Introduction

to
parallel GP

(version 2.16.1)
The PARI Group

Institut de Mathématiques de Bordeaux, UMR 5251 du CNRS.
Université de Bordeaux, 351 Cours de la Libération
F-33405 TALENCE Cedex, FRANCE

e-mail: pari@math.u-bordeaux.fr

Home Page:
http://pari.math.u-bordeaux.fr/

Copyright (© 2000-2024 The PARI Group

Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions, or translations, of this manual
under the conditions for verbatim copying, provided also that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

PARI/GP is Copyright © 2000-2024 The PARI Group

PARI/GP is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation. It is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY WHATSOEVER.

Table of Contents

Chapter 1: Parallel GP interface 5
1.1 Configuration 5
1.1.1 POSIX threads Lo s e 5

1.1.2 Message Passing Interface L 0 0L L0 0L 5

1.2 Concept o o 6
1.2.1 Resourceso e e e e 6

1.2.2 GP functions L oL oL oL s 7

1.2.3 PARI functions L L L L Lo 7
Chapter 2: Writing code suitable for parallel execution 9
2.1 Exporting global variables 9
2.1.1 Example 1: data L L L L Lo e e e e e s 9

2.1.2 Example 2: polynomial variable 0 0 L L L L oL 9

2.1.3 Example 3: function 0 0 L L 000 L Lo 10

2.2 Input and outputo Lo 10
2.3 Using parfor and parforprime 11
2.4 Sizing parallel taskso 12
2.5 Load balancing 12

Index . . . L e 13

Chapter 1:
Parallel GP interface

1.1 Configuration.

This booklet documents the parallel GP interface. The first chapter describes configuration
and basic concepts, the second one explains how to write GP codes suitable for parallel execution.
Two multithread interfaces are supported:

e POSIX threads
e Message passing interface (MPI)

POSIX threads are well-suited for single systems, for instance a personal computer equiped
with a multi-core processor, while MPI is used by most clusters. However the parallel GP interface
does not depend on the multithread interface: a properly written GP program will work identically
with both. The interfaces are mutually exclusive and one must be chosen at configuration time
when installing the PARI/GP suite.

1.1.1 POSIX threads.

POSIX threads are selected by passing the flag ——mt=pthread to Configure. The required
library (1ibpthread) and header files (pthread.h) are installed by default on most Linux system.
This option implies —-enable-tls which builds a thread-safe version of the PARI library. This
unfortunately makes the dynamically linked gp-dyn binary about 25% slower; since gp-sta is only
5% slower, you definitely want to use the latter binary.

You may want to also pass the flag —~—time=ftime to Configure so that gettime and the GP
timer report real time instead of cumulated CPU time. An alternative is to use getwalltime in
your GP scripts instead of gettime.

You can test whether parallel GP support is working with

make test-parallel

1.1.2 Message Passing Interface.

Configuring MPI is somewhat more difficult, but your MPI installation should include a script
mpicc that takes care of the necessary configuration. If you have a choice between several MPI
implementations, choose OpenMPI.

To configure PARI/GP for MPI, use
env CC=mpicc ./Configure --mt=mpi

To run a program, you must use the launcher provided by your implementation, usually
mpiexec or mpirun. For instance, to run the program prog.gp on 10 nodes, you would use

mpirun -np 10 gp prog.gp

(or mpiexec instead of mpirun). PARI requires at least 3 MPI nodes to work properly. Caveats:
mpirun is not suited for interactive use because it does not provide tty emulation. Moreover, it is
not currently possible to interrupt parallel tasks.

You can test parallel GP support (here using 3 nodes) with

make test-parallel RUNTEST="mpirun -np 3"

1.2 Concept.

In a GP program, the main thread executes instructions sequentially (one after the other) and
GP provides functions, that execute subtasks in secondary threads in parallel (at the same time).
Those functions all share the prefix par, e.g., parfor, a parallel version of the sequential for-loop
construct.

The subtasks are subject to a stringent limitation, the parallel code must be free of side effects:
it cannot set or modify a global variable for instance. In fact, it may not even access global variables
or local variables declared with local().

Due to the overhead of parallelism, we recommend to split the computation so that each parallel
computation requires at least a few seconds. On the other hand, it is generally more efficient to
split the computation in small chunks rather than large chunks.

1.2.1 Resources.

The number of secondary threads to use is controlled by default(nbthreads). The default
value of nbthreads depends on the mutithread interface.

e POSIX threads: the number of CPU threads, i.e., the number of CPU cores multiplied by
the hyperthreading factor. The default can be freely modified.

e MPI: the number of available process slots minus 1 (one slot is used by the master thread), as
configured with mpirun (or mpiexec). E.g., nbthreads is 9 after mpirun -np 10 gp. It is possible
to change the default to a lower value, but increasing it will not work: MPI does not allow to spawn
new threads at run time. PARI requires at least 3 MPI nodes to work properly.

The PARI stack size in secondary threads is controlled by default (threadsize), so the total
memory allocated is equal to parisize + nbthreads X threadsize. By default, threadsize =
parisize. Setting the threadsizemax default allows threadsize to grow as needed up to that
limit, analogously to the behaviour of parisize / parisizemax. We strongly recommend to set this
parameter since it is very hard to control in advance the amount of memory threads will require:
a too small stack size will result in a stack overflow, aborting the computation, and a too large

value is very wasteful (since the extra reserved but unneeded memory is multiplied by the number
of threads).

1.2.2 GP functions.

GP provides the following functions for parallel operations, please see the documentation of
each function for details:

e parvector: parallel version of vector;

e parapply: parallel version of apply;

e parsum: parallel version of sum;

e parselect: parallel version of select;

e pareval: evaluate a vector of closures in parallel;
e parfor: parallel version of for;

e parforprime: parallel version of forprime;

e parforvec: parallel version of forvec;

e parploth: parallel version of ploth.

1.2.3 PARI functions. The low-level libpari interface for parallelism is documented in the
Developer’s guide to the PARI library.

Chapter 2:
Writing code suitable for parallel execution

2.1 Exporting global variables.

When parallel execution encounters a global variable, say V', an error such as the following is
reported:

*** parapply: mt: please use export(V)
A global variable is not visible in the parallel execution unless it is explicitly exported. This may
occur in a number of contexts.
2.1.1 Example 1: data.

?V=1[2"2566 +1, 27193 - 1];
? parvector(#V, i, factor(V[i]))
x%* parvector: mt: please use export(V).

The problem is fixed as follows:

?V=1[2"2566 + 1, 27193 - 1];
7 export (V)
? parvector (#V, i, factor(V[i]))

The following short form is also available, with a different semantic:

? export(V = [27266 + 1, 27193 - 1]);
? parvector(#V, i, factor(V[i]))

In the latter case the variable V' does not exist in the main thread, only in parallel threads.

2.1.2 Example 2: polynomial variable.

? f(n) = bnfinit(x"n-2) .no;
? parapply(f, [1..50])
*** parapply: mt: please use export(x).

You may fix this as in the first example using export but here there is a more natural solution:
use the polynomial indeterminate ’x instead the global variable x (whose value is ’x on startup,
but may or may no longer be ’x at this point):

? f(n) = bnfinit(’x"n-2) .no;
or alternatively
? f(n) = my(x="x); bnfinit(x"n-2).no;

which is more readable if the same polynomial variable is used several times in the function.

2.1.3 Example 3: function.

? f(a) = bnfinit(’x~8-a) .no;
7 g(a,b) = parsum(i = a, b, £(i));
? g(37,48)
**%* parsum: mt: please use export(f).
7 export(f)
? g(37,48)
%4 = 81

Note that export(v) freezes the value of v for parallel execution at the time of the export: you
may certainly modify its value later in the main thread but you need to re-export v if you want
the new value to be used in parallel threads. You may export more than one variable at once,
e.g., export(a,b,c) is accepted. You may also export all variables with dynamic scope (all global
variables and all variables declared with local) using exportall(). Although convenient, this
may be wasteful if most variables are not meant to be used from parallel threads. We recommend
to

e use exportall in the gp interpreter interactively, while developping code;
e export a function meant to be called from parallel threads, just after its definition;

e use v = value; export(v) when the value is needed both in the main thread and in secondary
threads;

e use export(v = wvalue) when the value is not needed in the main thread.

In the two latter forms, v should be considered read-only. It is actually read-only in secondary
threads, trying to change it will raise an exception:

*kk mt: attempt to change exported variable ’v’.

You can modify it in the main thread, but it must be exported again so that the new value is
accessible to secondary threads: barring a new export, secondary threads continue to access the
old value.

2.2 Input and output.

If your parallel code needs to write data to files, split the output in as many files as the
number of parallel computations, to avoid concurrent writes to the same file, with a high risk of
data corruption. For example a parallel version of

? f(a) = write("bnf",bnfinit(’x"8-a));
? for (a = 37, 48, f(a))

could be

? f(a) = write(Str("bnf-",a), bnfinit(’x~8-a).no);
7 export(f);
? parfor(i = 37, 48, f(i))

which creates the files bnf-37 to bnf-48. Of course you may want to group these file in a subdi-
rectory, which must be created first.

10

2.3 Using parfor and parforprime.

parfor and parforprime are the most powerful of all parallel GP functions but, since they
have a different interface than for or forprime, sequential code needs to be adapted. Consider the
example

for(i = a, b,
my(c = £(i));
g(i,c));

where f is a function without side effects. This can be run in parallel as follows:

parfor(i = a, b,
(1),
c, /* the value of £(1i) is assigned to ¢ */
g(i,c));

For each i, a < i < b, in random order, this construction assigns f(i) to (lexically scoped, as
per my) variable ¢, then calls g(i,c¢). Only the function f is evaluated in parallel (in secondary
threads), the function g is evaluated sequentially (in the main thread). Writing ¢ = £(i) in the
parallel section of the code would not work since the main thread would then know nothing about
c or its content. The only data sent from the main thread to secondary threads are f and the index
i, and only ¢ (which is equal to f(i)) is returned from the secondary thread to the main thread.

The following function finds the index of the first component of a vector V satisfying a predi-
cate, and 0 if none satisfies it:

parfirst(pred, V) =
{
parfor(i = 1, #V,
pred(V[il),
cond,
if (cond, return(i)));
return(0) ;

}

This works because, if the second expression in parfor exits the loop via break / return at index ¢,
it is guaranteed that all indexes < ¢ are also evaluated and the one with smallest index is the one
that triggers the exit. See ?7?parfor for details.

The following function is similar to parsum:

myparsum(a, b, expr) =
{ my(s = 0);

parfor(i = a, b,
expr(i),
val,
s += val);
return(s) ;

}

11

2.4 Sizing parallel tasks.

Dispatching tasks to parallel threads takes time. To limit overhead, split the computation so
that each parallel task requires at least a few seconds. Consider the following sequential example:

? thuemorse(n) (-1)"n * hammingweight(n);
? s =0; for(n =1, 2%x10°6, s += thuemorse(n) / n * 1.)
cpu time = 1,064 ms, real time = 1,064 ms.

It is natural to try

? export (thuemorse) ;
? s = 0; parfor(n = 1, 2*%1076, thuemorse(n) / n * 1., S, s += 8)
cpu time = 5,637 ms, real time = 3,216 ms.

However, due to the overhead, this is not faster than the sequential version; in fact it is much
slower. To limit overhead, we group the summation by blocks:

? s = 0; parfor(N = 1, 20, sum(n = 1+(N-1)*10"5, N*10°5,
thuemorse(n) / n*1.), S, s += S)
? cpu time = 1,997 ms, real time = 186 ms.

Try to create at least as many groups as the number of available threads, to take full advantage
of parallelism. Since some of the floating point additions are done in random order (the ones in a
given block occur successively, in deterministic order), it is possible that some of the results will
differ slightly from one run to the next.

Of course, in this example, parsum is much easier to use since it will group the summations
for you behind the scenes:

? parsum(n = 1, 2*10°6, thuemorse(n) / n * 1.)
cpu time = 1,905 ms, real time = 177 ms.

2.5 Load balancing.

If the parallel tasks require varying time to complete, it is preferable to perform the slower
ones first, when there are more tasks than available parallel threads. Instead of

parvector (36, i, bnfinit(’x"i - 2).no)
doing
parvector (36, i, bnfinit(’x"(37-i) - 2).no)

will be faster if you have fewer than 36 threads. Indeed, parvector schedules tasks by increasing
1 values, and the computation time increases steeply with . With 18 threads, say:

e in the first form, thread 1 handles both ¢ = 1 and ¢ = 19, while thread 18 will likely handle
i = 18 and 7 = 36. In fact, it is likely that the first batch of tasks ¢ < 18 runs relatively quickly, but
that none of the threads handling a value ¢ > 18 (second task) will have time to complete before
1 = 18. When that thread finishes ¢ = 18, it will pick the remaining task ¢ = 36.

e in the second form, thread 1 will likely handle only ¢ = 36: tasks i = 36,35,...19 go to the
available 18 threads, and ¢ = 36 is likely to finish last, when ¢ = 18,...,2 are already assigned to
the other 17 threads. Since the small values of ¢ will finish almost instantly, ¢ = 1 will have been
allocated before the initial thread handling ¢ = 36 becomes ready again.

Load distribution is clearly more favourable in the second form.

12

Index

SomeWord refers to PARI-GP concepts.
SomeWord is a PARI-GP keyword.
SomeWord is a generic index entry.

P
parapply 6
pareval 6
parfor 7
parforprime L. 7
parforvec 7
parploth 7
parselect 6
parsum 6
parvector, 6

13

	1 Parallel GP interface
	1.1 Configuration
	1.2 Concept

	2 Writing code suitable for parallel execution
	2.1 Exporting global variables
	2.2 Input and output
	2.3 Using {�am 	tfam 	entt parfor} and {�am 	tfam 	entt parforprime}
	2.4 Sizing parallel tasks
	2.5 Load balancing
	Index

