L-functions

(PARI-GP version 2.11.0)

Characters

A character on the abelian group $G=\sum_{j \leq k}\left(\mathbf{Z} / d_{j} \mathbf{Z}\right) \cdot g_{j}$, e.g. from znstar $(\mathrm{q}, 1) \leftrightarrow(\mathbf{Z} / q \mathbf{Z})^{*}$ or bnrinit $\leftrightarrow \overline{\mathrm{C}}_{\mathfrak{f}}(K)$, is coded by $\chi=$ $\left[c_{1}, \ldots, c_{k}\right]$ such that $\chi\left(g_{j}\right)=e\left(c_{j} / d_{j}\right)$. Our L-functions consider the attached primitive character.
Dirichlet characters $\chi_{q}(m, \cdot)$ in Conrey labelling system are alternatively concisely coded by $\operatorname{Mod}(m, q)$. Finally, a quadratic character D / \cdot) can also be coded by the integer D

L-function Constructors

An Ldata is a GP structure describing the functional equation for $L(s)=\sum_{n>1} a_{n} n^{-s}$
Dirichlet coefficients given by closure $a: N \mapsto\left[a_{1}, \ldots, a_{N}\right]$

- Dirichlet coefficients $a^{*}(n)$ for dual L-function L^{*}.
- Euler factor $A=\left[a_{1}, \ldots, a_{d}\right]$ for $\gamma_{A}(s)=\prod_{i} \Gamma_{\mathbf{R}}\left(s+a_{i}\right)$,
- classical weight k (values at s and $k-s$ are related),
- conductor $N, \Lambda(s)=N^{s / 2} \gamma_{A}(s)$,
- root number $\varepsilon ; \Lambda(a, k-s)=\varepsilon \Lambda\left(a^{*}, s\right)$.
- polar part: list of $\left[\beta, P_{\beta}(x)\right]$

An Linit is a GP structure containing an Ldata L and an evaluation domain fixing a maximal order of derivation m and bit accuracy (realbitprecision), together with complex ranges

- for L-function: $R=[c, w, h]$ (coding $|\Re z-c| \leq w,|\Im z| \leq h$); or $R=[w, h]$ (for $c=k / 2$); or $R=[h]$ (for $c=k / 2, w=0$).
- for θ-function: $T=[\rho, \alpha]$ (for $|t| \geq \rho,|\arg t| \leq \alpha$); or $T=\rho$ (for $\alpha=0$)

Ldata constructors

Riemann ζ

Dirichet for quadratic char. (D / \cdot.)
lfuncreate(1)
Dirichlet series $L\left(\chi_{q}(m, \cdot), s\right)$
Dedekind $\zeta_{K}, K=\mathbf{Q}[x] /(T)$
Hecke for $\chi \bmod$
Artin L-function
attice Θ-function
From eigenform F
lfuncreate(D)
funcreate(Mod(m,q))
lfuncreate($b n f$), lfuncreate (T) lfuncreate([bnr, $\chi]$)
lfunartin $(n f$, gal, $M, n)$ 1 funq (Q) lfunmf (F)
Quotients of Dedekind η : $\prod_{i} \eta\left(m_{i, 1} \cdot \tau\right)^{m_{i, 2}}$ lfunetaquo (M)
$L(E, s), E$ elliptic curve
E = ellinit(...
$L\left(\right.$ Sym $\left.^{m} E, s\right), E$ elliptic curve lfunsympow(E, m) lfungenus2 $([P, Q])$ genus 2 curve, $y^{2}+x Q=P$
lfunmul $\left(L_{1}, L_{2}\right)$ lfundiv $\left(L_{1}, L_{2}\right)$ lfuntwist (L, χ)
L_{1} / L_{2}
twist by Dirichlet character
*, $A, k, N, e p s, p o l e s])$ low-level constructor lfuncheckfeq $(L,\{t\})$ check functional equation (at t)

Linit constructors

nitialize for L
nitialize for θ
cost of lfuninit
funinit $(L, R,\{m=0\})$
cost of lfunthetainit \quad lfuncost $(L, R,\{m=0\})$

Dedekind ζ_{L}, L abelian over a subfield lfunabelianrelinit

L-functions

L is either an Ldata or an Linit (more efficient for many values).

Evaluate

lfun $(L, s,\{k=0\})$
$\Lambda^{(k)}(s)$
funlambda $(L, s,\{k=0\})$
$\theta^{(k)}(t)$
generalized Hardy Z-function at t
Ifuntheta $(L, t,\{k=0\})$
Zeros
order of zero at $s=k / 2$
zeros $s=k / 2+i t, 0 \leq t \leq T$
lfunorderzero($L,\{m=-1\}$)
lfunzeros $(L, T,\{h\})$

Dirichlet series and functional equation
$\left[a_{n}: 1 \leq n \leq N\right]$
lfunan (L, N)
conductor \bar{N} of L
lfunconductor (L)
lfunrootres (L)
G-functions
Attached to inverse Mellin transform for $\gamma_{A}(s), A=\left[a_{1}, \ldots, a_{d}\right]$. initialize for G attached to A gammamellininvinit (A) $G^{(k)}(t) \quad$ gammamellininv $(G, t,\{k=0\})$ asymp. expansion of $G^{(k)}(t)$ gammamellininvasymp $(A, n,\{k=0\})$

Based on an earlier version by Joseph H. Silverma Permission is granted to make and distribute copies of this card provided the copyright and this permission notice are preserved on all copies. Send comments and corrections to 〈Karim.Belabas@math.u-bordeaux.fr〉

