_printf("Moebius mode, ");
    2287           0 :   err_printf("hint = %ld\n", itos(HINT(part)));
    2288           0 :   ifac_check(part, where);
    2289           0 :   for (p = part+3; p < part + l; p += 3)
    2290             :   {
    2291           0 :     GEN v = VALUE(p), e = EXPON(p), c = CLASS(p);
    2292           0 :     const char *s = "";
    2293           0 :     if (!v) { err_printf("[empty slot]\n"); continue; }
    2294           0 :     if (c == NULL) s = "unknown";
    2295           0 :     else if (c == gen_0) s = "composite";
    2296           0 :     else if (c == gen_1) s = "unfinished prime";
    2297           0 :     else if (c == gen_2) s = "prime";
    2298           0 :     else pari_err_BUG("unknown factor class");
    2299           0 :     err_printf("[%Ps, %Ps, %s]\n", v, e, s);
    2300             :   }
    2301           0 :   err_printf("Done.\n");
    2302           0 : }
    2303             : 
    2304             : static const long decomp_default_hint = 0;
    2305             : /* assume n > 0, which we can assign to */
    2306             : /* return initial data structure, see ifac_crack() for the hint argument */
    2307             : static GEN
    2308        5906 : ifac_start_hint(GEN n, int moebius, long hint)
    2309             : {
    2310        5906 :   const long ifac_initial_length = 3 + 7*3;
    2311             :   /* codeword, moebius, hint, 7 slots -- a 512-bit product of distinct 8-bit
    2312             :    * primes needs at most 7 slots at a time) */
    2313        5906 :   GEN here, part = cgetg(ifac_initial_length, t_VEC);
    2314             : 
    2315        5906 :   MOEBIUS(part) = moebius? gen_1 : NULL;
    2316        5906 :   HINT(part) = stoi(hint);
    2317             :   /* fill first slot at the top end */
    2318        5906 :   here = part + ifac_initial_length - 3; /* LAST(part) */
    2319        5906 :   INIT(here, n,gen_1,gen_0); /* n^1: composite */
    2320       41342 :   while ((here -= 3) > part) ifac_delete(here);
    2321        5906 :   return part;
    2322             : }
    2323             : GEN
    2324        2523 : ifac_start(GEN n, int moebius)
    2325        2523 : { return ifac_start_hint(n,moebius,decomp_default_hint); }
    2326             : 
    2327             : /* Return next nonempty slot after 'here', NULL if none exist */
    2328             : static GEN
    2329       15129 : ifac_find(GEN partial)
    2330             : {
    2331       15129 :   GEN scan, end = partial + lg(partial);
    2332             : 
    2333             : #ifdef IFAC_DEBUG
    2334             :   ifac_check(partial, partial);
    2335             : #endif
    2336      110309 :   for (scan = partial+3; scan < end; scan += 3)
    2337      105633 :     if (VALUE(scan)) return scan;
    2338        4676 :   return NULL;
    2339             : }
    2340             : 
    2341             : /* Defragment: squeeze out unoccupied slots above *where. Unoccupied slots
    2342             :  * arise when a composite factor dissolves completely whilst dividing off a
    2343             :  * prime, or when ifac_resort() spots a coincidence and merges two factors.
    2344             :  * Update *where */
    2345             : static void
    2346          14 : ifac_defrag(GEN *partial, GEN *where)
    2347             : {
    2348          14 :   GEN scan_new = LAST(*partial), scan_old;
    2349             : 
    2350          42 :   for (scan_old = scan_new; scan_old >= *where; scan_old -= 3)
    2351             :   {
    2352          28 :     if (!VALUE(scan_old)) continue; /* empty slot */
    2353          28 :     if (scan_old < scan_new) SHALLOWCOPY(scan_old, scan_new);
    2354          28 :     scan_new -= 3; /* point at next slot to be written */
    2355             :   }
    2356          14 :   scan_new += 3; /* back up to last slot written */
    2357          14 :   *where = scan_new;
    2358          84 :   while ((scan_new -= 3) > *partial) ifac_delete(scan_new); /* erase junk */
    2359          14 : }
    2360             : 
    2361             : /* Move to a larger main vector, updating *where if it points into it, and
    2362             :  * *partial in any case. Can be used as a specialized gcopy before
    2363             :  * a gc_upto() (pass 0 as the new length). Normally, one would pass
    2364             :  * new_lg=1 to let this function guess the new size.  To be used sparingly.
    2365             :  * Complex version of ifac_defrag(), combined with reallocation.  If new_lg
    2366             :  * is 0, use the old length, so this acts just like gcopy except that the
    2367             :  * 'where' pointer is carried along; if it is 1, we make an educated guess.
    2368             :  * Exception:  If new_lg is 0, the vector is full to the brim, and the first
    2369             :  * entry is composite, we make it longer to avoid being called again a
    2370             :  * microsecond later. It is safe to call this with *where = NULL:
    2371             :  * if it doesn't point anywhere within the old structure, it is left alone */
    2372             : static void
    2373           0 : ifac_realloc(GEN *partial, GEN *where, long new_lg)
    2374             : {
    2375           0 :   long old_lg = lg(*partial);
    2376             :   GEN newpart, scan_new, scan_old;
    2377             : 
    2378           0 :   if (new_lg == 1)
    2379           0 :     new_lg = 2*old_lg - 6;        /* from 7 slots to 13 to 25... */
    2380           0 :   else if (new_lg <= old_lg)        /* includes case new_lg == 0 */
    2381             :   {
    2382           0 :     GEN first = *partial + 3;
    2383           0 :     new_lg = old_lg;
    2384             :     /* structure full and first entry composite or unknown */
    2385           0 :     if (VALUE(first) && (CLASS(first) == gen_0 || CLASS(first)==NULL))
    2386           0 :       new_lg += 6; /* give it a little more breathing space */
    2387             :   }
    2388           0 :   newpart = cgetg(new_lg, t_VEC);
    2389           0 :   if (DEBUGMEM >= 3)
    2390           0 :     err_printf("IFAC: new partial factorization structure (%ld slots)\n",
    2391           0 :                (new_lg - 3)/3);
    2392           0 :   MOEBIUS(newpart) = MOEBIUS(*partial);
    2393           0 :   icopyifstack(HINT(*partial), HINT(newpart));
    2394             :   /* Downward sweep through the old *partial. Pick up 'where' and carry it
    2395             :    * over if we pass it. (Only useful if it pointed at a nonempty slot.)
    2396             :    * Factors are COPY'd so that we again have a nice object (parent older
    2397             :    * than children, connected), except the one factor that may still be living
    2398             :    * in a clone where n originally was; exponents are similarly copied if they
    2399             :    * aren't global constants; class-of-factor fields are global constants so we
    2400             :    * need only copy them as pointers. Caller may then do a gc_upto() */
    2401           0 :   scan_new = newpart + new_lg - 3; /* LAST(newpart) */
    2402           0 :   scan_old = *partial + old_lg - 3; /* LAST(*partial) */
    2403           0 :   for (; scan_old > *partial + 2; scan_old -= 3)
    2404             :   {
    2405           0 :     if (*where == scan_old) *where = scan_new;
    2406           0 :     if (!VALUE(scan_old)) continue; /* skip empty slots */
    2407           0 :     COPY(scan_old, scan_new); scan_new -= 3;
    2408             :   }
    2409           0 :   scan_new += 3; /* back up to last slot written */
    2410           0 :   while ((scan_new -= 3) > newpart) ifac_delete(scan_new);
    2411           0 :   *partial = newpart;
    2412           0 : }
    2413             : 
    2414             : /* Re-sort one (typically unknown) entry from washere to a new position,
    2415             :  * rotating intervening entries upward to fill the vacant space. If the new
    2416             :  * position is the same as the old one, or the new value of the entry coincides
    2417             :  * with a value already occupying a lower slot, then we just add exponents (and
    2418             :  * use the 'more known' class, and return 1 immediately when in Moebius mode).
    2419             :  * Slots between *where and washere must be in sorted order, so a sweep using
    2420             :  * this to re-sort several unknowns must proceed upward, see ifac_resort().
    2421             :  * Bubble-sort-of-thing sort. Won't be exercised frequently, so this is ok */
    2422             : static void
    2423           7 : ifac_sort_one(GEN *where, GEN washere)
    2424             : {
    2425           7 :   GEN old, scan = washere - 3;
    2426             :   GEN value, exponent, class0, class1;
    2427             :   long cmp_res;
    2428             : 
    2429           7 :   if (scan < *where) return; /* nothing to do, washere==*where */
    2430           7 :   value    = VALUE(washere);
    2431           7 :   exponent = EXPON(washere);
    2432           7 :   class0 = CLASS(washere);
    2433           7 :   cmp_res = -1; /* sentinel */
    2434           7 :   while (scan >= *where) /* at least once */
    2435             :   {
    2436           7 :     if (VALUE(scan))
    2437             :     { /* current slot nonempty, check against where */
    2438           7 :       cmp_res = cmpii(value, VALUE(scan));
    2439           7 :       if (cmp_res >= 0) break; /* have found where to stop */
    2440             :     }
    2441             :     /* copy current slot upward by one position and move pointers down */
    2442           0 :     SHALLOWCOPY(scan, scan+3);
    2443           0 :     scan -= 3;
    2444             :   }
    2445           7 :   scan += 3;
    2446             :   /* At this point there are the following possibilities:
    2447             :    * 1) cmp_res == -1. Either value is less than that at *where, or *where was
    2448             :    * pointing at vacant slots and any factors we saw en route were larger than
    2449             :    * value. At any rate, scan == *where now, and scan is pointing at an empty
    2450             :    * slot, into which we'll stash our entry.
    2451             :    * 2) cmp_res == 0. The entry at scan-3 is the one, we compare class0
    2452             :    * fields and add exponents, and put it all into the vacated scan slot,
    2453             :    * NULLing the one at scan-3 (and possibly updating *where).
    2454             :    * 3) cmp_res == 1. The slot at scan is the one to store our entry into. */
    2455           7 :   if (cmp_res)
    2456             :   {
    2457           7 :     if (cmp_res < 0 && scan != *where)
    2458           0 :       pari_err_BUG("ifact_sort_one [misaligned partial]");
    2459           7 :     INIT(scan, value, exponent, class0); return;
    2460             :   }
    2461             :   /* case cmp_res == 0: repeated factor detected */
    2462           0 :   if (DEBUGLEVEL >= 4)
    2463           0 :     err_printf("IFAC: repeated factor %Ps\n\tin ifac_sort_one\n", value);
    2464           0 :   old = scan - 3;
    2465             :   /* if old class0 was composite and new is prime, or vice versa, complain
    2466             :    * (and if one class0 was unknown and the other wasn't, use the known one) */
    2467           0 :   class1 = CLASS(old);
    2468           0 :   if (class0) /* should never be used */
    2469             :   {
    2470           0 :     if (class1)
    2471             :     {
    2472           0 :       if (class0 == gen_0 && class1 != gen_0)
    2473           0 :         pari_err_BUG("ifac_sort_one (composite = prime)");
    2474           0 :       else if (class0 != gen_0 && class1 == gen_0)
    2475           0 :         pari_err_BUG("ifac_sort_one (prime = composite)");
    2476           0 :       else if (class0 == gen_2)
    2477           0 :         CLASS(scan) = class0;
    2478             :     }
    2479             :     else
    2480           0 :       CLASS(scan) = class0;
    2481             :   }
    2482             :   /* else stay with the existing known class0 */
    2483           0 :   CLASS(scan) = class1;
    2484             :   /* in any case, add exponents */
    2485           0 :   if (EXPON(old) == gen_1 && exponent == gen_1)
    2486           0 :     EXPON(scan) = gen_2;
    2487             :   else
    2488           0 :     EXPON(scan) = addii(EXPON(old), exponent);
    2489             :   /* move the value over and null out the vacated slot below */
    2490           0 :   old = scan - 3;
    2491           0 :   *scan = *old;
    2492           0 :   ifac_delete(old);
    2493             :   /* finally, see whether *where should be pulled in */
    2494           0 :   if (old == *where) *where += 3;
    2495             : }
    2496             : 
    2497             : /* Sort all current unknowns downward to where they belong. Sweeps in the
    2498             :  * upward direction. Not needed after ifac_crack(), only when ifac_divide()
    2499             :  * returned true. Update *where. */
    2500             : static void
    2501           7 : ifac_resort(GEN *partial, GEN *where)
    2502             : {
    2503             :   GEN scan, end;
    2504           7 :   ifac_defrag(partial, where); end = LAST(*partial);
    2505          21 :   for (scan = *where; scan <= end; scan += 3)
    2506          14 :     if (VALUE(scan) && !CLASS(scan)) ifac_sort_one(where, scan); /*unknown*/
    2507           7 :   ifac_defrag(partial, where); /* remove newly created gaps */
    2508           7 : }
    2509             : 
    2510             : /* Let x be a t_INT known not to have small divisors (< 661, and < 2^14 for huge
    2511             :  * x > 2^512). Return 0 if x is a proven composite. Return 1 if we believe it
    2512             :  * to be prime (fully proven prime if factor_proven is set).  */
    2513             : int
    2514       27444 : ifac_isprime(GEN x)
    2515             : {
    2516       27444 :   if (!BPSW_psp_nosmalldiv(x)) return 0; /* composite */
    2517       19409 :   if (factor_proven && ! BPSW_isprime(x))
    2518             :   {
    2519           0 :     pari_warn(warner,
    2520             :               "IFAC: pseudo-prime %Ps\n\tis not prime. PLEASE REPORT!\n", x);
    2521           0 :     return 0;
    2522             :   }
    2523       19409 :   return 1;
    2524             : }
    2525             : 
    2526             : static int
    2527       11190 : ifac_checkprime(GEN x)
    2528             : {
    2529       11190 :   int res = ifac_isprime(VALUE(x));
    2530       11190 :   CLASS(x) = res? gen_1: gen_0;
    2531       11190 :   if (DEBUGLEVEL>2) ifac_factor_dbg(x);
    2532       11190 :   return res;
    2533             : }
    2534             : 
    2535             : /* Determine primality or compositeness of all current unknowns, and set
    2536             :  * class Q primes to finished (class P) if everything larger is already
    2537             :  * known to be prime.  When after_crack >= 0, only look at the
    2538             :  * first after_crack things in the list (do nothing when it's 0) */
    2539             : static void
    2540        5760 : ifac_whoiswho(GEN *partial, GEN *where, long after_crack)
    2541             : {
    2542        5760 :   GEN scan, scan_end = LAST(*partial);
    2543             : 
    2544             : #ifdef IFAC_DEBUG
    2545             :   ifac_check(*partial, *where);
    2546             : #endif
    2547        5760 :   if (after_crack == 0) return;
    2548        5112 :   if (after_crack > 0) /* check at most after_crack entries */
    2549        5105 :     scan = *where + 3*(after_crack - 1); /* assert(scan <= scan_end) */
    2550             :   else
    2551           7 :     for (scan = scan_end; scan >= *where; scan -= 3)
    2552             :     {
    2553           7 :       if (CLASS(scan))
    2554             :       { /* known class of factor */
    2555           0 :         if (CLASS(scan) == gen_0) break;
    2556           0 :         if (CLASS(scan) == gen_1)
    2557             :         {
    2558           0 :           if (DEBUGLEVEL>=3)
    2559             :           {
    2560           0 :             err_printf("IFAC: factor %Ps\n\tis prime (no larger composite)\n",
    2561           0 :                        VALUE(*where));
    2562           0 :             err_printf("IFAC: prime %Ps\n\tappears with exponent = %ld\n",
    2563           0 :                        VALUE(*where), itos(EXPON(*where)));
    2564             :           }
    2565           0 :           CLASS(scan) = gen_2;
    2566             :         }
    2567           0 :         continue;
    2568             :       }
    2569           7 :       if (!ifac_checkprime(scan)) break; /* must disable Q-to-P */
    2570           0 :       CLASS(scan) = gen_2; /* P_i, finished prime */
    2571           0 :       if (DEBUGLEVEL>2) ifac_factor_dbg(scan);
    2572             :     }
    2573             :   /* go on, Q-to-P trick now disabled */
    2574       15612 :   for (; scan >= *where; scan -= 3)
    2575             :   {
    2576       10500 :     if (CLASS(scan)) continue;
    2577       10465 :     (void)ifac_checkprime(scan); /* Qj | Ck */
    2578             :   }
    2579             : }
    2580             : 
    2581             : /* if y | x, set x /= y and return 1; else return 0 */
    2582             : static int
    2583         219 : dvdii_inplace(GEN x, GEN y)
    2584             : {
    2585         219 :   pari_sp av = avma;
    2586         219 :   GEN r, q = dvmdii(x, y, &r);
    2587         219 :   if (r != gen_0) return gc_bool(av, 0);
    2588          14 :   affii(q, x); return gc_bool(av, 1);
    2589             : }
    2590             : /* return v = v_p(x), set x /= p^v in place */
    2591             : static long
    2592         762 : Z_pval_inplace(GEN x, GEN p)
    2593             : {
    2594         762 :   pari_sp av = avma;
    2595         762 :   GEN r, q = dvmdii(x, p, &r);
    2596             :   long v;
    2597         762 :   if (r != gen_0) return gc_long(av, 0);
    2598         231 :   for (v = 1;; v++)
    2599          98 :   {
    2600         329 :     GEN Q = dvmdii(q, p, &r);
    2601         329 :     if (r != gen_0) break;
    2602          98 :     q = Q;
    2603             :   }
    2604         231 :   affii(q, x); return gc_long(av, v);
    2605             : }
    2606             : 
    2607             : /* Divide all current composites by first (prime, class Q) entry, updating its
    2608             :  * exponent, and turning it into a finished prime (class P).  Return 1 if any
    2609             :  * such divisions succeeded  (in Moebius mode, the update may then not have
    2610             :  * been completed), or 0 if none of them succeeded.  Doesn't modify *where.
    2611             :  * Here we normally do not check that the first entry is a not-finished
    2612             :  * prime.  Stack management: we may allocate a new exponent */
    2613             : static long
    2614        9731 : ifac_divide(GEN *partial, GEN *where, long moebius_mode)
    2615             : {
    2616        9731 :   GEN scan, scan_end = LAST(*partial);
    2617        9731 :   long res = 0, exponent, newexp, otherexp;
    2618             : 
    2619             : #ifdef IFAC_DEBUG
    2620             :   ifac_check(*partial, *where);
    2621             :   if (CLASS(*where) != gen_1)
    2622             :     pari_err_BUG("ifac_divide [division by composite or finished prime]");
    2623             :   if (!VALUE(*where)) pari_err_BUG("ifac_divide [division by nothing]");
    2624             : #endif
    2625        9731 :   newexp = exponent = itos(EXPON(*where));
    2626        9731 :   if (exponent > 1 && moebius_mode) return 1;
    2627             :   /* should've been caught by caller */
    2628             : 
    2629       15382 :   for (scan = *where+3; scan <= scan_end; scan += 3)
    2630             :   {
    2631        5651 :     if (CLASS(scan) != gen_0) continue; /* the other thing ain't composite */
    2632         205 :     otherexp = 0;
    2633         219 :     while (dvdii_inplace(VALUE(scan), VALUE(*where)))
    2634             :     {
    2635          14 :       if (moebius_mode) return 1; /* immediately */
    2636          14 :       if (!otherexp) otherexp = itos(EXPON(scan));
    2637          14 :       newexp += otherexp;
    2638             :     }
    2639         205 :     if (newexp > exponent)        /* did anything happen? */
    2640             :     {
    2641           7 :       EXPON(*where) = (newexp == 2 ? gen_2 : utoipos(newexp));
    2642           7 :       exponent = newexp;
    2643           7 :       if (is_pm1((GEN)*scan)) /* factor dissolved completely */
    2644             :       {
    2645           0 :         ifac_delete(scan);
    2646           0 :         if (DEBUGLEVEL >= 4)
    2647           0 :           err_printf("IFAC: a factor was a power of another prime factor\n");
    2648             :       } else {
    2649           7 :         CLASS(scan) = NULL;        /* at any rate it's Unknown now */
    2650           7 :         if (DEBUGLEVEL >= 4)
    2651           0 :           err_printf("IFAC: a factor was divisible by another prime factor,\n"
    2652             :                      "\tleaving a cofactor = %Ps\n", VALUE(scan));
    2653             :       }
    2654           7 :       res = 1;
    2655           7 :       if (DEBUGLEVEL >= 5)
    2656           0 :         err_printf("IFAC: prime %Ps\n\tappears at least to the power %ld\n",
    2657           0 :                    VALUE(*where), newexp);
    2658             :     }
    2659             :   } /* for */
    2660        9731 :   CLASS(*where) = gen_2; /* make it a finished prime */
    2661        9731 :   if (DEBUGLEVEL >= 3)
    2662           0 :     err_printf("IFAC: prime %Ps\n\tappears with exponent = %ld\n",
    2663           0 :                VALUE(*where), newexp);
    2664        9731 :   return res;
    2665             : }
    2666             : 
    2667             : /* found out our integer was factor^exp. Update */
    2668             : static void
    2669         908 : update_pow(GEN where, GEN factor, long exp, pari_sp *av)
    2670             : {
    2671         908 :   GEN ex = EXPON(where);
    2672         908 :   if (DEBUGLEVEL>3)
    2673           0 :     err_printf("IFAC: found %Ps =\n\t%Ps ^%ld\n", *where, factor, exp);
    2674         908 :   affii(factor, VALUE(where)); set_avma(*av);
    2675         908 :   if (ex == gen_1)
    2676         705 :   { EXPON(where) = exp == 2? gen_2: utoipos(exp); *av = avma; }
    2677         203 :   else if (ex == gen_2)
    2678         182 :   { EXPON(where) = utoipos(exp<<1); *av = avma; }
    2679             :   else
    2680          21 :     affsi(exp * itos(ex), EXPON(where));
    2681         908 : }
    2682             : /* hint = 0 : Use a default strategy
    2683             :  * hint & 1 : avoid MPQS
    2684             :  * hint & 2 : avoid first-stage ECM (may fall back to ECM if MPQS gives up)
    2685             :  * hint & 4 : avoid Pollard and SQUFOF stages.
    2686             :  * hint & 8 : avoid final ECM; may flag a composite as prime. */
    2687             : #define get_hint(partial) (itos(HINT(*partial)) & 15)
    2688             : 
    2689             : /* Complete ifac_crack's job when a factoring engine splits the current factor
    2690             :  * into a product of three or more new factors. Makes room for them if
    2691             :  * necessary, sorts them, gives them the right exponents and class. Returns the
    2692             :  * number of factors actually written, which may be less than #facvec if there
    2693             :  * are duplicates. Vectors of factors (cf pollardbrent() or mpqs()) contain
    2694             :  * 'slots' of 3 GENs per factor, interpreted as in our partial factorization
    2695             :  * data structure. Thus engines can tell us what they already know about
    2696             :  * factors being prime/composite or appearing to a power larger than thefirst.
    2697             :  * Don't collect garbage.  No diagnostics: engine has printed what it found.
    2698             :  * facvec contains slots of three components per factor; repeated factors are
    2699             :  * allowed (their classes shouldn't contradict each other whereas their
    2700             :  * exponents will be added up) */
    2701             : static long
    2702        3279 : ifac_insert_multiplet(GEN *partial, GEN *where, GEN facvec, long moebius_mode)
    2703             : {
    2704        3279 :   long j,k=1, lfv=lg(facvec)-1, nf=lfv/3, room=(long)(*where-*partial);
    2705             :   /* one of the factors will go into the *where slot, so room is now 3 times
    2706             :    * the number of slots we can use */
    2707        3279 :   long needroom = lfv - room;
    2708        3279 :   GEN newexp, cur, sorted, auxvec = cgetg(nf+1, t_VEC), factor;
    2709        3279 :   long E = itos(EXPON(*where)); /* the old exponent */
    2710             : 
    2711        3279 :   if (DEBUGLEVEL >= 5) /* squfof may return a single squared factor as a set */
    2712           0 :     err_printf("IFAC: incorporating set of %ld factor(s)\n", nf);
    2713        3279 :   if (needroom > 0) ifac_realloc(partial, where, lg(*partial) + needroom);
    2714             : 
    2715             :   /* create sort permutation from the values of the factors */
    2716       10120 :   for (j=nf; j; j--) gel(auxvec,j) = gel(facvec,3*j-2);
    2717        3279 :   sorted = ZV_indexsort(auxvec);
    2718             :   /* store factors, beginning at *where, and catching any duplicates */
    2719        3279 :   cur = facvec + 3*sorted[nf]-2; /* adjust for triple spacing */
    2720        3279 :   VALUE(*where) = VALUE(cur);
    2721        3279 :   newexp = EXPON(cur);
    2722             :   /* if new exponent is 1, the old exponent already in place will do */
    2723        3279 :   if (newexp != gen_1) EXPON(*where) = mului(E,newexp);
    2724        3279 :   CLASS(*where) = CLASS(cur);
    2725        3279 :   if (DEBUGLEVEL >= 6) err_printf("\tstored (largest) factor no. %ld...\n", nf);
    2726             : 
    2727        6841 :   for (j=nf-1; j; j--)
    2728             :   {
    2729             :     GEN e;
    2730        3562 :     cur = facvec + 3*sorted[j]-2;
    2731        3562 :     factor = VALUE(cur);
    2732        3562 :     if (equalii(factor, VALUE(*where)))
    2733             :     {
    2734           0 :       if (DEBUGLEVEL >= 6)
    2735           0 :         err_printf("\tfactor no. %ld is a duplicate%s\n", j, (j>1? "...": ""));
    2736             :       /* update exponent, ignore class which would already have been set,
    2737             :        * then forget current factor */
    2738           0 :       newexp = EXPON(cur);
    2739           0 :       if (newexp != gen_1) /* new exp > 1 */
    2740           0 :         e = addiu(EXPON(*where), E * itou(newexp));
    2741           0 :       else if (EXPON(*where) == gen_1 && E == 1)
    2742           0 :         e = gen_2;
    2743             :       else
    2744           0 :         e = addiu(EXPON(*where), E);
    2745           0 :       EXPON(*where) = e;
    2746             : 
    2747           0 :       if (moebius_mode) return 0; /* stop now, with exponent updated */
    2748           0 :       continue;
    2749             :     }
    2750             : 
    2751        3562 :     *where -= 3;
    2752        3562 :     CLASS(*where) = CLASS(cur); /* class as given */
    2753        3562 :     newexp = EXPON(cur);
    2754        3562 :     if (newexp != gen_1) /* new exp > 1 */
    2755          99 :       e = (E == 1 && newexp == gen_2)? gen_2: mului(E, newexp);
    2756             :     else /* inherit parent's exponent */
    2757        3463 :       e = (E == 1 ? gen_1 : (E == 2 ? gen_2 : utoipos(E)));
    2758        3562 :     EXPON(*where) = e;
    2759             :     /* keep components younger than *partial */
    2760        3562 :     icopyifstack(factor, VALUE(*where));
    2761        3562 :     k++;
    2762        3562 :     if (DEBUGLEVEL >= 6)
    2763           0 :       err_printf("\tfactor no. %ld was unique%s\n", j, j>1? " (so far)...": "");
    2764             :   }
    2765        3279 :   return k;
    2766             : }
    2767             : 
    2768             : /* x /= y; exact division */
    2769             : static void
    2770        1820 : diviiexact_inplace(GEN x, GEN y)
    2771        1820 : { pari_sp av = avma; affii(diviiexact(x, y), x); set_avma(av); }
    2772             : 
    2773             : /* Split the first (composite) entry.  There must already be room for another
    2774             :  * factor below *where, and *where is updated. Two cases:
    2775             :  * - entry is a pure power: factor^k is inserted, leaving *where unchanged;
    2776             :  * - entry = factor * cofactor (not necessarily coprime): both factors are
    2777             :  *   inserted in the correct order, updating *where
    2778             :  * The inserted factors class is set to unknown, they inherit the exponent
    2779             :  * (or a multiple thereof) of their ancestor.
    2780             :  *
    2781             :  * Returns number of factors written into the structure, usually 2; only 1
    2782             :  * if pure power, and > 2 if a factoring engine returned a vector of factors.
    2783             :  * Can reallocate the data structure in the rare > 2 case; may create one or
    2784             :  * more objects: new factors or exponents > 2 */
    2785             : static long
    2786        5755 : ifac_crack(GEN *partial, GEN *where, long moebius_mode)
    2787             : {
    2788        5755 :   long hint = get_hint(partial);
    2789             :   GEN cofactor, factor, exponent;
    2790             : 
    2791             : #ifdef IFAC_DEBUG
    2792             :   ifac_check(*partial, *where);
    2793             :   if (*where < *partial + 6)
    2794             :     pari_err_BUG("ifac_crack ['*where' out of bounds]");
    2795             :   if (!(VALUE(*where)) || typ(VALUE(*where)) != t_INT)
    2796             :     pari_err_BUG("ifac_crack [incorrect VALUE(*where)]");
    2797             :   if (CLASS(*where) != gen_0)
    2798             :     pari_err_BUG("ifac_crack [operand not known composite]");
    2799             : #endif
    2800             : 
    2801        5755 :   if (DEBUGLEVEL>2) {
    2802           0 :     err_printf("IFAC: cracking composite\n\t%Ps\n", **where);
    2803           0 :     if (DEBUGLEVEL>3) err_printf("IFAC: checking for pure square\n");
    2804             :   }
    2805             :   /* MPQS cannot factor prime powers. Look for pure powers even if MPQS is
    2806             :    * blocked by hint: fast and useful in bounded factorization */
    2807             :   {
    2808             :     forprime_t T;
    2809        5755 :     ulong exp = 1, mask = 7;
    2810        5755 :     long good = 0;
    2811        5755 :     pari_sp av = avma;
    2812        5755 :     (void)u_forprime_init(&T, 11, ULONG_MAX);
    2813             :     /* crack squares */
    2814        6613 :     while (Z_issquareall(VALUE(*where), &factor))
    2815             :     {
    2816         859 :       good = 1; /* remember we succeeded once */
    2817         859 :       update_pow(*where, factor, 2, &av);
    2818        1507 :       if (moebius_mode) return 0; /* no need to carry on */
    2819             :     }
    2820        5803 :     while ( (exp = is_357_power(VALUE(*where), &factor, &mask)) )
    2821             :     {
    2822          49 :       good = 1; /* remember we succeeded once */
    2823          49 :       update_pow(*where, factor, exp, &av);
    2824          49 :       if (moebius_mode) return 0; /* no need to carry on */
    2825             :     }
    2826             :     /* cutoff at 14 bits: OK if tridiv_bound >= 2^14 OR if >= 661 for
    2827             :      * an integer < 701^11 (103 bits). */
    2828        5754 :     while ( (exp = is_pth_power(VALUE(*where), &factor, &T, 15)) )
    2829             :     {
    2830           0 :       good = 1; /* remember we succeeded once */
    2831           0 :       update_pow(*where, factor, exp, &av);
    2832           0 :       if (moebius_mode) return 0; /* no need to carry on */
    2833             :     }
    2834             : 
    2835        5754 :     if (good && hint != 15 && ifac_checkprime(*where))
    2836             :     { /* our composite was a prime power */
    2837         648 :       if (DEBUGLEVEL>3)
    2838           0 :         err_printf("IFAC: factor %Ps\n\tis prime\n", VALUE(*where));
    2839         648 :       return 0; /* bypass subsequent ifac_whoiswho() call */
    2840             :     }
    2841             :   } /* pure power stage */
    2842             : 
    2843        5106 :   factor = NULL;
    2844        5106 :   if (!(hint & 4))
    2845             :   { /* SQUFOF then Rho */
    2846        5057 :     if (DEBUGLEVEL >= 4)
    2847           0 :       err_printf("IFAC: trying Shanks' SQUFOF, will fail silently if input\n"
    2848             :                  "      is too large for it.\n");
    2849        5057 :     factor = squfof(VALUE(*where));
    2850        5057 :     if (!factor)
    2851             :     {
    2852        3489 :       if (DEBUGLEVEL >= 4) err_printf("IFAC: trying Pollard-Brent rho\n");
    2853        3489 :       factor = pollardbrent(VALUE(*where));
    2854             :     }
    2855             :   }
    2856        5106 :   if (!factor && !(hint & 2))
    2857             :   { /* First ECM stage */
    2858        3262 :     if (DEBUGLEVEL >= 4) err_printf("IFAC: trying Lenstra-Montgomery ECM\n");
    2859        3262 :     factor = ellfacteur(VALUE(*where), 0); /* do not insist */
    2860             :   }
    2861        5106 :   if (!factor && !(hint & 1))
    2862             :   { /* MPQS stage */
    2863        3286 :     if (DEBUGLEVEL >= 4) err_printf("IFAC: trying MPQS\n");
    2864        3286 :     factor = mpqs(VALUE(*where));
    2865             :   }
    2866        5106 :   if (!factor && !(hint & 8))
    2867             :   { /* Final ECM stage, guaranteed to succeed */
    2868           0 :     if (DEBUGLEVEL >= 4)
    2869           0 :       err_printf("IFAC: forcing ECM, may take some time\n");
    2870           0 :     factor = ellfacteur(VALUE(*where), 1);
    2871             :   }
    2872        5106 :   if (!factor)
    2873             :   { /* limited factorization */
    2874           7 :     if (DEBUGLEVEL >= 2)
    2875             :     {
    2876           0 :       pari_warn(warner, hint==15? "IFAC: untested integer declared prime"
    2877             :                                 : "IFAC: unfactored composite declared prime");
    2878             :       /* don't print it out at level 3 or above, where it would appear
    2879             :        * several times before and after this message already */
    2880           0 :       if (DEBUGLEVEL == 2) err_printf("\t%Ps\n", VALUE(*where));
    2881             :     }
    2882           7 :     CLASS(*where) = gen_1; /* might as well trial-divide by it... */
    2883           7 :     return 1;
    2884             :   }
    2885             :   /* At least two factors */
    2886        5099 :   if (typ(factor) == t_VEC)
    2887        3279 :     return ifac_insert_multiplet(partial, where, factor, moebius_mode);
    2888             : 
    2889             :   /* Single factor (t_INT): work out cofactor in place */
    2890        1820 :   diviiexact_inplace(VALUE(*where), factor);
    2891        1820 :   cofactor = VALUE(*where);
    2892             :   /* factoring engines reported factor; tell about the cofactor */
    2893        1820 :   if (DEBUGLEVEL >= 4) err_printf("IFAC: cofactor = %Ps\n", cofactor);
    2894        1820 :   CLASS(*where) = NULL; /* mark factor /cofactor 'unknown' */
    2895        1820 :   exponent = EXPON(*where); /* common exponent */
    2896             : 
    2897        1820 :   *where -= 3;
    2898        1820 :   CLASS(*where) = NULL; /* mark factor /cofactor 'unknown' */
    2899        1820 :   icopyifstack(exponent, EXPON(*where)); /* copy common exponent */
    2900             : 
    2901        1820 :   if (cmpii(factor, cofactor) < 0)
    2902        1656 :     VALUE(*where) = factor; /* common case */
    2903             :   else
    2904             :   { /* factor > cofactor, swap. Exponent is the same, so no need to swap. */
    2905         164 :     GEN old = *where + 3;
    2906         164 :     VALUE(*where) = VALUE(old); /* move cofactor pointer to lowest slot */
    2907         164 :     VALUE(old) = factor; /* save factor */
    2908             :   }
    2909        1820 :   return 2;
    2910             : }
    2911             : 
    2912             : /* main loop:  iterate until smallest entry is a finished prime;  returns
    2913             :  * a 'where' pointer, or NULL if nothing left, or gen_0 in Moebius mode if
    2914             :  * we aren't squarefree */
    2915             : static GEN
    2916       14049 : ifac_main(GEN *partial)
    2917             : {
    2918       14049 :   const long moebius_mode = !!MOEBIUS(*partial);
    2919       14049 :   GEN here = ifac_find(*partial);
    2920             :   long nf;
    2921             : 
    2922       14049 :   if (!here) return NULL; /* nothing left */
    2923             :   /* loop until first entry is a finished prime.  May involve reallocations,
    2924             :    * thus updates of *partial */
    2925       25217 :   while (CLASS(here) != gen_2)
    2926             :   {
    2927       15486 :     if (CLASS(here) == gen_0) /* composite: crack it */
    2928             :     { /* make sure there's room for another factor */
    2929        5755 :       if (here < *partial + 6)
    2930             :       {
    2931           0 :         ifac_defrag(partial, &here);
    2932           0 :         if (here < *partial + 6) ifac_realloc(partial, &here, 1); /* no luck */
    2933             :       }
    2934        5755 :       nf = ifac_crack(partial, &here, moebius_mode);
    2935        5755 :       if (moebius_mode && EXPON(here) != gen_1) /* that was a power */
    2936             :       {
    2937           2 :         if (DEBUGLEVEL >= 3)
    2938           0 :           err_printf("IFAC: main loop: repeated new factor\n\t%Ps\n", *here);
    2939           2 :         return gen_0;
    2940             :       }
    2941             :       /* deal with the new unknowns.  No sort: ifac_crack did it */
    2942        5753 :       ifac_whoiswho(partial, &here, nf);
    2943        5753 :       continue;
    2944             :     }
    2945        9731 :     if (CLASS(here) == gen_1) /* prime but not yet finished: finish it */
    2946             :     {
    2947        9731 :       if (ifac_divide(partial, &here, moebius_mode))
    2948             :       {
    2949           7 :         if (moebius_mode)
    2950             :         {
    2951           0 :           if (DEBUGLEVEL >= 3)
    2952           0 :             err_printf("IFAC: main loop: another factor was divisible by\n"
    2953             :                        "\t%Ps\n", *here);
    2954           0 :           return gen_0;
    2955             :         }
    2956           7 :         ifac_resort(partial, &here); /* sort new cofactors down */
    2957           7 :         ifac_whoiswho(partial, &here, -1);
    2958             :       }
    2959        9731 :       continue;
    2960             :     }
    2961           0 :     pari_err_BUG("ifac_main [nonexistent factor class]");
    2962             :   } /* while */
    2963        9731 :   if (moebius_mode && EXPON(here) != gen_1)
    2964             :   {
    2965           0 :     if (DEBUGLEVEL >= 3)
    2966           0 :       err_printf("IFAC: after main loop: repeated old factor\n\t%Ps\n", *here);
    2967           0 :     return gen_0;
    2968             :   }
    2969        9731 :   if (DEBUGLEVEL >= 4)
    2970             :   {
    2971           0 :     nf = (*partial + lg(*partial) - here - 3)/3;
    2972           0 :     if (nf)
    2973           0 :       err_printf("IFAC: main loop: %ld factor%s left\n", nf, (nf>1)? "s": "");
    2974             :     else
    2975           0 :       err_printf("IFAC: main loop: this was the last factor\n");
    2976             :   }
    2977        9731 :   if (factor_add_primes && !(get_hint(partial) & 8))
    2978             :   {
    2979           0 :     GEN p = VALUE(here);
    2980           0 :     if (lgefint(p)>3 || uel(p,2) > 0x1000000UL) (void)addprimes(p);
    2981             :   }
    2982        9731 :   return here;
    2983             : }
    2984             : 
    2985             : /* Encapsulated routines */
    2986             : 
    2987             : /* prime/exponent pairs need to appear contiguously on the stack, but we also
    2988             :  * need our data structure somewhere, and we don't know in advance how many
    2989             :  * primes will turn up.  The following discipline achieves this:  When
    2990             :  * ifac_decomp() is called, n should point at an object older than the oldest
    2991             :  * small prime/exponent pair  (ifactor() guarantees this).
    2992             :  * We allocate sufficient space to accommodate several pairs -- eleven pairs
    2993             :  * ought to fit in a space not much larger than n itself -- before calling
    2994             :  * ifac_start().  If we manage to complete the factorization before we run out
    2995             :  * of space, we free the data structure and cull the excess reserved space
    2996             :  * before returning.  When we do run out, we have to leapfrog to generate more
    2997             :  * (guesstimating the requirements from what is left in the partial
    2998             :  * factorization structure);  room for fresh pairs is allocated at the head of
    2999             :  * the stack, followed by an ifac_realloc() to reconnect the data structure and
    3000             :  * move it out of the way, followed by a few pointer tweaks to connect the new
    3001             :  * pairs space to the old one. This whole affair translates into a surprisingly
    3002             :  * compact routine. */
    3003             : 
    3004             : /* find primary factors of n; destroy n */
    3005             : static long
    3006        2576 : ifac_decomp(GEN n, long hint)
    3007             : {
    3008        2576 :   pari_sp av = avma;
    3009        2576 :   long nb = 0;
    3010        2576 :   GEN part, here, workspc, pairs = (GEN)av;
    3011             : 
    3012             :   /* workspc will be doled out in pairs of smaller t_INTs. For n = prod p^{e_p}
    3013             :    * (p not necessarily prime), need room to store all p and e_p [ cgeti(3) ],
    3014             :    * bounded by
    3015             :    *    sum_{p | n} ( log_{2^BIL} (p) + 6 ) <= log_{2^BIL} n + 6 log_2 n */
    3016        2576 :   workspc = new_chunk((expi(n) + 1) * 7);
    3017        2576 :   part = ifac_start_hint(n, 0, hint);
    3018             :   for (;;)
    3019             :   {
    3020        7572 :     here = ifac_main(&part);
    3021        7572 :     if (!here) break;
    3022        4996 :     if (gc_needed(av,1))
    3023             :     {
    3024             :       long offset;
    3025           0 :       if(DEBUGMEM>1)
    3026             :       {
    3027           0 :         pari_warn(warnmem,"[2] ifac_decomp");
    3028           0 :         ifac_print(part, here);
    3029             :       }
    3030           0 :       ifac_realloc(&part, &here, 0);
    3031           0 :       offset = here - part;
    3032           0 :       part = gc_upto((pari_sp)workspc, part);
    3033           0 :       here = part + offset;
    3034             :     }
    3035        4996 :     nb++;
    3036        4996 :     pairs = icopy_avma(VALUE(here), (pari_sp)pairs);
    3037        4996 :     pairs = icopy_avma(EXPON(here), (pari_sp)pairs);
    3038        4996 :     ifac_delete(here);
    3039             :   }
    3040        2576 :   set_avma((pari_sp)pairs);
    3041        2576 :   if (DEBUGLEVEL >= 3)
    3042           0 :     err_printf("IFAC: found %ld large prime (power) factor%s.\n",
    3043             :                nb, (nb>1? "s": ""));
    3044        2576 :   return nb;
    3045             : }
    3046             : 
    3047             : /***********************************************************************/
    3048             : /**            ARITHMETIC FUNCTIONS WITH EARLY-ABORT                  **/
    3049             : /**  needing direct access to the factoring machinery to avoid work:  **/
    3050             : /**  e.g. if we find a square factor, moebius returns 0, core doesn't **/
    3051             : /**  need to factor it, etc.                                          **/
    3052             : /***********************************************************************/
    3053             : /* memory management */
    3054             : static void
    3055           0 : ifac_GC(pari_sp av, GEN *part)
    3056             : {
    3057           0 :   GEN here = NULL;
    3058           0 :   if(DEBUGMEM>1) pari_warn(warnmem,"ifac_xxx");
    3059           0 :   ifac_realloc(part, &here, 0);
    3060           0 :   *part = gc_upto(av, *part);
    3061           0 : }
    3062             : 
    3063             : /* destroys n */
    3064             : static long
    3065         236 : ifac_moebius(GEN n)
    3066             : {
    3067         236 :   long mu = 1;
    3068         236 :   pari_sp av = avma;
    3069         236 :   GEN part = ifac_start(n, 1);
    3070             :   for(;;)
    3071         468 :   {
    3072             :     long v;
    3073             :     GEN p;
    3074         704 :     if (!ifac_next(&part,&p,&v)) return v? 0: mu;
    3075         468 :     mu = -mu;
    3076         468 :     if (gc_needed(av,1)) ifac_GC(av,&part);
    3077             :   }
    3078             : }
    3079             : 
    3080             : int
    3081         760 : ifac_read(GEN part, GEN *p, long *e)
    3082             : {
    3083         760 :   GEN here = ifac_find(part);
    3084         760 :   if (!here) return 0;
    3085         400 :   *p = VALUE(here);
    3086         400 :   *e = EXPON(here)[2];
    3087         400 :   return 1;
    3088             : }
    3089             : void
    3090         320 : ifac_skip(GEN part)
    3091             : {
    3092         320 :   GEN here = ifac_find(part);
    3093         320 :   if (here) ifac_delete(here);
    3094         320 : }
    3095             : 
    3096             : /* destroys n */
    3097             : static int
    3098           7 : ifac_ispowerful(GEN n)
    3099             : {
    3100           7 :   pari_sp av = avma;
    3101           7 :   GEN part = ifac_start(n, 0);
    3102             :   for(;;)
    3103           7 :   {
    3104             :     long e;
    3105             :     GEN p;
    3106          14 :     if (!ifac_read(part,&p,&e)) return 1;
    3107             :     /* power: skip */
    3108           7 :     if (e != 1 || Z_isanypower(p,NULL)) { ifac_skip(part); continue; }
    3109           0 :     if (!ifac_next(&part,&p,&e)) return 1;
    3110           0 :     if (e == 1) return 0;
    3111           0 :     if (gc_needed(av,1)) ifac_GC(av,&part);
    3112             :   }
    3113             : }
    3114             : /* destroys n; assume n != 0 is composite */
    3115             : static GEN
    3116         353 : ifac_core(GEN n)
    3117             : {
    3118         353 :   GEN m = gen_1, c = cgeti(lgefint(n));
    3119         353 :   pari_sp av = avma;
    3120         353 :   GEN part = ifac_start(n, 0);
    3121             :   for(;;)
    3122         393 :   {
    3123             :     long e;
    3124             :     GEN p;
    3125         746 :     if (!ifac_read(part,&p,&e)) return m;
    3126             :     /* square: skip */
    3127         393 :     if (!odd(e) || Z_issquare(p)) { ifac_skip(part); continue; }
    3128          80 :     if (!ifac_next(&part,&p,&e)) return m;
    3129          80 :     if (odd(e)) m = mulii(m, p);
    3130          80 :     if (gc_needed(av,1)) { affii(m,c); m=c; ifac_GC(av,&part); }
    3131             :   }
    3132             : }
    3133             : 
    3134             : /* must be >= 661 (various functions assume it in order to call uisprime_661
    3135             :  * instead of uisprime, and Z_isanypower_nosmalldiv instead of Z_isanypower) */
    3136             : ulong
    3137     4539039 : tridiv_boundu(ulong n)
    3138             : {
    3139     4539039 :   long e = expu(n);
    3140     4539022 :   if(e<30) return 1UL<<12;
    3141             : #ifdef LONG_IS_64BIT
    3142      190515 :   if(e<34) return 1UL<<13;
    3143      105365 :   if(e<37) return 1UL<<14;
    3144       64660 :   if(e<42) return 1UL<<15;
    3145       31046 :   if(e<47) return 1UL<<16;
    3146       17790 :   if(e<56) return 1UL<<17;
    3147        5694 :   if(e<56) return 1UL<<18;
    3148        5694 :   if(e<62) return 1UL<<19;
    3149        1518 :   return 1UL<<18;
    3150             : #else
    3151        7844 :   return 1UL<<13;
    3152             : #endif
    3153             : }
    3154             : 
    3155             : /* Where to stop trial dividing in factorization. Must be >= 661.
    3156             :  * If further n > 2^512, must be >= 2^14 */
    3157             : ulong
    3158      847774 : tridiv_bound(GEN n)
    3159             : {
    3160      847774 :   if (lgefint(n)==3) return tridiv_boundu(n[2]);
    3161             :   else
    3162             :   {
    3163       86295 :     ulong l = (ulong)expi(n) + 1;
    3164       86295 :     if (l <= 512) return (l-16) << 10;
    3165        1075 :     return 1UL<<19; /* Rho is generally faster above this */
    3166             :   }
    3167             : }
    3168             : 
    3169             : /* destroys n */
    3170             : static void
    3171         807 : ifac_factoru(GEN n, long hint, GEN P, GEN E, long *pi)
    3172             : {
    3173         807 :   GEN part = ifac_start_hint(n, 0, hint);
    3174         807 :   long i = *pi;
    3175             :   for(;;)
    3176        1502 :   {
    3177             :     long v;
    3178             :     GEN p;
    3179        2309 :     if (!ifac_next(&part,&p,&v)) { *pi = i; return; }
    3180        1502 :     P[i] = itou(p); E[i] = v; i++;
    3181             :   }
    3182             : }
    3183             : /* destroys n */
    3184             : static long
    3185         663 : ifac_moebiusu(GEN n)
    3186             : {
    3187         663 :   GEN part = ifac_start(n, 1);
    3188         663 :   long s = 1;
    3189             :   for(;;)
    3190        1326 :   {
    3191             :     long v;
    3192             :     GEN p;
    3193        1989 :     if (!ifac_next(&part,&p,&v)) return v? 0: s;
    3194        1326 :     s = -s;
    3195             :   }
    3196             : }
    3197             : 
    3198             : INLINE ulong
    3199   142417481 : u_forprime_next_fast(forprime_t *T)
    3200             : {
    3201   142417481 :   if (++T->n <= pari_PRIMES[0])
    3202             :   {
    3203   142420019 :     T->p = pari_PRIMES[T->n];
    3204   142420019 :     return T->p > T->b ? 0: T->p;
    3205             :   }
    3206           0 :   return u_forprime_next(T);
    3207             : }
    3208             : 
    3209             : /* uisprime(n) knowing n has no prime divisor <= lim */
    3210             : static int
    3211        6721 : uisprime_nosmall(ulong n, ulong lim)
    3212        6721 : { return (lim >= 661)? uisprime_661(n): uisprime(n); }
    3213             : 
    3214             : static GEN factoru_sign(ulong n, ulong all, long hint, ulong *pU1, ulong *pU2);
    3215             : static GEN ifactor_sign(GEN n, ulong all, long hint, long sn, GEN *pU);
    3216             : 
    3217             : /* simplified version of factoru_sign, to be called on squarefree n whose
    3218             :  * prime divisors are in [minp, maxp], assuming maxp <= maxprimelim().
    3219             :  * Return the list of prime divisors of n; NULL if none */
    3220             : static GEN
    3221     1039023 : factoru_primes(ulong n, ulong minp, ulong maxp)
    3222             : {
    3223             :   forprime_t S;
    3224             :   ulong p;
    3225             :   long i;
    3226             :   GEN P;
    3227             : 
    3228     1039023 :   if (n < minp) return NULL;
    3229     1021637 :   if (n <= maxp && PRIMES_search(n) > 0) return mkvecsmall(n);
    3230      852288 :   P = cgetg(16, t_VECSMALL); i = 1;
    3231      852288 :   u_forprime_init(&S, minp, maxp);
    3232    39017929 :   while ( (p = u_forprime_next_fast(&S)) )
    3233             :   {
    3234    39017929 :     ulong q = n / p;
    3235    39017929 :     if (n % p == 0)
    3236             :     {
    3237     1362116 :       P[i++] = p; n = q;
    3238     1362116 :       if (q <= p || (n <= maxp && PRIMES_search(n) > 0)) { P[i++] = n; break; }
    3239             :     }
    3240    37655813 :     else if (q <= p) { P[i++] = n; break; } /* n <= p^2: n is now prime */
    3241             :   }
    3242      852288 :   if (i == 1) return NULL;
    3243      852288 :   setlg(P, i); return P;
    3244             : }
    3245             : /* zv of prime divisors of N in [minp,maxp] by trial division; NULL if none. */
    3246             : static GEN
    3247      158121 : Z_factor_primes(GEN N, ulong minp, ulong maxp)
    3248             : {
    3249             :   forprime_t S;
    3250      158121 :   ulong p, n = 0;
    3251             :   long i;
    3252             :   GEN P;
    3253      158121 :   if (lgefint(N) == 3) return factoru_primes(uel(N,2), minp, maxp);
    3254       19031 :   u_forprime_init(&S, minp, maxp);
    3255       19031 :   P = cgetg(expi(N) + 1, t_VECSMALL); i = 1;
    3256    11333587 :   while ( (p = u_forprime_next_fast(&S)) )
    3257             :   {
    3258             :     int stop;
    3259    11333701 :     long v = Z_lvalrem_stop(&N, p, &stop);
    3260    11333587 :     if (v) P[i++] = p;
    3261    11333587 :     if (stop)
    3262             :     {
    3263         315 :       if (!equali1(N)) P[i++] = uel(N,2);
    3264         315 :       goto END;
    3265             :     }
    3266    11333272 :     if (v && lgefint(N) == 3) { n = uel(N,2); break; }
    3267             :   }
    3268    23891765 :   if (n) while ( (p = u_forprime_next_fast(&S)) )
    3269             :   {
    3270    23891765 :     ulong q = n / p;
    3271    23891765 :     if (n % p == 0)
    3272             :     {
    3273       63932 :       P[i++] = p; n = q;
    3274       63932 :       if (q <= p || (n <= maxp && PRIMES_search(n) > 0)) { P[i++] = n; break; }
    3275             :     }
    3276    23827833 :     else if (q <= p) { P[i++] = n; break; } /* n <= p^2: n is now prime */
    3277             :   }
    3278           0 : END:
    3279       19031 :   if (i == 1) return NULL;
    3280       19031 :   setlg(P, i); return P;
    3281             : }
    3282             : 
    3283             : /* N != 0. Product of odd prime divisors less than
    3284             :  *   min(*pLIM, factorlimit) [WARNING!];
    3285             :  * with lim <= *pLIM < 2*lim and *pLIM prime
    3286             :  * Assume lim >= 128. Better for efficiency if N >= lim^2. */
    3287             : static ulong
    3288      900324 : u_oddprimedivisors_gcd(ulong N, ulong lim, ulong *pLIM)
    3289             : {
    3290      900324 :   GEN PR = prodprimes(), LIM = prodprimeslim();
    3291      900324 :   long b = minss(lg(PR)-1, expu(lim)-6);
    3292             :   /* 2^{b+6} <= lim < 2^{b+7}, b >= 1 */
    3293      900324 :   *pLIM = LIM[b]; return ugcdiu(gel(PR,b), N);
    3294             : }
    3295             : /* not GC-clean */
    3296             : static GEN
    3297      159253 : Z_oddprimedivisors_gcd(GEN N, ulong lim, ulong *pLIM)
    3298             : {
    3299      159253 :   GEN PR = prodprimes(), LIM = prodprimeslim();
    3300      159253 :   long b = minss(lg(PR)-1, expu(lim)-6);
    3301      159253 :   *pLIM = LIM[b]; return gcdii(N, gel(PR,b));
    3302             : }
    3303             : 
    3304             : /* Assume lim >= 128 and N odd. */
    3305             : static GEN
    3306      136525 : Z_oddprimedivisors_fast(GEN N, ulong lim)
    3307             : {
    3308      136525 :   pari_sp av = avma;
    3309      136525 :   GEN Nr = Z_oddprimedivisors_gcd(N, lim, &lim);
    3310      136525 :   GEN P = Z_factor_primes(Nr, 3, lim);
    3311      136525 :   return P? P: gc_NULL(av);
    3312             : }
    3313             : /* return mask with bit 0, 1, 2 set if respectively 3, 5, 7 divide n */
    3314             : static int
    3315    16280559 : u_357_divides(ulong n)
    3316             : { /* vector (105, i, n = i-1; !(n%3) + 2 * !(n%5) + 4 * !(n%7)) */
    3317    16280559 :   const unsigned int tab[] = {
    3318             :   7,0,0,1,0,2,1,4,0,1,2,0,1,0,4,3,0,0,1,0,2,5,0,0,1,2,0,1,4,0,3,0,0,1,0,6,1,0,
    3319             :   0,1,2,0,5,0,0,3,0,0,1,4,2,1,0,0,1,2,4,1,0,0,3,0,0,5,0,2,1,0,0,1,6,0,1,0,0,3,
    3320             :   0,4,1,0,2,1,0,0,5,2,0,1,0,0,3,4,0,1,0,2,1,0,4,1,2,0,1,0,0};
    3321    16280559 :   return tab[n % 105UL];
    3322             : }
    3323             : 
    3324             : static GEN
    3325    17534577 : factoru_result(GEN P, GEN E, long i)
    3326             : {
    3327    17534577 :   GEN P2, E2, f = cgetg(3,t_VEC);
    3328    17534115 :   gel(f,1) = P2 = cgetg(i, t_VECSMALL);
    3329    17533586 :   gel(f,2) = E2 = cgetg(i, t_VECSMALL);
    3330    53819895 :   while (--i >= 1) { P2[i] = P[i]; E2[i] = E[i]; }
    3331    17533531 :   return f;
    3332             : }
    3333             : 
    3334             : /* n > 1, all > 0; look for easy (2,3,5,7) pure powers */
    3335             : static long
    3336        1071 : factoru_is_2357_power(ulong *pn, ulong all)
    3337             : {
    3338             : #ifdef LONG_IS_64BIT
    3339        1056 :   ulong mask = all > 563 ? (all > 7129 ? 1: 3): 7;
    3340             : #else
    3341          15 :   ulong mask = all > 22 ? (all > 83 ? 1: 3): 7;
    3342             : #endif
    3343        1071 :   long k = 1, ex;
    3344        1540 :   while (uissquareall(*pn, pn)) k <<= 1;
    3345        1084 :   while ( (ex = uis_357_power(*pn, pn, &mask)) ) k *= ex;
    3346        1071 :   return k;
    3347             : }
    3348             : /* n > 1; look for easy (2,3,5,7) pure powers; exponent divides e */
    3349             : static long
    3350           6 : factoru_is_2357_power_special(ulong *pn, ulong e)
    3351             : {
    3352             :   ulong mask;
    3353             :   long k, ex;
    3354           6 :   if (e == 1) return 1;
    3355           0 :   k = 1; mask = 0;
    3356           0 :   while (!odd(e) && uissquareall(*pn, pn)) { k <<= 1; e >>= 1; }
    3357           0 :   if (e % 3 == 0) mask |= 1;
    3358           0 :   if (e % 5 == 0) mask |= 2;
    3359           0 :   if (e % 7 == 0) mask |= 4;
    3360           0 :   while ( (ex = uis_357_power(*pn, pn, &mask)) ) k *= ex;
    3361           0 :   return k;
    3362             : }
    3363             : 
    3364             : /* Factor n and output [p,e] where
    3365             :  * p, e are vecsmall with n = prod{p[i]^e[i]}. If all != 0:
    3366             :  * if pU1 is not NULL, set *pU1 and *pU2 so that unfactored composite is
    3367             :  * U1^U2 with U1 not a pure power; else include it in factorization */
    3368             : static GEN
    3369    17884502 : factoru_sign(ulong n, ulong all, long hint, ulong *pU1, ulong *pU2)
    3370             : {
    3371    17884502 :   pari_sp av = avma;
    3372    17884502 :   ulong ALL, p, lim = 0;
    3373    17884502 :   long i, oldi = -1;
    3374             :   forprime_t S;
    3375             :   GEN E, P;
    3376             : 
    3377    17884502 :   if (pU1) *pU1 = *pU2 = 1;
    3378    17884502 :   if (n == 0) retmkvec2(mkvecsmall(0), mkvecsmall(1));
    3379    17884502 :   if (n == 1) retmkvec2(cgetg(1,t_VECSMALL), cgetg(1,t_VECSMALL));
    3380             : 
    3381             :   /* enough room to store <= 15 primes and exponents (OK if n < 2^64) */
    3382    17534134 :   (void)new_chunk(3 + 16*2);
    3383    17534182 :   P = cgetg(16, t_VECSMALL); i = 1;
    3384    17533997 :   E = cgetg(16, t_VECSMALL);
    3385    17533490 :   ALL = all? all: ULONG_MAX; /* (!all || all > n) == ALL > n */
    3386    17533490 :   if (ALL > 2)
    3387             :   {
    3388             :     ulong maxp;
    3389    17533485 :     long v = vals(n);
    3390    17533447 :     if (v)
    3391             :     {
    3392    11704583 :       P[1] = 2; E[1] = v; i = 2;
    3393    11704583 :       n >>= v; if (n == 1) goto END;
    3394             :     }
    3395    14491911 :     if (ALL > 3)
    3396             :     {
    3397    14492348 :       int mask = u_357_divides(n);
    3398    14493035 :       if (mask)
    3399             :       {
    3400     9843489 :         if (mask & 1)
    3401     6235251 :         { P[i] = 3; E[i] = 1 + u_lvalrem(n / 3, 3, &n); i++;
    3402     6235293 :           if (n == 1) goto END; }
    3403     7443300 :         if ((mask & 2) && ALL > 5)
    3404     3648511 :         { P[i] = 5; E[i] = 1 + u_lvalrem(n / 5, 5, &n); i++;
    3405     3648521 :           if (n == 1) goto END; }
    3406     5805347 :         if ((mask & 4) && ALL > 7)
    3407     2177144 :         { P[i] = 7; E[i] = 1 + u_lvalrem(n / 7, 7, &n); i++;
    3408     2177137 :           if (n == 1) goto END; }
    3409             :       }
    3410             :     }
    3411     9280030 :     maxp = maxprime();
    3412     9281063 :     if (n <= maxp && PRIMES_search(n) > 0) { P[i] = n; E[i] = 1; i++; goto END; }
    3413     3431727 :     lim = all? all-1: tridiv_boundu(n);
    3414     3431731 :     if (lim >= 128 && n >= 691 * 691) /* expu(lim) >= 7 */
    3415        6662 :     { /* fast trial division */
    3416      895571 :       ulong gcdlim, gcd, sqrtn = usqrt(n);
    3417             :       GEN Q;
    3418      895571 :       lim = minuu(lim, sqrtn);
    3419      895570 :       gcd = u_oddprimedivisors_gcd(n, lim, &gcdlim);
    3420      895571 :       Q = factoru_primes(gcd, 11, gcdlim);
    3421      895571 :       maxp = GP_DATA->factorlimit;
    3422      895571 :       if (Q)
    3423             :       {
    3424      881818 :         long j, l = lg(Q);
    3425      881818 :         int stop = 0;
    3426     2851439 :         for (j = 1; j < l; j++)
    3427             :         {
    3428     1969627 :           ulong p = uel(Q,j); /* prime */
    3429             :           long k;
    3430     1969627 :           if (all && p >= all)
    3431             :           { /* found further prime factors but too large: stop */
    3432             :             ulong n0;
    3433           6 :             k = u_lvalrem(n, p, &n0); /* > 0 */
    3434           6 :             if (n0 == 1)
    3435           0 :             { P[i] = p; E[i] = k; i++; }
    3436             :             else
    3437             :             { /* n has at least 2 prime divisors, v_p(n) = k > 0 */
    3438           6 :               long k0 = factoru_is_2357_power_special(&n0, k);
    3439           6 :               if (k0 == 1) n0 = n; else n0 *= upowuu(p, k / k0);
    3440             :               /* n = n0^k0, n0 composite */
    3441           6 :               if (pU1)
    3442           0 :               { *pU1 = n0; *pU2 = k0; }
    3443             :               else
    3444           6 :               { P[i] = n0; E[i] = k0; i++; }
    3445             :             }
    3446           6 :             goto END;
    3447             :           }
    3448     1969621 :           k = u_lvalrem_stop(&n, p, &stop); /* > 0 */
    3449     1969621 :           P[i] = p; E[i] = k; i++;
    3450             :         }
    3451      881812 :         if (n == 1) goto END;
    3452       36610 :         if (stop || (n <= maxp && PRIMES_search(n) > 0))
    3453       33677 :         { P[i] = n; E[i] = 1; i++; goto END; }
    3454             :       }
    3455       13753 :       else if (lim == sqrtn && lim <= maxp)
    3456       10024 :         { P[i] = n; E[i] = 1; i++; goto END; }
    3457             :     }
    3458             :     else
    3459             :     { /* naive trial division */
    3460     2536160 :       maxp = lim;
    3461     2536160 :       u_forprime_init(&S, 11, lim);
    3462    18881448 :       while ( (p = u_forprime_next_fast(&S)) )
    3463             :       {
    3464             :         int stop;
    3465             :         /* tiny integers without small factors are often primes */
    3466    18881117 :         if (p == 673)
    3467             :         {
    3468     2536110 :           if (uisprime_661(n)) { P[i] = n; E[i] = 1; i++; goto END; }
    3469         290 :           oldi = i;
    3470             :         }
    3471    18881117 :         v = u_lvalrem_stop(&n, p, &stop);
    3472    18881112 :         if (v) { P[i] = p; E[i] = v; i++; }
    3473    18881112 :         if (stop)
    3474             :         {
    3475     2535820 :           if (n != 1) { P[i] = n; E[i] = 1; i++; }
    3476     2535820 :           goto END;
    3477             :         }
    3478             :       }
    3479             :     }
    3480        7023 :     if (lim > maxp)
    3481             :     { /* second pass usually empty, outside fast trial division range */
    3482             :       long v;
    3483           6 :       u_forprime_init(&S, maxp+1, lim);
    3484     5296866 :       while ((p = u_forprime_next(&S)))
    3485             :       {
    3486             :         int stop;
    3487     5296871 :         v = u_lvalrem_stop(&n, p, &stop);
    3488     5296866 :         if (v) { P[i] = p; E[i] = v; i++; }
    3489     5296866 :         if (stop)
    3490             :         {
    3491           6 :           if (n != 1) { P[i] = n; E[i] = 1; i++; }
    3492           6 :           goto END;
    3493             :         }
    3494             :       }
    3495             :     }
    3496             :   }
    3497             :   /* if i > oldi (includes oldi = -1) we don't know that n is composite */
    3498        7017 :   if (all)
    3499             :   { /* smallfact: look for easy pure powers then stop */
    3500        1071 :     long k = factoru_is_2357_power(&n, all);
    3501        1071 :     if (pU1 && (i == oldi || !uisprime_nosmall(n, lim)))
    3502         266 :     { *pU1 = n; *pU2 = (ulong)k; }
    3503             :     else
    3504         805 :     { P[i] = n; E[i] = k; i++; }
    3505        1071 :     goto END;
    3506             :   }
    3507             :   /* we don't known that n is composite ? */
    3508        5946 :   if (oldi != i && uisprime_nosmall(n, lim)) { P[i]=n; E[i]=1; i++; goto END; }
    3509             : 
    3510             :   {
    3511             :     GEN perm;
    3512         807 :     ifac_factoru(utoipos(n), hint, P, E, &i);
    3513         807 :     setlg(P, i);
    3514         807 :     perm = vecsmall_indexsort(P);
    3515         807 :     P = vecsmallpermute(P, perm);
    3516         807 :     E = vecsmallpermute(E, perm);
    3517             :   }
    3518    17535341 : END:
    3519    17535341 :   set_avma(av); return factoru_result(P, E, i);
    3520             : }
    3521             : GEN
    3522     3662475 : factoru(ulong n)
    3523     3662475 : { return factoru_sign(n, 0, decomp_default_hint, NULL, NULL); }
    3524             : 
    3525             : ulong
    3526           0 : radicalu(ulong n)
    3527             : {
    3528           0 :   pari_sp av = avma;
    3529           0 :   return gc_long(av, zv_prod(gel(factoru(n),1)));
    3530             : }
    3531             : 
    3532             : long
    3533       54194 : moebiusu_fact(GEN f)
    3534             : {
    3535       54194 :   GEN E = gel(f,2);
    3536       54194 :   long i, l = lg(E);
    3537       93569 :   for (i = 1; i < l; i++)
    3538       57834 :     if (E[i] > 1) return 0;
    3539       35735 :   return odd(l)? 1: -1;
    3540             : }
    3541             : 
    3542             : long
    3543     2479850 : moebiusu(ulong n)
    3544             : {
    3545             :   pari_sp av;
    3546             :   long s, v, test_prime;
    3547             :   ulong p, lim;
    3548             :   int mask;
    3549             : 
    3550     2479850 :   switch(n)
    3551             :   {
    3552           0 :     case 0: (void)check_arith_non0(gen_0,"moebius");/*error*/
    3553      568441 :     case 1: return  1;
    3554      106635 :     case 2: return -1;
    3555             :   }
    3556             :   /* n > 2 */
    3557     1822735 :   p = n & 3; if (!p) return 0;
    3558     1734825 :   if (p == 2) { n >>= 1; s = -1; } else s = 1;
    3559     1734825 :   mask = u_357_divides(n);
    3560     1754831 :   if (mask)
    3561             :   {
    3562      673128 :     if (mask & 1) { n /= 3; s = -s; if (n % 3 == 0) return 0; }
    3563      609965 :     if (mask & 2) { n /= 5; s = -s; if (n % 5 == 0) return 0; }
    3564      568844 :     if (mask & 4) { n /= 7; s = -s; if (n % 7 == 0) return 0; }
    3565             :   }
    3566     1615529 :   if (n <= maxprimelim() && PRIMES_search(n) > 0) return -s;
    3567      655107 :   av = avma; lim = tridiv_boundu(n);
    3568      668070 :   if (n >= 691 * 691)
    3569             :   {
    3570        4507 :     ulong gcdlim, gcd, sqrtn = usqrt(n);
    3571             :     GEN P;
    3572        4507 :     lim = minuu(sqrtn, lim);
    3573        4507 :     gcd = u_oddprimedivisors_gcd(n, lim, &gcdlim);
    3574        4507 :     if (gcd != 1)
    3575             :     {
    3576        3523 :       n /= gcd;
    3577        3846 :       if (ugcd(gcd, n) != 1) return 0;
    3578             :     }
    3579        4362 :     P = factoru_primes(gcd, 11, gcdlim);
    3580        4362 :     if (P && odd(lg(P) - 1)) s = -s;
    3581        4362 :     if (n == 1) return gc_long(av, s);
    3582        4060 :     if (lim == sqrtn && lim <= GP_DATA->factorlimit) return gc_long(av, -s);
    3583        4039 :     test_prime = 1;
    3584             :   }
    3585             :   else
    3586             :   {
    3587             :     forprime_t S;
    3588      663563 :     u_forprime_init(&S, 11, lim);
    3589      664029 :     test_prime = 0;
    3590     5728600 :     while ((p = u_forprime_next_fast(&S)))
    3591             :     {
    3592             :       int stop;
    3593             :       /* tiny integers without small factors are often primes */
    3594     5730676 :       if (p == 673)
    3595             :       {
    3596           0 :         test_prime = 0;
    3597      666014 :         if (uisprime_661(n)) return gc_long(av,-s);
    3598             :       }
    3599     5730676 :       v = u_lvalrem_stop(&n, p, &stop);
    3600     5729900 :       if (v) {
    3601      638353 :         if (v > 1) return gc_long(av,0);
    3602      596442 :         test_prime = 1;
    3603      596442 :         s = -s;
    3604             :       }
    3605     5687989 :       if (stop) return gc_long(av, n==1? s: -s);
    3606             :     }
    3607             :   }
    3608        4039 :   set_avma(av);
    3609        4039 :   if (test_prime && uisprime_661(n)) return -s;
    3610             :   else
    3611             :   {
    3612         663 :     long t = ifac_moebiusu(utoipos(n));
    3613         663 :     set_avma(av);
    3614         663 :     if (t == 0) return 0;
    3615         663 :     return (s == t)? 1: -1;
    3616             :   }
    3617             : }
    3618             : 
    3619             : long
    3620       58677 : moebius(GEN n)
    3621             : {
    3622       58677 :   pari_sp av = avma;
    3623             :   GEN F;
    3624             :   ulong p, lim, n357;
    3625             :   long i, l, s, v, copy;
    3626             :   int mask;
    3627             : 
    3628       58677 :   if ((F = check_arith_non0(n,"moebius")))
    3629             :   {
    3630             :     GEN E;
    3631         763 :     F = clean_Z_factor(F);
    3632         728 :     E = gel(F,2);
    3633         728 :     l = lg(E);
    3634        1428 :     for(i = 1; i < l; i++)
    3635         980 :       if (!equali1(gel(E,i))) return gc_long(av,0);
    3636         448 :     return gc_long(av, odd(l)? 1: -1);
    3637             :   }
    3638       57820 :   if (lgefint(n) == 3) return moebiusu(uel(n,2));
    3639        1608 :   p = mod4(n); if (!p) return 0;
    3640        1408 :   copy = s = 1;
    3641        1408 :   if (p == 2)
    3642             :   {
    3643         358 :     n = shifti(n, -1);
    3644         358 :     copy = 0; s = -1;
    3645             :   }
    3646        1408 :   n357 = umodiu(n, 9 * 25 * 49);
    3647        1408 :   mask = u_357_divides(n357);
    3648        1408 :   if (mask)
    3649             :   {
    3650         764 :     ulong m = 1;
    3651         764 :     if (mask & 1) { m = 3;  s = -s; }
    3652         764 :     if (mask & 2) { m *= 5; s = -s; }
    3653         764 :     if (mask & 4) { m *= 7; s = -s; }
    3654         764 :     if (u_357_divides(n357 / m)) return gc_long(av, 0);
    3655         549 :     copy = 0; n = diviuexact(n, m);
    3656             :   }
    3657        1193 :   if (copy) n = icopy(n);
    3658         701 :   else if (lgefint(n) == 3) return gc_long(av, s * moebiusu(uel(n,2)));
    3659         883 :   setabssign(n); lim = tridiv_bound(n);
    3660         883 :   if (lim >= 128)
    3661             :   {
    3662             :     ulong gcdlim;
    3663         883 :     GEN gcd = Z_oddprimedivisors_gcd(n, lim, &gcdlim);
    3664         883 :     if (!equali1(gcd))
    3665             :     {
    3666             :       GEN P;
    3667         622 :       n = diviiexact(n, gcd);
    3668         808 :       if (!equali1(gcdii(gcd, n))) return gc_long(av, 0);
    3669         603 :       P = Z_factor_primes(gcd, 11, gcdlim);
    3670         603 :       if (P)
    3671             :       {
    3672         603 :         if (odd(lg(P) - 1)) s = -s;
    3673         603 :         if (is_pm1(n)) return gc_long(av, s);
    3674        1158 :         if (lim <= GP_DATA->factorlimit &&
    3675         741 :             cmpii(sqru(lim), n) >= 0) return gc_long(av, -s); /* n prime */
    3676             :       }
    3677             :     }
    3678             :   }
    3679             :   else
    3680             :   {
    3681             :     forprime_t S;
    3682           0 :     u_forprime_init(&S, 11, lim);
    3683           0 :     while ((p = u_forprime_next_fast(&S)))
    3684             :     {
    3685             :       int stop;
    3686           0 :       v = Z_lvalrem_stop(&n, p, &stop);
    3687           0 :       if (v)
    3688             :       {
    3689           0 :         if (v > 1) return gc_long(av,0);
    3690           0 :         s = -s;
    3691             :       }
    3692           0 :       if (stop) return gc_long(av, is_pm1(n)? s: -s);
    3693             :     }
    3694             :   }
    3695         678 :   l = lg(primetab);
    3696         682 :   for (i = 1; i < l; i++)
    3697             :   {
    3698           7 :     v = Z_pvalrem(n, gel(primetab,i), &n);
    3699           7 :     if (v)
    3700             :     {
    3701           7 :       if (v > 1) return gc_long(av,0);
    3702           5 :       s = -s;
    3703           5 :       if (is_pm1(n)) return gc_long(av,s);
    3704             :     }
    3705             :   }
    3706         675 :   if (ifac_isprime(n)) return gc_long(av,-s);
    3707             :   /* large composite without small factors */
    3708         236 :   v = ifac_moebius(n);
    3709         236 :   return gc_long(av, s < 0? -v: v); /* correct also if v==0 */
    3710             : }
    3711             : 
    3712             : long
    3713        1708 : ispowerful(GEN n)
    3714             : {
    3715        1708 :   pari_sp av = avma;
    3716             :   GEN F;
    3717             :   ulong p, lim, n357;
    3718             :   long i, l, v;
    3719        1708 :   int mask, copy = 1;
    3720             : 
    3721        1708 :   if ((F = check_arith_all(n, "ispowerful")))
    3722             :   {
    3723         742 :     GEN p, P = gel(F,1), E = gel(F,2);
    3724         742 :     if (lg(P) == 1) return 1; /* 1 */
    3725         728 :     p = gel(P,1);
    3726         728 :     if (!signe(p)) return 1; /* 0 */
    3727         707 :     i = is_pm1(p)? 2: 1; /* skip -1 */
    3728         707 :     l = lg(E);
    3729         980 :     for (; i < l; i++)
    3730         847 :       if (equali1(gel(E,i))) return 0;
    3731         133 :     return 1;
    3732             :   }
    3733         966 :   if (!signe(n)) return 1;
    3734         952 :   if (mod4(n) == 2) return 0;
    3735         623 :   n357 = umodiu(n, 9 * 25 * 49);
    3736         623 :   mask = u_357_divides(n357);
    3737         623 :   if (mask)
    3738             :   {
    3739         315 :     if ((mask & 1) && n357 % 9)  return 0;
    3740         203 :     if ((mask & 2) && n357 % 25) return 0;
    3741         126 :     if ((mask & 4) && n357 % 49) return 0;
    3742          98 :     if (mask & 1) (void)Z_lvalrem(diviuexact(n,9),  3, &n);
    3743          98 :     if (mask & 2) (void)Z_lvalrem(diviuexact(n,25), 5, &n);
    3744          98 :     if (mask & 4) (void)Z_lvalrem(diviuexact(n,49), 7, &n);
    3745          98 :     copy = 0;
    3746             :   }
    3747         406 :   if (!mod2(n)) { n = shifti(n, -vali(n)); copy = 0; }
    3748         406 :   if (is_pm1(n)) return gc_long(av, 1);
    3749         238 :   if (copy) n = icopy(n);
    3750         238 :   setabssign(n); lim = tridiv_bound(n);
    3751         238 :   if (cmpiu(n, 691 * 691) >= 0)
    3752             :   {
    3753          70 :     ulong gcdlim, sqrtn = 0;
    3754             :     GEN gcd;
    3755          70 :     if (lgefint(n) == 3)
    3756             :     {
    3757           6 :       sqrtn = usqrt(n[2]);
    3758           6 :       lim = minuu(sqrtn, lim);
    3759             :     }
    3760          70 :     gcd = Z_oddprimedivisors_gcd(n, lim, &gcdlim);
    3761          70 :     if (!equali1(gcd))
    3762             :     {
    3763             :       GEN r;
    3764          70 :       n = diviiexact(n, gcd);
    3765          70 :       n = dvmdii(n, gcd, &r);
    3766          70 :       if (r != gen_0) return gc_long(av, 0);
    3767          70 :       n = Z_ppo(n, gcd);
    3768             :     }
    3769             :     /* prime divisors > gcdlim */
    3770          70 :     if (equali1(n)) return gc_long(av, 1);
    3771           7 :     if (sqrtn && gcdlim >= sqrtn) return gc_long(av, 0); /* prime */
    3772             :   }
    3773             :   else
    3774             :   {
    3775             :     forprime_t S;
    3776         168 :     u_forprime_init(&S, 11, lim);
    3777         168 :     while ((p = u_forprime_next_fast(&S)))
    3778             :     {
    3779             :       int stop;
    3780         168 :       v = Z_lvalrem_stop(&n, p, &stop);
    3781         308 :       if (v == 1) return gc_long(av,0);
    3782         140 :       if (stop) return gc_long(av, is_pm1(n)); /* n > 1 is now prime */
    3783             :     }
    3784             :   }
    3785           7 :   l = lg(primetab);
    3786           7 :   for (i = 1; i < l; i++)
    3787             :   {
    3788           0 :     v = Z_pvalrem(n, gel(primetab,i), &n);
    3789           0 :     if (v)
    3790             :     {
    3791           0 :       if (v == 1) return gc_long(av,0);
    3792           0 :       if (is_pm1(n)) return gc_long(av,1);
    3793             :     }
    3794             :   }
    3795             :   /* no need to factor: must be p^2 or not powerful */
    3796           7 :   if (cmpii(powuu(lim+1, 3), n) > 0) return gc_long(av,  Z_issquare(n));
    3797             : 
    3798           7 :   if (ifac_isprime(n)) return gc_long(av,0);
    3799             :   /* large composite without small factors */
    3800           7 :   return gc_long(av, ifac_ispowerful(n));
    3801             : }
    3802             : 
    3803             : ulong
    3804           0 : coreu_fact(GEN f)
    3805             : {
    3806           0 :   GEN P = gel(f,1), E = gel(f,2);
    3807           0 :   long i, l = lg(P), m = 1;
    3808           0 :   for (i = 1; i < l; i++)
    3809             :   {
    3810           0 :     ulong p = P[i], e = E[i];
    3811           0 :     if (e & 1) m *= p;
    3812             :   }
    3813           0 :   return m;
    3814             : }
    3815             : 
    3816             : /* d = a squarefree divisor of n. Return n / (n, d^oo)
    3817             :  * and set *pcore = \prod_{p | (n,d), v_p(n) odd} p
    3818             :  * Simpified form of Z_cba. */
    3819             : static GEN
    3820         327 : core_init_from_squarefree(GEN n, GEN d, GEN *pcore)
    3821             : {
    3822         327 :   GEN c = gen_1;
    3823             :   long v;
    3824             : 
    3825         327 :   if (equali1(d)) { *pcore = c; return n; }
    3826         260 :   v = Z_pvalrem(n, d, &n);
    3827          59 :   for (;; v++)
    3828          59 :   { /* d^v divides "original n" */
    3829         319 :     GEN newd = gcdii(n, d); /* newd^{v+1} divides original n */
    3830         319 :     if (!equalii(d, newd))
    3831             :     { /* new d loses primes dividing original n to exact power v */
    3832         310 :       if (odd(v)) c = mulii(c, diviiexact(d, newd)); /* lost primes */
    3833         310 :       d = newd; if (equali1(d)) break;
    3834             :     }
    3835          63 :     if (equalii(d, n))
    3836             :     {
    3837           4 :       if (odd(v + 1)) c = mulii(c, d);
    3838           4 :       *pcore = c; return gen_1;
    3839             :     }
    3840          59 :     n = diviiexact(n, d);
    3841             :   }
    3842         256 :   *pcore = c; return n;
    3843             : }
    3844             : static ulong
    3845         247 : coreu_init_from_squarefree(ulong n, ulong d, ulong *pcore)
    3846             : {
    3847         247 :   ulong c = 1;
    3848             :   long v;
    3849             : 
    3850         247 :   if (d == 1) { *pcore = c; return n; }
    3851         205 :   v = u_lvalrem(n, d, &n);
    3852          18 :   for (;; v++)
    3853          18 :   { /* d^v divides "original n" */
    3854         223 :     ulong newd = ugcd(n, d); /* newd^{v+1} divides original n */
    3855         223 :     if (d != newd)
    3856             :     { /* new d loses primes dividing original n to exact power v */
    3857         211 :       if (odd(v)) c *= d / newd; /* lost primes */
    3858         211 :       d = newd; if (d == 1) break;
    3859             :     }
    3860          90 :     if (d == n)
    3861             :     {
    3862          72 :       if (odd(v + 1)) c *= d;
    3863          72 :       *pcore = c; return 1;
    3864             :     }
    3865          18 :     n /= d;
    3866             :   }
    3867         133 :   *pcore = c; return n;
    3868             : }
    3869             : 
    3870             : ulong
    3871       63010 : coreu(ulong n)
    3872             : {
    3873             :   ulong p, lim, m;
    3874             :   long v;
    3875             : 
    3876       63010 :   if (!n) return 0;
    3877       63010 :   m = 1;
    3878       63010 :   v = vals(n);
    3879       63010 :   if (v)
    3880             :   {
    3881        4147 :     n >>= v;
    3882        4147 :     if (odd(v)) m = 2;
    3883             :   }
    3884       63010 :   v = u_lvalrem(n, 3, &n); if (odd(v)) m *= 3;
    3885       63010 :   v = u_lvalrem(n, 5, &n); if (odd(v)) m *= 5;
    3886       63010 :   v = u_lvalrem(n, 7, &n); if (odd(v)) m *= 7;
    3887       63010 :   if (n == 1) return m;
    3888        3308 :   if (n <= maxprimelim() && PRIMES_search(n) > 0) return m * n;
    3889         408 :   lim = tridiv_boundu(n);
    3890         408 :   if (n >= 691 * 691)
    3891             :   {
    3892         247 :     ulong mpart, gcd, gcdlim, sqrtn = usqrt(n);
    3893         247 :     lim = minuu(sqrtn, lim);
    3894         247 :     gcd = u_oddprimedivisors_gcd(n, lim, &gcdlim);
    3895         247 :     n = coreu_init_from_squarefree(n, gcd, &mpart);
    3896         247 :     m *= mpart;
    3897         266 :     if (n == 1) return m;
    3898             :     /* n has no prime divisor <= gcdlim */
    3899         103 :     if ((lim == sqrtn && lim <= GP_DATA->factorlimit)
    3900          96 :         || (gcdlim + 1) * (gcdlim + 1) > n)
    3901          19 :       return m * n; /* prime */
    3902             :   }
    3903             :   else
    3904             :   {
    3905             :     forprime_t S;
    3906         161 :     u_forprime_init(&S, 11, lim);
    3907        3633 :     while ((p = u_forprime_next_fast(&S)))
    3908             :     {
    3909             :       int stop;
    3910        3633 :       v = u_lvalrem_stop(&n, p, &stop);
    3911        3633 :       if (v & 1) m *= p;
    3912        3633 :       if (stop) return n == 1? m: m * n; /* n > 1 is now prime */
    3913             :     }
    3914             :   }
    3915          84 :   if (uisprime_661(n)) return m * n;
    3916             :   else
    3917             :   {
    3918          84 :     pari_sp av = avma;
    3919          84 :     m *= itou(ifac_core(utoipos(n)));
    3920          84 :     return gc_ulong(av, m);
    3921             :   }
    3922             : }
    3923             : 
    3924             : GEN
    3925      709550 : core(GEN n)
    3926             : {
    3927      709550 :   pari_sp av = avma;
    3928             :   GEN m, mpart, gcd, F;
    3929             :   ulong lim, gcdlim, mask, m0;
    3930             :   long i, l, v, s;
    3931      709550 :   int copy = 1;
    3932             : 
    3933      709550 :   if ((F = check_arith_all(n, "core")))
    3934             :   {
    3935      646233 :     GEN p, x, P = gel(F,1), E = gel(F,2);
    3936      646233 :     long j = 1;
    3937      646233 :     if (lg(P) == 1) return gen_1;
    3938      646205 :     p = gel(P,1);
    3939      646205 :     if (!signe(p)) return gen_0;
    3940      646163 :     l = lg(P); x = cgetg(l, t_VEC);
    3941     2282957 :     for (i = 1; i < l; i++)
    3942     1636812 :       if (mpodd(gel(E,i))) gel(x,j++) = gel(P,i);
    3943      646145 :     setlg(x, j); return ZV_prod(x);
    3944             :   }
    3945       63308 :   s = signe(n);
    3946       63308 :   if (!s) return gen_0;
    3947       63280 :   if (lgefint(n) == 3)
    3948             :   {
    3949       62873 :     ulong c = coreu(uel(n,2));
    3950       62873 :     return s < 0? utoineg(c): utoipos(c);
    3951             :   }
    3952         407 :   v = vali(n); m0 = 1;
    3953         408 :   if (v)
    3954             :   {
    3955         123 :     n = shifti(n, -v); if (odd(v)) m0 *= 2;
    3956         123 :     copy = 0;
    3957             :   }
    3958         408 :   if ((mask = u_357_divides(umodiu(n, 3 * 5 * 7))))
    3959             :   {
    3960         275 :     if (mask & 1) { v = Z_lvalrem(n, 3, &n); if (odd(v)) m0 *= 3; }
    3961         275 :     if (mask & 2) { v = Z_lvalrem(n, 5, &n); if (odd(v)) m0 *= 5; }
    3962         275 :     if (mask & 4) { v = Z_lvalrem(n, 7, &n); if (odd(v)) m0 *= 7; ; }
    3963         275 :     copy = 0;
    3964             :   }
    3965         408 :   if (copy) n = absi(n); /* ifac_core destroys n */
    3966         289 :   else if (lgefint(n) == 3)
    3967             :   {
    3968          81 :     ulong c = coreu(uel(n,2));
    3969          81 :     m = muluu(m0, c); if (s < 0) setsigne(m, -1);
    3970          81 :     return gc_INT(av, m);
    3971             :   }
    3972         327 :   setabssign(n); lim = tridiv_bound(n);
    3973             :   /* n >= 691^2 */
    3974         327 :   gcd = Z_oddprimedivisors_gcd(n, lim, &gcdlim);
    3975         327 :   n = core_init_from_squarefree(n, gcd, &mpart);
    3976         327 :   m = mului(m0, mpart); if (s < 0) setsigne(m, -1);
    3977         327 :   if (equali1(n)) return gc_INT(av, m);
    3978             :   /* n has no prime divisor <= gcdlim */
    3979         276 :   if (cmpii(sqru(gcdlim + 1), n) > 0)
    3980           2 :     return gc_INT(av, mulii(m, n)); /* prime */
    3981         274 :   l = lg(primetab);
    3982         750 :   for (i = 1; i < l; i++)
    3983             :   {
    3984         478 :     GEN q = gel(primetab,i);
    3985         478 :     v = Z_pvalrem(n, q, &n);
    3986         478 :     if (v)
    3987             :     {
    3988           8 :       if (v & 1) m = mulii(m, q);
    3989           8 :       if (is_pm1(n)) return gc_INT(av, m);
    3990             :     }
    3991             :   }
    3992         272 :   if (!ifac_isprime(n)) n = ifac_core(n); /* composite without small factors */
    3993         272 :   return gc_INT(av, mulii(m, n));
    3994             : }
    3995             : 
    3996             : long
    3997           0 : Z_issmooth(GEN m, ulong lim)
    3998             : {
    3999           0 :   pari_sp av = avma;
    4000           0 :   ulong p = 2;
    4001             :   forprime_t S;
    4002           0 :   u_forprime_init(&S, 2, lim);
    4003           0 :   while ((p = u_forprime_next_fast(&S)))
    4004             :   {
    4005             :     int stop;
    4006           0 :     (void)Z_lvalrem_stop(&m, p, &stop);
    4007           0 :     if (stop) return gc_long(av, abscmpiu(m,lim) <= 0);
    4008             :   }
    4009           0 :   return gc_long(av,0);
    4010             : }
    4011             : 
    4012             : GEN
    4013      176198 : Z_issmooth_fact(GEN m, ulong lim)
    4014             : {
    4015      176198 :   pari_sp av = avma;
    4016             :   GEN F, P, E;
    4017             :   ulong p;
    4018      176198 :   long i = 1, l = expi(m)+1;
    4019             :   forprime_t S;
    4020      176184 :   P = cgetg(l, t_VECSMALL);
    4021      176136 :   E = cgetg(l, t_VECSMALL); F = mkmat2(P,E);
    4022      176128 :   if (l == 1) return F; /* m == 1 */
    4023      176086 :   u_forprime_init(&S, 2, lim);
    4024    43568954 :   while ((p = u_forprime_next_fast(&S)))
    4025             :   {
    4026             :     int stop;
    4027    43525962 :     long v = Z_lvalrem_stop(&m, p, &stop);
    4028    43529230 :     if (v) { P[i] = p; E[i] = v; i++; }
    4029    43529230 :     if (stop)
    4030             :     {
    4031      136447 :       if (abscmpiu(m,lim) > 0) break;
    4032      111468 :       if (m[2] > 1) { P[i] = m[2]; E[i] = 1; i++; }
    4033      111468 :       setlg(P, i);
    4034      111531 :       setlg(E, i); return gc_const((pari_sp)F, F);
    4035             :     }
    4036             :   }
    4037       63449 :   return gc_NULL(av);
    4038             : }
    4039             : 
    4040             : /* assume (x,p) = 1 */
    4041             : static GEN
    4042          14 : Z_to_Up(GEN x, GEN p, long d)
    4043          14 : { retmkpadic_i(modii(x, _pd), p, powiu(p,d), 0, d); }
    4044             : /* Is (a mod p^e) a K-th power ? p is prime and e > 0 */
    4045             : static int
    4046         798 : Zp_ispower(GEN a, GEN L, GEN K, GEN p, long e)
    4047             : {
    4048         798 :   GEN t = gen_0;
    4049         798 :   long v = Z_pvalrem(a, p, &a), d = e - v;
    4050         798 :   if (d > 0)
    4051             :   { /* is a mod p^d a K-th power ? a p-unit */
    4052             :     ulong r;
    4053         735 :     v = uabsdivui_rem(v, K, &r);
    4054         735 :     if (r || !Fp_ispower(a, K, p)) return 0;
    4055         623 :     if (d == 1) /* mod p*/
    4056         560 :     { if (L) t = Fp_sqrtn(a, K, p, NULL); }
    4057          63 :     else if (dvdii(K, p))
    4058             :     { /* mod p^{2 +}, ramified case */
    4059          14 :       if (!ispower(Z_to_Up(a, p, d), K, L? &t: NULL)) return 0;
    4060          14 :       if (L) t = padic_to_Q(t);
    4061             :     }
    4062             :     else
    4063             :     { /* mod p^{2 +}, unramified case */
    4064          49 :       if (L)
    4065             :       {
    4066          42 :         t = Fp_sqrtn(a, K, p, NULL);
    4067          42 :         t = Zp_sqrtnlift(a, K, t, p, d);
    4068             :       }
    4069             :     }
    4070         623 :     if (L && v) t = mulii(t, powiu(p, v));
    4071             :   }
    4072         686 :   if (L) vectrunc_append(L, mkintmod(t, powiu(p, e)));
    4073         686 :   return 1;
    4074             : }
    4075             : long
    4076         756 : Zn_ispower(GEN a, GEN q, GEN K, GEN *pt)
    4077             : {
    4078             :   GEN L, N;
    4079             :   pari_sp av;
    4080             :   long e, i, l;
    4081             :   ulong pp, lim;
    4082             : 
    4083         756 :   if (!signe(a))
    4084             :   {
    4085          91 :     if (pt) {
    4086          91 :       GEN t = cgetg(3, t_INTMOD);
    4087          91 :       gel(t,1) = icopy(q); gel(t,2) = gen_0; *pt = t;
    4088             :     }
    4089          91 :     return 1;
    4090             :   }
    4091             :   /* a != 0 */
    4092         665 :   av = avma;
    4093             : 
    4094         665 :   if (typ(q) != t_INT) /* integer factorization */
    4095             :   {
    4096           0 :     GEN P = gel(q,1), E = gel(q,2);
    4097           0 :     l = lg(P);
    4098           0 :     L = pt? vectrunc_init(l): NULL;
    4099           0 :     for (i = 1; i < l; i++)
    4100             :     {
    4101           0 :       GEN p = gel(P,i);
    4102           0 :       long e = itos(gel(E,i));
    4103           0 :       if (!Zp_ispower(a, L, K, p, e)) return gc_long(av,0);
    4104             :     }
    4105           0 :     goto END;
    4106             :   }
    4107         665 :   e = vali(q); if (e) q = shifti(q, -e);
    4108         665 :   if (!mod2(K) && kronecker(a, q) == -1) return gc_long(av,0);
    4109         658 :   L = pt? vectrunc_init(expi(q)+2): NULL;
    4110         658 :   if (e)
    4111             :   {
    4112         469 :     if (!Zp_ispower(a, L, K, gen_2, e)) return gc_long(av,0);
    4113         455 :     a = modii(a, q);
    4114             :   }
    4115         644 :   lim = tridiv_bound(q);
    4116         644 :   if (cmpiu(q, 691 * 691) >= 0)
    4117             :   {
    4118         161 :     ulong sqrtq = lgefint(q) == 3? usqrt(q[2]): 0;
    4119             :     GEN P;
    4120         161 :     if (sqrtq) lim = minuu(sqrtq, lim);
    4121         161 :     P = Z_oddprimedivisors_fast(q, lim);
    4122         161 :     if (P)
    4123             :     {
    4124         103 :       long nP = lg(P) - 1;
    4125         103 :       int stop = 0;
    4126         206 :       for (i = 1; i <= nP; i++)
    4127             :       {
    4128         151 :         ulong pp = uel(P,i);
    4129         151 :         e = Z_lvalrem_stop(&q, pp, &stop);
    4130         151 :         if (!Zp_ispower(a, L, K, utoipos(pp), e)) return gc_long(av,0);
    4131         103 :         a = modii(a, q);
    4132             :       }
    4133          55 :       if (stop)
    4134             :       {
    4135          48 :         if (!is_pm1(q) && !Zp_ispower(a, L, K, q, 1)) return gc_long(av,0);
    4136          48 :         goto END;
    4137             :       }
    4138             :     }
    4139          58 :     else if (lim == sqrtq && lim <= GP_DATA->factorlimit)
    4140             :     {
    4141           0 :       if (!Zp_ispower(a, L, K, q, 1)) return gc_long(av,0);
    4142           0 :       goto END;
    4143             :     }
    4144             :   }
    4145             :   else
    4146             :   {
    4147             :     forprime_t S;
    4148         483 :     u_forprime_init(&S, 3, lim);
    4149      237174 :     while ((pp = u_forprime_next(&S)))
    4150             :     {
    4151             :       int stop;
    4152      236754 :       e = Z_lvalrem_stop(&q, pp, &stop);
    4153      236754 :       if (!e) continue;
    4154          63 :       if (!Zp_ispower(a, L, K, utoipos(pp), e)) return gc_long(av,0);
    4155          56 :       a = modii(a, q);
    4156          56 :       if (stop)
    4157             :       {
    4158          56 :         if (!is_pm1(q) && !Zp_ispower(a, L, K, q, 1)) return gc_long(av,0);
    4159          56 :         goto END;
    4160             :       }
    4161             :     }
    4162             :   }
    4163         485 :   l = lg(primetab);
    4164         485 :   for (i = 1; i < l; i++)
    4165             :   {
    4166           0 :     GEN p = gel(primetab,i);
    4167           0 :     e = Z_pvalrem(q, p, &q);
    4168           0 :     if (!e) continue;
    4169           0 :     if (!Zp_ispower(a, L, K, p, e)) return gc_long(av,0);
    4170           0 :     if (is_pm1(q)) goto END;
    4171           0 :     a = modii(a, q);
    4172             :   }
    4173         485 :   N = gcdii(a,q);
    4174         485 :   if (!is_pm1(N))
    4175             :   {
    4176          52 :     if (ifac_isprime(N))
    4177             :     {
    4178          34 :       e = Z_pvalrem(q, N, &q);
    4179          34 :       if (!Zp_ispower(a, L, K, N, e)) return gc_long(av,0);
    4180           0 :       a = modii(a, q);
    4181             :     }
    4182             :     else
    4183             :     {
    4184          18 :       GEN part = ifac_start(N, 0);
    4185             :       for(;;)
    4186          18 :       {
    4187             :         long e;
    4188             :         GEN p;
    4189          36 :         if (!ifac_next(&part, &p, &e)) break;
    4190          18 :         e = Z_pvalrem(q, p, &q);
    4191          18 :         if (!Zp_ispower(a, L, K, p, e)) return gc_long(av,0);
    4192          18 :         a = modii(a, q);
    4193             :       }
    4194             :     }
    4195             :   }
    4196         451 :   if (!is_pm1(q))
    4197             :   {
    4198          31 :     if (ifac_isprime(q))
    4199             :     {
    4200           4 :       if (!Zp_ispower(a, L, K, q, 1)) return gc_long(av,0);
    4201             :     }
    4202             :     else
    4203             :     { /* icopy needed: ifac_next would destroy q */
    4204          27 :       GEN part = ifac_start(icopy(q), 0);
    4205             :       for(;;)
    4206          43 :       {
    4207             :         long e;
    4208             :         GEN p;
    4209          70 :         if (!ifac_next(&part, &p, &e)) break;
    4210          52 :         if (!Zp_ispower(a, L, K, p, e)) return gc_long(av,0);
    4211          43 :         a = modii(a, q);
    4212             :       }
    4213             :     }
    4214             :   }
    4215         420 : END:
    4216         546 :   if (!pt) return gc_long(av, 1);
    4217         476 :   *pt = gc_upto(av, chinese1_coprime_Z(L)); return 1;
    4218             : }
    4219             : 
    4220             : 
    4221             : /***********************************************************************/
    4222             : /**                                                                   **/
    4223             : /**       COMPUTING THE MATRIX OF PRIME DIVISORS AND EXPONENTS        **/
    4224             : /**                                                                   **/
    4225             : /***********************************************************************/
    4226             : static GEN
    4227      137784 : aux_end(GEN M, GEN n, long nb)
    4228             : {
    4229      137784 :   GEN P,E, z = (GEN)avma;
    4230             :   long i;
    4231             : 
    4232      137784 :   guncloneNULL(n);
    4233      137784 :   P = cgetg(nb+1,t_COL);
    4234      137784 :   E = cgetg(nb+1,t_COL);
    4235      883993 :   for (i=nb; i; i--)
    4236             :   { /* allow a stackdummy in the middle */
    4237      830216 :     while (typ(z) != t_INT) z += lg(z);
    4238      746209 :     gel(E,i) = z; z += lg(z);
    4239      746209 :     gel(P,i) = z; z += lg(z);
    4240             :   }
    4241      137784 :   gel(M,1) = P;
    4242      137784 :   gel(M,2) = E;
    4243      137784 :   return sort_factor(M, (void*)&abscmpii, cmp_nodata);
    4244             : }
    4245             : 
    4246             : static void
    4247      741212 : STORE(long *nb, GEN x, long e) { (*nb)++; (void)x; (void)utoipos(e); }
    4248             : static void
    4249      714453 : STOREu(long *nb, ulong x, long e) { STORE(nb, utoipos(x), e); }
    4250             : static void
    4251       26608 : STOREi(long *nb, GEN x, long e) { STORE(nb, icopy(x), e); }
    4252             : /* no prime less than p divides n; return 1 if factored completely */
    4253             : static int
    4254       34534 : special_primes(GEN n, ulong p, long *nb, GEN T)
    4255             : {
    4256       34534 :   long l = lg(T);
    4257       34534 :   if (l > 1)
    4258             :   { /* pp = square of biggest p tried so far */
    4259         535 :     long i, k, pp[] = { evaltyp(t_INT)|_evallg(4), 0,0,0 };
    4260         535 :     pari_sp av = avma; affii(sqru(p), pp); set_avma(av);
    4261        1164 :     for (i = 1; i < l; i++)
    4262         762 :       if ((k = Z_pval_inplace(n, gel(T,i))))
    4263             :       {
    4264         231 :         STOREi(nb, gel(T,i), k);
    4265         231 :         if (abscmpii(pp, n) > 0)
    4266             :         {
    4267         133 :           if (!is_pm1(n)) STOREi(nb, n, 1);
    4268         133 :           return 1;
    4269             :         }
    4270             :       }
    4271             :   }
    4272       34401 :   return 0;
    4273             : }
    4274             : 
    4275             : /* factor(sn*|n|), where sn = -1 or 1.
    4276             :  * all != 0 : only look for prime divisors < all. If pU is not NULL,
    4277             :  * set it to unfactored composite */
    4278             : static GEN
    4279    14359622 : ifactor_sign(GEN n, ulong all, long hint, long sn, GEN *pU)
    4280             : {
    4281             :   GEN M, N;
    4282             :   pari_sp av;
    4283    14359622 :   long nb = 0, nb0 = -1, i;
    4284             :   ulong lim;
    4285             :   forprime_t T;
    4286             : 
    4287    14359622 :   if (lgefint(n) == 3)
    4288             :   { /* small integer */
    4289    14221846 :     GEN f, Pf, Ef, P, E, F = cgetg(3, t_MAT);
    4290             :     ulong U1, U2;
    4291             :     long l;
    4292    14221916 :     av = avma;
    4293             :     /* enough room to store <= 15 primes and exponents (OK if n < 2^64) */
    4294    14221916 :     (void)new_chunk((15*3 + 15 + 1) * 2);
    4295    14221889 :     f = factoru_sign(uel(n,2), all, hint, pU? &U1: NULL, pU? &U2: NULL);
    4296    14221958 :     set_avma(av);
    4297    14221976 :     Pf = gel(f,1);
    4298    14221976 :     Ef = gel(f,2);
    4299    14221976 :     l = lg(Pf);
    4300    14221976 :     if (sn < 0)
    4301             :     { /* add sign */
    4302        6519 :       long L = l+1;
    4303        6519 :       gel(F,1) = P = cgetg(L, t_COL);
    4304        6519 :       gel(F,2) = E = cgetg(L, t_COL);
    4305        6519 :       gel(P,1) = gen_m1; P++;
    4306        6519 :       gel(E,1) = gen_1;  E++;
    4307             :     }
    4308             :     else
    4309             :     {
    4310    14215457 :       gel(F,1) = P = cgetg(l, t_COL);
    4311    14215452 :       gel(F,2) = E = cgetg(l, t_COL);
    4312             :     }
    4313    44103464 :     for (i = 1; i < l; i++)
    4314             :     {
    4315    29881476 :       gel(P,i) = utoipos(Pf[i]);
    4316    29881516 :       gel(E,i) = utoipos(Ef[i]);
    4317             :     }
    4318    14221988 :     if (pU) *pU = U1 == 1? NULL: mkvec2(utoipos(U1), utoipos(U2));
    4319    14221988 :     return F;
    4320             :   }
    4321      137776 :   if (pU) *pU = NULL;
    4322      137776 :   M = cgetg(3,t_MAT);
    4323      137784 :   if (sn < 0) STORE(&nb, utoineg(1), 1);
    4324      137784 :   if (is_pm1(n)) return aux_end(M,NULL,nb);
    4325             : 
    4326      137784 :   n = N = gclone(n); setabssign(n);
    4327             :   /* trial division bound; look for primes <= lim; nb is the number of
    4328             :    * distinct prime factors so far; if nb0 >= 0, it records the value of nb
    4329             :    * for which we made a successful compositeness test: if later nb = nb0,
    4330             :    * we know that n is composite */
    4331      137784 :   lim = 1;
    4332      137784 :   if (!all || all > 2)
    4333             :   { /* trial divide p < all if all != 0, else p <= tridiv_bound() */
    4334             :     ulong maxp, p;
    4335             :     pari_sp av2;
    4336      137770 :     i = vali(n);
    4337      137770 :     if (i)
    4338             :     {
    4339       85570 :       STOREu(&nb, 2, i);
    4340       85570 :       av = avma; affii(shifti(n,-i), n); set_avma(av);
    4341             :     }
    4342      137770 :     if (is_pm1(n)) return aux_end(M,n,nb);
    4343      137652 :     lim = all? all-1: tridiv_bound(n);
    4344      137652 :     av = avma;
    4345      137652 :     if (lim >= 128)
    4346             :     { /* fast trial division */
    4347      136364 :       GEN Q = Z_oddprimedivisors_fast(n, lim);
    4348      136364 :       av2 = avma;
    4349      136364 :       if (Q)
    4350             :       {
    4351      133773 :         long l = lg(Q);
    4352      758918 :         for (i = 1; i < l; i++)
    4353             :         {
    4354      626079 :           pari_sp av3 = avma;
    4355      626079 :           ulong p = uel(Q, i);
    4356             :           long k;
    4357      626079 :           if (all && p >= all) break;
    4358      625145 :           k = Z_lvalrem(n, p, &n); /* > 0 */
    4359      625145 :           affii(n, N); n = N; set_avma(av3);
    4360      625145 :           STOREu(&nb, p, k);
    4361             :         }
    4362      133773 :         if (is_pm1(n))
    4363             :         {
    4364      102837 :           stackdummy(av, av2);
    4365      102837 :           return aux_end(M,n,nb);
    4366             :         }
    4367             :       }
    4368       33527 :       maxp = GP_DATA->factorlimit;
    4369             :     }
    4370             :     else
    4371             :     { /* naive trial division */
    4372        1288 :       maxp = maxprime();
    4373        1288 :       u_forprime_init(&T, 3, minuu(lim, maxp)); av2 = avma;
    4374             :       /* first pass: known to fit in private prime table */
    4375       26839 :       while ((p = u_forprime_next_fast(&T)))
    4376             :       {
    4377       25845 :         pari_sp av3 = avma;
    4378             :         int stop;
    4379       25845 :         long k = Z_lvalrem_stop(&n, p, &stop);
    4380       25845 :         if (k)
    4381             :         {
    4382        3737 :           affii(n, N); n = N; set_avma(av3);
    4383        3737 :           STOREu(&nb, p, k);
    4384             :         }
    4385             :         /* prodeuler(p=2,16381,1-1/p) ~ 0.0578; if probability of being prime
    4386             :          * knowing P^-(n) > 16381 is at least 10%, try BPSW */
    4387       25845 :         if (!stop && p == 16381)
    4388             :         {
    4389           0 :           if (bit_accuracy_mul(lgefint(n), 0.0578 * M_LN2) < 10)
    4390           0 :           { nb0 = nb; stop = ifac_isprime(n); }
    4391             :         }
    4392       25845 :         if (stop)
    4393             :         {
    4394         294 :           if (!is_pm1(n)) STOREi(&nb, n, 1);
    4395         294 :           stackdummy(av, av2);
    4396         294 :           return aux_end(M,n,nb);
    4397             :         }
    4398             :       }
    4399             :     }
    4400       34521 :     stackdummy(av, av2);
    4401       34521 :     if (lim > maxp)
    4402             :     { /* second pass usually empty, outside fast trial division range */
    4403           1 :       av = avma; u_forprime_init(&T, maxp+1, lim); av2 = avma;
    4404      882811 :       while ((p = u_forprime_next(&T)))
    4405             :       {
    4406      882811 :         pari_sp av3 = avma;
    4407             :         int stop;
    4408      882811 :         long k = Z_lvalrem_stop(&n, p, &stop);
    4409      882811 :         if (k)
    4410             :         {
    4411           1 :           affii(n, N); n = N; set_avma(av3);
    4412           1 :           STOREu(&nb, p, k);
    4413             :         }
    4414      882811 :         if (stop)
    4415             :         {
    4416           1 :           if (!is_pm1(n)) STOREi(&nb, n, 1);
    4417           1 :           stackdummy(av, av2);
    4418           1 :           return aux_end(M,n,nb);
    4419             :         }
    4420             :       }
    4421           0 :       stackdummy(av, av2);
    4422             :     }
    4423             :   }
    4424       34534 :   if (special_primes(n, lim, &nb, primetab)) return aux_end(M,n, nb);
    4425             :   /* if nb > nb0 (includes nb0 = -1) we don't know that n is composite */
    4426       34401 :   if (all)
    4427             :   { /* smallfact: look for easy pure powers then stop. Cf Z_isanypower */
    4428             :     GEN x;
    4429       26477 :     long k, e = expu(lim);
    4430       26477 :     av = avma;
    4431       25304 :     k = e >= 10? Z_isanypower_nosmalldiv(n, e, &x)
    4432       26477 :                : Z_isanypower(n, &x);
    4433       26477 :     if (k > 1) { affii(x, n); nb0 = -1; } else if (k < 1) k = 1;
    4434       26477 :     if (pU)
    4435             :     {
    4436             :       GEN F;
    4437       11709 :       if (abscmpiu(n, lim) <= 0
    4438       11709 :           || cmpii(n, sqru(lim)) <= 0
    4439        8261 :           || ((e >= 14) &&
    4440        7354 :               (nb>nb0 && bit_accuracy(lgefint(n))<2048 && ifac_isprime(n))))
    4441       11709 :       { set_avma(av); STOREi(&nb, n, k); return aux_end(M,n, nb); }
    4442        5602 :       set_avma(av); F = aux_end(M, NULL, nb); /* don't destroy n */
    4443        5602 :       *pU = mkvec2(icopy(n), utoipos(k)); /* composite cofactor */
    4444        5602 :       gunclone(n); return F;
    4445             :     }
    4446       14768 :     set_avma(av); STOREi(&nb, n, k);
    4447       14768 :     if (DEBUGLEVEL >= 2) {
    4448           0 :       pari_warn(warner,
    4449           0 :         "IFAC: untested %ld-bit integer declared prime", expi(n)+1);
    4450           0 :       if (expi(n) <= 256) err_printf("\t%Ps\n", n);
    4451             :     }
    4452             :   }
    4453        7924 :   else if (nb > nb0 && ifac_isprime(n)) STOREi(&nb, n, 1);
    4454        2576 :   else nb += ifac_decomp(n, hint);
    4455       22692 :   return aux_end(M,n, nb);
    4456             : }
    4457             : 
    4458             : static GEN
    4459     9716543 : ifactor(GEN n, ulong all, long hint)
    4460             : {
    4461     9716543 :   long s = signe(n);
    4462     9716543 :   if (!s) retmkmat2(mkcol(gen_0), mkcol(gen_1));
    4463     9716494 :   return ifactor_sign(n, all, hint, s, NULL);
    4464             : }
    4465             : 
    4466             : int
    4467        6477 : ifac_next(GEN *part, GEN *p, long *e)
    4468             : {
    4469        6477 :   GEN here = ifac_main(part);
    4470        6477 :   if (here == gen_0) { *p = NULL; *e = 1; return 0; }
    4471        6475 :   if (!here) { *p = NULL; *e = 0; return 0; }
    4472        4735 :   *p = VALUE(here);
    4473        4735 :   *e = EXPON(here)[2];
    4474        4735 :   ifac_delete(here); return 1;
    4475             : }
    4476             : 
    4477             : /* see before ifac_crack for current semantics of 'hint' (factorint's 'flag') */
    4478             : GEN
    4479       10266 : factorint(GEN n, long flag)
    4480             : {
    4481             :   GEN F;
    4482       10266 :   if ((F = check_arith_all(n,"factorint"))) return gcopy(F);
    4483       10252 :   return ifactor(n,0,flag);
    4484             : }
    4485             : 
    4486             : GEN
    4487       46223 : Z_factor_limit(GEN n, ulong all)
    4488             : {
    4489       46223 :   if (!all) all = GP_DATA->factorlimit + 1;
    4490       46223 :   return ifactor(n, all, decomp_default_hint);
    4491             : }
    4492             : GEN
    4493      778729 : absZ_factor_limit_strict(GEN n, ulong all, GEN *pU)
    4494             : {
    4495             :   GEN F, U;
    4496      778729 :   if (!signe(n))
    4497             :   {
    4498           0 :     if (pU) *pU = NULL;
    4499           0 :     retmkmat2(mkcol(gen_0), mkcol(gen_1));
    4500             :   }
    4501      778729 :   if (!all) all = GP_DATA->factorlimit + 1;
    4502      778729 :   F = ifactor_sign(n, all, decomp_default_hint, 1, &U);
    4503      778749 :   if (pU) *pU = U;
    4504      778749 :   return F;
    4505             : }
    4506             : GEN
    4507      260944 : absZ_factor_limit(GEN n, ulong all)
    4508             : {
    4509      260944 :   if (!signe(n)) retmkmat2(mkcol(gen_0), mkcol(gen_1));
    4510      260944 :   if (!all) all = GP_DATA->factorlimit + 1;
    4511      260944 :   return ifactor_sign(n, all, decomp_default_hint, 1, NULL);
    4512             : }
    4513             : GEN
    4514     9660033 : Z_factor(GEN n)
    4515     9660033 : { return ifactor(n,0,decomp_default_hint); }
    4516             : GEN
    4517     3600377 : absZ_factor(GEN n)
    4518             : {
    4519     3600377 :   if (!signe(n)) retmkmat2(mkcol(gen_0), mkcol(gen_1));
    4520     3600363 :   return ifactor_sign(n, 0, decomp_default_hint, 1, NULL);
    4521             : }
    4522             : /* Factor until the unfactored part is smaller than limit. Return the
    4523             :  * factored part. Hence factorback(output) may be smaller than n */
    4524             : GEN
    4525        3045 : Z_factor_until(GEN n, GEN limit)
    4526             : {
    4527        3045 :   pari_sp av = avma;
    4528        3045 :   long s = signe(n), eq;
    4529             :   GEN q, F, U;
    4530             : 
    4531        3045 :   if (!s) retmkmat2(mkcol(gen_0), mkcol(gen_1));
    4532        3045 :   F = ifactor_sign(n, tridiv_bound(n), decomp_default_hint, s, &U);
    4533        3045 :   if (!U) return F;
    4534        1155 :   q = gel(U,1); /* composite, q^eq = unfactored part */
    4535        1155 :   eq = itou(gel(U,2));
    4536        1155 :   if (cmpii(eq == 1? q: powiu(q, eq), limit) > 0)
    4537             :   { /* factor further */
    4538        1022 :     long l2 = expi(q)+1;
    4539             :     GEN P2, E2, F2, part;
    4540        1022 :     if (eq > 1) limit = sqrtnint(limit, eq);
    4541        1022 :     P2 = coltrunc_init(l2);
    4542        1022 :     E2 = coltrunc_init(l2); F2 = mkmat2(P2,E2);
    4543        1022 :     part = ifac_start(icopy(q), 0); /* ifac_next would destroy q */
    4544             :     for(;;)
    4545          70 :     {
    4546             :       long e;
    4547             :       GEN p;
    4548        1092 :       if (!ifac_next(&part,&p,&e)) break;
    4549        1092 :       vectrunc_append(P2, p);
    4550        1092 :       vectrunc_append(E2, utoipos(e * eq));
    4551        1092 :       q = diviiexact(q, powiu(p, e));
    4552        1092 :       if (cmpii(q, limit) <= 0) break;
    4553             :     }
    4554        1022 :     F2 = sort_factor(F2, (void*)&abscmpii, cmp_nodata);
    4555        1022 :     F = merge_factor(F, F2, (void*)&abscmpii, cmp_nodata);
    4556             :   }
    4557        1155 :   return gc_GEN(av, F);
    4558             : }
    4559             : 
    4560             : static void
    4561    98631190 : matsmalltrunc_append(GEN m, ulong p, ulong e)
    4562             : {
    4563    98631190 :   GEN P = gel(m,1), E = gel(m,2);
    4564    98631190 :   long l = lg(P);
    4565    98631190 :   P[l] = p; lg_increase(P);
    4566    98617696 :   E[l] = e; lg_increase(E);
    4567    98639075 : }
    4568             : static GEN
    4569    38577669 : matsmalltrunc_init(long l)
    4570             : {
    4571    38577669 :   GEN P = vecsmalltrunc_init(l);
    4572    38631462 :   GEN E = vecsmalltrunc_init(l); return mkvec2(P,E);
    4573             : }
    4574             : 
    4575             : /* return optimal N s.t. omega(b) <= N for all b <= x */
    4576             : long
    4577       71734 : maxomegau(ulong x)
    4578             : { /* P=primes(15); for(i=1,15, print([i, vecprod(P[1..i])])) */
    4579       71734 :   if (x < 30030UL)/* rare trivial cases */
    4580             :   {
    4581       37576 :     if (x < 2UL) return 0;
    4582       19320 :     if (x < 6UL) return 1;
    4583       13720 :     if (x < 30UL) return 2;
    4584       13013 :     if (x < 210UL) return 3;
    4585       12754 :     if (x < 2310UL) return 4;
    4586       11690 :     return 5;
    4587             :   }
    4588       34158 :   if (x < 510510UL) return 6; /* most frequent case */
    4589       18753 :   if (x < 9699690UL) return 7;
    4590           7 :   if (x < 223092870UL) return 8;
    4591             : #ifdef LONG_IS_64BIT
    4592           6 :   if (x < 6469693230UL) return 9;
    4593           0 :   if (x < 200560490130UL) return 10;
    4594           0 :   if (x < 7420738134810UL) return 11;
    4595           0 :   if (x < 304250263527210UL) return 12;
    4596           0 :   if (x < 13082761331670030UL) return 13;
    4597           0 :   if (x < 614889782588491410UL) return 14;
    4598           0 :   return 15;
    4599             : #else
    4600           1 :   return 9;
    4601             : #endif
    4602             : }
    4603             : /* return optimal N s.t. omega(b) <= N for all odd b <= x */
    4604             : long
    4605        2199 : maxomegaoddu(ulong x)
    4606             : { /* P=primes(15+1); for(i=1,15, print([i, vecprod(P[2..i+1])])) */
    4607        2199 :   if (x < 255255UL)/* rare trivial cases */
    4608             :   {
    4609        1340 :     if (x < 3UL) return 0;
    4610        1340 :     if (x < 15UL) return 1;
    4611        1340 :     if (x < 105UL) return 2;
    4612        1340 :     if (x < 1155UL) return 3;
    4613        1312 :     if (x < 15015UL) return 4;
    4614        1312 :     return 5;
    4615             :   }
    4616         859 :   if (x < 4849845UL) return 6; /* most frequent case */
    4617           0 :   if (x < 111546435UL) return 7;
    4618           0 :   if (x < 3234846615UL) return 8;
    4619             : #ifdef LONG_IS_64BIT
    4620           0 :   if (x < 100280245065UL) return 9;
    4621           0 :   if (x < 3710369067405UL) return 10;
    4622           0 :   if (x < 152125131763605UL) return 11;
    4623           0 :   if (x < 6541380665835015UL) return 12;
    4624           0 :   if (x < 307444891294245705UL) return 13;
    4625           0 :   if (x < 16294579238595022365UL) return 14;
    4626           0 :   return 15;
    4627             : #else
    4628           0 :   return 9;
    4629             : #endif
    4630             : }
    4631             : 
    4632             : /* If a <= c <= b , factoru(c) = L[c-a+1] */
    4633             : GEN
    4634       31967 : vecfactoru_i(ulong a, ulong b)
    4635             : {
    4636       31967 :   ulong k, p, n = b-a+1, N = maxomegau(b) + 1;
    4637       31967 :   GEN v = const_vecsmall(n, 1);
    4638       31967 :   GEN L = cgetg(n+1, t_VEC);
    4639             :   forprime_t T;
    4640    21331751 :   for (k = 1; k <= n; k++) gel(L,k) = matsmalltrunc_init(N);
    4641       31967 :   u_forprime_init(&T, 2, usqrt(b));
    4642      900275 :   while ((p = u_forprime_next(&T)))
    4643             :   { /* p <= sqrt(b) */
    4644      853782 :     ulong pk = p, K = ulogint(b, p);
    4645     2986230 :     for (k = 1; k <= K; k++)
    4646             :     {
    4647     2117922 :       ulong j, t = a / pk, ap = t * pk;
    4648     2117922 :       if (ap < a) { ap += pk; t++; }
    4649             :       /* t = (j+a-1) \ pk */
    4650     2117922 :       t %= p;
    4651    62277526 :       for (j = ap-a+1; j <= n; j += pk)
    4652             :       {
    4653    60145081 :         if (t) { v[j] *= pk; matsmalltrunc_append(gel(L,j), p,k); }
    4654    60159604 :         if (++t == p) t = 0;
    4655             :       }
    4656     2132445 :       pk *= p;
    4657             :     }
    4658             :   }
    4659             :   /* complete factorisation of non-sqrt(b)-smooth numbers */
    4660    21504831 :   for (k = 1, N = a; k <= n; k++, N++)
    4661    21473906 :     if (uel(v,k) != N) matsmalltrunc_append(gel(L,k), N/uel(v,k),1UL);
    4662       30925 :   return L;
    4663             : }
    4664             : GEN
    4665           0 : vecfactoru(ulong a, ulong b)
    4666             : {
    4667           0 :   pari_sp av = avma;
    4668           0 :   return gc_GEN(av, vecfactoru_i(a,b));
    4669             : }
    4670             : 
    4671             : /* Assume a and b odd, return L s.t. L[k] = factoru(a + 2*(k-1))
    4672             :  * If a <= c <= b odd, factoru(c) = L[(c-a)>>1 + 1] */
    4673             : GEN
    4674        2199 : vecfactoroddu_i(ulong a, ulong b)
    4675             : {
    4676        2199 :   ulong k, p, n = ((b-a)>>1) + 1, N = maxomegaoddu(b) + 1;
    4677        2199 :   GEN v = const_vecsmall(n, 1);
    4678        2199 :   GEN L = cgetg(n+1, t_VEC);
    4679             :   forprime_t T;
    4680             : 
    4681    17507111 :   for (k = 1; k <= n; k++) gel(L,k) = matsmalltrunc_init(N);
    4682        2199 :   u_forprime_init(&T, 3, usqrt(b));
    4683      181546 :   while ((p = u_forprime_next(&T)))
    4684             :   { /* p <= sqrt(b) */
    4685      180517 :     ulong pk = p, K = ulogint(b, p);
    4686      613903 :     for (k = 1; k <= K; k++)
    4687             :     {
    4688      434556 :       ulong j, t = (a / pk) | 1UL, ap = t * pk;
    4689             :       /* t and ap are odd, ap multiple of pk = p^k */
    4690      434556 :       if (ap < a) { ap += pk<<1; t+=2; }
    4691             :       /* c=t*p^k by steps of 2*p^k; factorization of c*=p^k if (t,p)=1 */
    4692      434556 :       t %= p;
    4693    32597634 :       for (j = ((ap-a)>>1)+1; j <= n; j += pk)
    4694             :       {
    4695    32164267 :         if (t) { v[j] *= pk; matsmalltrunc_append(gel(L,j), p,k); }
    4696    32163078 :         t += 2; if (t >= p) t -= p;
    4697             :       }
    4698      433367 :       pk *= p;
    4699             :     }
    4700             :   }
    4701             :   /* complete factorisation of non-sqrt(b)-smooth numbers */
    4702    17636735 :   for (k = 1, N = a; k <= n; k++, N+=2)
    4703    17634532 :     if (uel(v,k) != N) matsmalltrunc_append(gel(L,k), N/uel(v,k),1UL);
    4704        2203 :   return L;
    4705             : }
    4706             : GEN
    4707           0 : vecfactoroddu(ulong a, ulong b)
    4708             : {
    4709           0 :   pari_sp av = avma;
    4710           0 :   return gc_GEN(av, vecfactoroddu_i(a,b));
    4711             : }
    4712             : 
    4713             : /* If 0 <= a <= c <= b; L[c-a+1] = factoru(c)[,1] if c squarefree, else NULL */
    4714             : GEN
    4715        7014 : vecfactorsquarefreeu(ulong a, ulong b)
    4716             : {
    4717        7014 :   ulong k, p, n = b-a+1, N = maxomegau(b) + 1;
    4718        7014 :   GEN v = const_vecsmall(n, 1);
    4719        7014 :   GEN L = cgetg(n+1, t_VEC);
    4720             :   forprime_t T;
    4721    14007238 :   for (k = 1; k <= n; k++) gel(L,k) = vecsmalltrunc_init(N);
    4722        7014 :   u_forprime_init(&T, 2, usqrt(b));
    4723      838334 :   while ((p = u_forprime_next(&T)))
    4724             :   { /* p <= sqrt(b), kill nonsquarefree */
    4725      831320 :     ulong j, pk = p*p, t = a / pk, ap = t * pk;
    4726      831320 :     if (ap < a) ap += pk;
    4727     7160090 :     for (j = ap-a+1; j <= n; j += pk) gel(L,j) = NULL;
    4728             : 
    4729      831320 :     t = a / p; ap = t * p;
    4730      831320 :     if (ap < a) { ap += p; t++; }
    4731    30551556 :     for (j = ap-a+1; j <= n; j += p, t++)
    4732    29720236 :       if (gel(L,j)) { v[j] *= p; vecsmalltrunc_append(gel(L,j), p); }
    4733             :   }
    4734             :   /* complete factorisation of non-sqrt(b)-smooth numbers */
    4735    14007238 :   for (k = 1, N = a; k <= n; k++, N++)
    4736    14000224 :     if (gel(L,k) && uel(v,k) != N) vecsmalltrunc_append(gel(L,k), N/uel(v,k));
    4737        7014 :   return L;
    4738             : }
    4739             : /* If 0 <= a <= c <= b; L[c-a+1] = factoru(c)[,1] if c squarefree and coprime
    4740             :  * to all the primes in sorted zv P, else NULL */
    4741             : GEN
    4742       32676 : vecfactorsquarefreeu_coprime(ulong a, ulong b, GEN P)
    4743             : {
    4744       32676 :   ulong k, p, n = b-a+1, sqb = usqrt(b), N = maxomegau(b) + 1;
    4745       32676 :   GEN v = const_vecsmall(n, 1);
    4746       32677 :   GEN L = cgetg(n+1, t_VEC);
    4747             :   forprime_t T;
    4748    91333757 :   for (k = 1; k <= n; k++) gel(L,k) = vecsmalltrunc_init(N);
    4749       32674 :   u_forprime_init(&T, 2, sqb);
    4750     3680417 :   while ((p = u_forprime_next(&T)))
    4751             :   { /* p <= sqrt(b), kill nonsquarefree */
    4752     3648014 :     ulong j, t, ap, bad = zv_search(P, p), pk = bad ? p: p * p;
    4753     3648053 :     t = a / pk; ap = t * pk; if (ap < a) ap += pk;
    4754    81411926 :     for (j = ap-a+1; j <= n; j += pk) gel(L,j) = NULL;
    4755     3648053 :     if (bad) continue;
    4756             : 
    4757     3585815 :     t = a / p; ap = t * p;
    4758     3585815 :     if (ap < a) { ap += p; t++; }
    4759   117468630 :     for (j = ap-a+1; j <= n; j += p, t++)
    4760   113883126 :       if (gel(L,j)) { v[j] *= p; vecsmalltrunc_append(gel(L,j), p); }
    4761             :   }
    4762       32677 :   if (uel(P,lg(P)-1) <= sqb) P = NULL;
    4763             :   /* complete factorisation of non-sqrt(b)-smooth numbers */
    4764    91572022 :   for (k = 1, N = a; k <= n; k++, N++)
    4765    91539368 :     if (gel(L,k) && uel(v,k) != N)
    4766             :     {
    4767    25909914 :       ulong q = N / uel(v,k);
    4768    25909914 :       if (!P || !zv_search(P, q)) vecsmalltrunc_append(gel(L,k), q);
    4769             :     }
    4770       32654 :   return L;
    4771             : }
    4772             : 
    4773             : GEN
    4774          31 : vecsquarefreeu(ulong a, ulong b)
    4775             : {
    4776          31 :   ulong j, k, p, n = b-a+1;
    4777          31 :   GEN L = const_vecsmall(n, 1);
    4778             :   forprime_t T;
    4779          31 :   u_forprime_init(&T, 2, usqrt(b));
    4780         372 :   while ((p = u_forprime_next(&T)))
    4781             :   { /* p <= sqrt(b), kill nonsquarefree */
    4782         341 :     ulong pk = p*p, t = a / pk, ap = t * pk;
    4783         341 :     if (ap < a) { ap += pk; t++; }
    4784             :     /* t = (j+a-1) \ pk */
    4785       20949 :     for (j = ap-a+1; j <= n; j += pk, t++) L[j] = 0;
    4786             :   }
    4787       46440 :   for (k = j = 1; k <= n; k++)
    4788       46409 :     if (L[k]) L[j++] = a+k-1;
    4789          31 :   setlg(L,j); return L;
    4790             : }
    4791             : 
    4792             : /* test if a prime p = 4k+3 divides n */
    4793             : static int
    4794       61152 : Z_has_prime_3mod4_i(GEN n)
    4795             : {
    4796             :   GEN P, part;
    4797             :   ulong lim, mask;
    4798             :   long v, i, l;
    4799             : 
    4800       61152 :   (void)Z_lvalrem(n, 2, &n);
    4801       61152 :   if (mod4(n) == 3) return 1;
    4802       43666 :   mask = u_357_divides(umodiu(n, 3 * 5 * 7));
    4803       43666 :   if (mask)
    4804             :   {
    4805       27958 :     if (mask & 5) return 1; /* 3 or 7 divides n */
    4806        5957 :     (void)Z_lvalrem(n, 5, &n);
    4807             :   }
    4808       21665 :   if (is_pm1(n)) return 0;
    4809             :   /* n coprime to 2*3*5*7, n = 1 mod 4 */
    4810       21448 :   lim = tridiv_bound(n);
    4811       21448 :   if (lim >= 128)
    4812             :   {
    4813             :     ulong gcdlim;
    4814       21448 :     GEN gcd = Z_oddprimedivisors_gcd(n, lim, &gcdlim);
    4815       21448 :     if (!equali1(gcd))
    4816             :     {
    4817       42441 :       if (mod4(gcd) == 3) return 1;
    4818       20993 :       P = Z_factor_primes(gcd, 11, gcdlim);
    4819       20993 :       if (P)
    4820             :       {
    4821       20993 :         l = lg(P);
    4822       40670 :         for (i = 1; i < l; i++)
    4823       26369 :           if (uel(P,i) & 2) return 1;
    4824       33824 :         for (i = 1; i < l; i++) (void)Z_lvalrem(n, uel(P,i), &n);
    4825       14301 :         if (is_pm1(n)) return 0;
    4826             :         /* n = 1 mod 4 */
    4827           0 :         if (lim <= GP_DATA->factorlimit &&
    4828           0 :             cmpii(sqru(lim), n) >= 0) return 0; /* n prime */
    4829             :       }
    4830             :     }
    4831             :   }
    4832             :   else
    4833             :   {
    4834             :     forprime_t S;
    4835             :     ulong p;
    4836           0 :     u_forprime_init(&S, 11, lim);
    4837           0 :     while ((p = u_forprime_next_fast(&S)))
    4838             :     {
    4839             :       int stop;
    4840           0 :       v = Z_lvalrem_stop(&n, p, &stop);
    4841           0 :       if (v && (p & 2)) return 1;
    4842           0 :       if (stop) return 0; /* n is 1 or prime and 1 mod 4 */
    4843             :     }
    4844           0 :     if (is_pm1(n)) return 0;
    4845             :   }
    4846           0 :   l = lg(primetab);
    4847           0 :   for (i = 1; i < l; i++)
    4848             :   {
    4849           0 :     GEN p = gel(primetab,i);
    4850           0 :     v = Z_pvalrem(n, p, &n);
    4851           0 :     if (v)
    4852             :     {
    4853           0 :       if (mod4(p) == 3) return 1;
    4854           0 :       if (is_pm1(n)) return 0;
    4855             :     }
    4856             :   }
    4857           0 :   if (ifac_isprime(n)) return 0;
    4858             :   /* n = 1 mod 4 large composite without small factors */
    4859           0 :   part = ifac_start(n, 0);
    4860             :   for(;;)
    4861           0 :   {
    4862             :     long v;
    4863             :     GEN p;
    4864           0 :     if (!ifac_next(&part,&p,&v)) return 0;
    4865           0 :     if (mod4(p) == 3) return 1;
    4866             :   }
    4867             : }
    4868             : 
    4869             : int
    4870       61152 : Z_has_prime_3mod4(GEN n)
    4871             : {
    4872       61152 :   pari_sp av = avma;
    4873       61152 :   return gc_int(av, Z_has_prime_3mod4_i(n));
    4874             : }

Generated by: LCOV version 1.16