User’s Guide

to
the PARI library

(version 2.3.5)
C. Batut, K. Belabas, D. Bernardi, H. Cohen, M. Olivier

Laboratoire A2X, U.M.R. 9936 du C.N.R.S.
Université Bordeaux I, 351 Cours de la Libération
33405 TALENCE Cedex, FRANCE

e-mail: pari@math.u-bordeaux.fr

Home Page:
http://pari.math.u-bordeaux.fr/

Copyright (©) 2000-2006 The PARI Group

Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions, or translations, of this manual
under the conditions for verbatim copying, provided also that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

PARI/GP is Copyright © 2000-2006 The PARI Group

PARI/GP is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation. It is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY WHATSOEVER.

Table of Contents

Chapter 4: Programming PARI in Library Mode
4.1 Introduction: initializations, universal objects
4.2 Important technical notes

4.2.1 Types .
4.2.2 Type recursivity
4.2.3 Variations on basic functions

4.2.4 Portability: 32-bit / 64-bit architectures

4.3 Garbage collection

4.3.1 Why and how
4.3.2 Examples
4.3.3 Comments .

4.4 Creation of PARI objects, assignments, conversions .

4.4.1 Creation of PARI objects

4.4.2 Assignments .

4.4.3 Copy

4.4.4 Clones

4.4.5 Conversions e e

4.5 Implementation of the PARI types

4.5.1 Type T_INT (integer)

4.5.2 Type t _REAL (real number)

4.5.3 Type t_INTMOD .

4.5.4 Type t _FRAC (rational number)

4.5.5 Type t _COMPLEX (complex number)

4.5.6 Type t _PADIC (p-adic numbers)

4.5.7 Type t _QUAD (quadratic number) .

4.5.8 Type t _POLMOD (polmod)

4.5.9 Type t_POL (polynomial)

4.5.10 Type t _SER (power series)

4.5.11 Type t _RFRAC (rational function) R
4.5.12 Type t_QFR (indefinite binary quadratic form)
4.5.13 Type t _QFI (definite binary quadratic form)
4.5.14 Type t _VEC and t_COL (vector)

4.5.15 Type t_MAT (matrix)
4.5.16 Type t _VECSMALL (vector of small integers)
4.5.17 Type t_LIST (list) .

4.5.18 Type t _STR (character string) . .

4.6 PARI variables

4.6.1 Multivariate objects
4.6.2 Creating variables

4.7 Input and output .

4.7.1 Input

4.7.2 Output

4.7.3 Errors .

4.7.4 Debugging output

4.7.5 Timers and timing output .

4.8 A complete program

© © w o 00 J I

10
.10
.13
.16

16

. 16
.18
.19
. 20
. 20

20

.21
.23
. 23
.23
.23
.23
.24
.24
.24
. 25
. 25
.25
. 25
. 25
. 25
. 25
. 26
. 26

26

. 26
.27

28

.28
.29
. 30
.31
. 32

32

Chapter 5: Technical Refere

4.9 Adding functions to PARI
4.9.1 Nota Bene .
4.9.2 The calling interface from gp, parser codes
4.9.3 Coding guidelines
4.9.4 Integration with gp as a shared module
4.9.5 Integration the hard way
4.9.6 Example

5.1 Initializing the library

5.1.1 General purpose

5.1.2 Technical functions .

5.1.3 Notions specific to the GP interpreter
5.2 Handling GENSs .

5.2.1 Length conversions

5.2.2 Read type-dependent information

5.2.3 Eval type-dependent information .

5.2.4 Set type-dependent information

5.2.5 Type groups .

5.2.6 Accessors and components .
5.3 Handling the PARI stack

5.3.1 Allocating memory on the stack

5.3.2 Garbage collection

5.3.3 Copies and clones
5.4 Level 0 kernel (operations on ulongs)

5.4.1 Micro-kernel .

5.4.2 Modular kernel .

5.5 Level 1 kernel (operations on longs, integers and reals)

5.5.1 Creation .

5.5.2 Assignment

5.5.3 Copy

5.5.4 Conversions

5.5.5 Integer parts .

5.5.6 Valuation and shift .

5.5.7 Factorization .

5.5.8 Generic unary operators .

5.5.9 Comparison operators .

5.5.10 Generic binary operators .

5.5.11 Modulo to longs .

5.5.12 Exact division and divisibility

5.5.13 Division with remainder

5.5.14 Square root and remainder .

5.5.15 Pseudo-random integers

5.5.16 Modular operations

5.5.17 Miscellaneous functions e
5.6 Level 2 kernel (modular arithmetic) .

5.6.1 Naming scheme

5.6.2 ZX, ZV, ZM

5.6.3 FpX

5.6.4 FpXQ, Fq .

nce Guide for Low-Level Functions

34

. 34
. 34
. 36
. 36
.37
.37

39
39

. 39
. 39
. 40

41

.41
.41
.42
.43
.43
.44

44

.44
. 45
.47

47

.47
. 48

49

. 49
. 50
. 50
. 50
. 51
. 51
. 52
. 52
. 53
. 53
. 55
. 55
. 55
. 56
. 56
. 87
. 57

o8

. 58
. 59
. 60
. 63

5.6.5 FpXX .

5.6.6 FpXQX, FgX
5.6.7 FpV, FpM, FgM
5.6.8 F1x

5.6.9 F1xq .

5.6.10 F1xX

5.6.11 F1xqgX .
5.6.12 F1v, F1lm
5.6.13 F1xqV, F1xqM .
5.6.14 QX .

5.6.15 RgX

5.6.16 Conversions involving single precision objects

5.7 Operations on general PARI objects

5.7.1 Assignment

5.7.2 Conversions

5.7.3 Clean Constructors .

5.7.4 Unclean Constructors .

5.7.5 Integer parts .

5.7.6 Valuation and shift .

5.7.7 Comparison operators .

5.7.8 Generic unary operators .

5.7.9 Divisibility, Euclidean division .
5.7.10 GCD, content and primitive part
5.7.11 Generic binary operators .

5.7.12 Miscellaneous functions .
5.8 Further type specific functions .
5.8.1 Vectors and Matrices

5.8.2 Low-level vectors and columns functions
5.8.3 Function to handle t_VECSMALL .

5.8.4 Functions to handle bits-vectors

5.8.5 Functions to handle vectors of t_VECSMALL .
Appendix A: A Sample program and Makefile .
Appendix B: Summary of Available Constants

. 64
. 64
. 65
. 67
. 68
. 68
. 69
. 69
. 69
. 69
. 69
.71

73

.73
.73
.75
.76
.77
LT
L T7
.78
.78
.79
. 80
. 80

80

. 80
.81
. 82
. 83
. 83

85
87
89

Chapter 4:
Programming PARI in Library Mode

The User’s Guide to Pari/GP gives in three chapters a general presentation of the system, of the
gp calculator, and detailed explanation of high level PARI routines available through the calculator.
The present manual assumes general familiarity with the contents of these chapters and the basics of
ANSI C programming, and focuses on the usage of the PARI library. In this chapter, we introduce
the general concepts of PARI programming and describe useful general purpose functions. Chapter
5 describes all available public low-level functions.

4.1 Introduction: initializations, universal objects.

To use PARI in library mode, you must write a C program and link it to the PARI library. See the
installation guide or the Appendix to the User’s Guide to Pari/GP on how to create and install
the library and include files. A sample Makefile is presented in Appendix A, and a more elaborate
one in examples/Makefile. The best way to understand how programming is done is to work
through a complete example. We will write such a program in Section 4.8. Before doing this, a few
explanations are in order.

First, one must explain to the outside world what kind of objects and routines we are going to
use. This is done with the directive

#include <pari.h>

In particular, this header defines the fundamental type for all PARI objects: the type GEIN, which
is simply a pointer to long.

Before any PARI routine is called, one must initialize the system, and in particular the PARI
stack which is both a scratchboard and a repository for computed objects. This is done with a call
to the function

void pari_init(size_t size, ulong maxprime)

The first argument is the number of bytes given to PARI to work with, and the second is the upper
limit on a precomputed prime number table; size should not reasonably be taken below 500000
but you may set maxprime = 0, although the system still needs to precompute all primes up to
about 2'6.

We have now at our disposal:

e a PARI stack containing nothing. It is a big connected chunk of size bytes of memory. All
your computations take place here. In large computations, unwanted intermediate results quickly
clutter up memory so some kind of garbage collecting is needed. Most large systems do garbage
collecting when the memory is getting scarce, and this slows down the performance. PARI takes
a different approach: you must do your own cleaning up when the intermediate results are not
needed anymore. Special purpose routines have been written to do this; we will see later how (and
when) you should use them.

e the following universal objects (by definition, objects which do not belong to the stack):
the integers 0, 1, —1 and 2 (respectively called gen_0, gen_1, gen_m1 and gen_2), the fraction %
(ghalf), the complex number i (gi). All of these are of type GEN.

7

In addition, space is reserved for the polynomials z, (pol_x[v]), and the polynomials 1,
(pol_1[v]). Here, z, is the name of variable number v, where 0 < v < MAXVARN. Both pol_1 and
pol_x are arrays of GENs, the index being the polynomial variable number.

However, except for the ones corresponding to variables 0 and MAXVARN, these polynomials are
not created upon initialization. It is the programmer’s responsibility to fill them before use. We
will see how this is done in Section 4.6.2 (never through direct assignment).

e a heap which is just a linked list of permanent universal objects. For now, it contains
exactly the ones listed above. You will probably very rarely use the heap yourself; and if so, only
as a collection of copies of objects taken from the stack (called clones in the sequel). Thus you
need not bother with its internal structure, which may change as PARI evolves. Some complex
PARI functions create clones for special garbage collecting purposes, usually destroying them when
returning.

e a table of primes (in fact of differences between consecutive primes), called diffptr, of type
byteptr (pointer to unsigned char). Its use is described in appendix B.

e access to all the built-in functions of the PARI library. These are declared to the outside
world when you include pari.h, but need the above things to function properly. So if you forget
the call to pari_init, you will get a fatal error when running your program.

4.2 Important technical notes.

4.2.1 Types.

Although PARI objects all have the C type GEN, we will freely use the word type to refer to PARI
dynamic subtypes: t_INT, t_REAL, etc. The declaration

GEN x;

declares a C variable of type GEN, but its “value” will be said to have type t_INT, t_REAL, etc. The
meaning should always be clear from the context.

4.2.2 Type recursivity.

Conceptually, most PARI types are recursive. But the GEN type is a pointer to long, not to GEN.
So special macros must be used to access GEN’s components. The simplest one is gel(V, i), where
el stands for element, to access component number ¢ of the GEN V. This is a valid 1value (may be
put on the left side of an assignment), and the following two constructions are exceedingly frequent

gel(V, i) = x;
x = gel(V, i);

where x and V are GENs. This macro accesses and modifies directly the components of V' and do
not create a copy of the coefficient, contrary to all the library functions.

More generally, to retrieve the values of elements of lists of ... of lists of vectors we have the
gmael macros (for multidimensional array element). The syntax is gmaeln(V,aq,...,a,), where
V' is a GEN, the a; are indexes, and n is an integer between 1 and 5. This stands for z]a;|[az] . .. [ax],
and returns a GEN. The macros gel (resp. gmael) are synonyms for gmaell (resp. gmael?2).

Finally, the macro gcoeff(M,i,j) has exactly the meaning of M[i,j] in GP when M is a
matrix. Note that due to the implementation of t_MATs as horizontal lists of vertical vectors,
gecoeff (x,y) is actually equivalent to gmael (y,x). One should use gcoeff in matrix context, and
gmael otherwise.

4.2.3 Variations on basic functions. In the library syntax descriptions in Chapter 3, we have
only given the basic names of the functions. For example gadd(z,y) assumes that x and y are GENs,
and creates the result x4y on the PARI stack. For most of the basic operators and functions, many
other variants are available. We give some examples for gadd, but the same is true for all the basic
operators, as well as for some simple common functions (a complete list is given in Chapter 5):

GEN gaddgs(GEN x, long y)
GEN gaddsg(long x, GEN y)

In the following three, z is a preexisting GEN and the result of the corresponding operation is put
into z. The size of the PARI stack does not change:

void gaddz(GEN x, GEN y, GEN z)

void gaddgsz(GEN x, long y, GEN z)

void gaddsgz(GEN x, GEN y, GEN z)

There are also low level functions which are special cases of the above:

GEN addii(GEN x, GEN y): here z and y are GENs of type t_INT (this is not checked).
GEN addrr(GEN x, GEN y): here z and y are GENs of type t_REAL (this is not checked).

There also exist functions addir, addri, mpadd (whose two arguments can be of type t_INT or
t_REAL), addis (to add a t_INT and a long) and so on.

All these specialized functions are of course more efficient than the general purpose ones, but
note the hidden danger here: the types of the objects involved, if they are themselves results of
a previous computation, are not completely predetermined. For instance the multiplication of a
t_REAL by a t_INT wusually gives a t_REAL result, except when the integer is 0, in which case
according to the PARI philosophy the result is the exact integer 0. Hence if afterwards you call a
function which specifically needs a t_REAL argument, you are in trouble.

The names are self-explanatory once you know that i stands for a t_INT, r for a t_REAL, mp
for i or r, s for a signed C long integer, u for an unsigned C long integer; finally the suffix z means
that the result is not created on the PARI stack but assigned to a preexisting GEN object passed
as an extra argument. For completeness, Chapter 5 gives a description of these low-level functions.

4.2.4 Portability: 32-bit / 64-bit architectures.

PARI supports both 32-bit and 64-bit based machines, but not simultaneously! The library will
have been compiled assuming a given architecture, and some of the header files you include (through
pari.h) will have been modified to match the library.

Portable macros are defined to bypass most machine dependencies. If you want your programs
to run identically on 32-bit and 64-bit machines, you have to use these, and not the corresponding
numeric values, whenever the precise size of your long integers might matter. Here are the most
important ones:

64-bit 32-bit

BITS_IN_LONG 64 32

LONG_IS_64BIT defined undefined

DEFAULTPREC 3 4 (~ 19 decimal digits, see formula below)
MEDDEFAULTPREC 4 6 (=~ 38 decimal digits)

BIGDEFAULTPREC 5 8 (=~ 57 decimal digits)

9

For instance, suppose you call a transcendental function, such as
GEN gexp(GEN x, long prec).

The last argument prec is only used if x is an exact object, otherwise the relative precision is
determined by the precision of x. But since prec sets the size of the inexact result counted in
(long) words (including codewords), the same value of prec will yield different results on 32-bit
and 64-bit machines. Real numbers have two codewords (see Section 4.5.1), so the formula for
computing the bit accuracy is

bit_accuracy(prec) = (prec — 2) * BITS_IN_LONG

(this is actually the definition of a macro). The corresponding accuracy expressed in decimal digits
would be
bit_accuracy(prec) * log(2)/log(10).

For example if the value of prec is 5, the corresponding accuracy for 32-bit machines is (5 — 2) *
log(232)/1log(10) ~ 28 decimal digits, while for 64-bit machines it is (5 — 2) * log(2%%)/log(10) ~ 57
decimal digits.

Thus, you must take care to change the prec parameter you are supplying according to the bit
size, either using the default precisions given by the various DEFAULTPRECs, or by using conditional
constructs of the form:

#ifndef LONG_IS_64BIT

prec = 4;
#else

prec = 6;
#endif

which is in this case equivalent to the statement prec = MEDDEFAULTPREC;.

Note that for parity reasons, half the accuracies available on 32-bit architectures (the odd ones)
have no precise equivalents on 64-bit machines.

4.3 Garbage collection.

4.3.1 Why and how.

As we have seen, the pari_init routine allocates a big range of addresses, the stack, that are
going to be used throughout. Recall that all PARI objects are pointers. Except for a few universal
objects, they all point at some part of the stack.

The stack starts at the address bot and ends just before top. This means that the quantity
(top — bot) / sizeof(long)

is (roughly) equal to the size argument of pari_init. The PARI stack also has a “current stack
pointer” called avma, which stands for available memory address. These three variables are global
(declared by pari.h). They are of type pari_sp, which means pari stack pointer.

The stack is oriented upside-down: the more recent an object, the closer to bot. Accordingly,
initially avma = top, and avma gets decremented as new objects are created. As its name indicates,

10

avma always points just after the first free address on the stack, and (GEN)avma is always (a
pointer to) the latest created object. When avma reaches bot, the stack overflows, aborting all
computations, and an error message is issued. To avoid this you need to clean up the stack from
time to time, when intermediate objects are not needed anymore. This is called “garbage collecting.”

We are now going to describe briefly how this is done. We will see many concrete examples in
the next subsection.

e First, PARI routines do their own garbage collecting, which means that whenever a documented
function from the library returns, only its result(s) have been added to the stack (non-documented
ones may not do this). In particular, a PARI function that does not return a GEN does not clutter
the stack. Thus, if your computation is small enough (e.g. you call few PARI routines, or most of
them return long integers), then you do not need to do any garbage collecting. This is probably
the case in many of your subroutines. Of course the objects that were on the stack before the
function call are left alone. Except for the ones listed below, PARI functions only collect their own
garbage.

e It may happen that all objects that were created after a certain point can be deleted — for
instance, if the final result you need is not a GEN, or if some search proved futile. Then, it is enough
to record the value of avma just before the first garbage is created, and restore it upon exit:

pari_sp av = avma; /* record initial avma */

garbage ...
avma = av; /* restore it */

All objects created in the garbage zone will eventually be overwritten: they should not be accessed
anymore once avma has been restored.

e If you want to destroy (i.e. give back the memory occupied by) the latest PARI object on the
stack (e.g. the latest one obtained from a function call), you can use the function

void cgiv(GEN z)

where z is the object you want to give back. This is equivalent to the above where the initial av is
computed from z.

e Unfortunately life is not so simple, and sometimes you will want to give back accumulated garbage
during a computation without losing recent data. For this you need the gerepile function (or one
of its simpler variants described hereafter):

GEN gerepile(pari_sp ltop, pari_sp lbot, GEN q)

This function cleans up the stack between ltop and 1lbot, where 1bot < ltop, and returns the
updated object q. This means:

1) we translate (copy) all the objects in the interval [avma, 1bot], so that its right extremity
abuts the address 1top. Graphically

bot avma 1lbot 1top top
End of stack |[|------------- [++++++[=/=/=/-/-/-/-|++++++++| Start
free memory garbage
becomes:
bot avma ltop top
End of stack |[|--—----—----——-—-——-—m—o—- [++++++ [++++++++| Start

free memory

11

where ++ denote significant objects, -- the unused part of the stack, and -/- the garbage we
remove.

2) The function then inspects all the PARI objects between avma and 1lbot (i.e. the ones that
we want to keep and that have been translated) and looks at every component of such an object
which is not a codeword. Each such component is a pointer to an object whose address is either

— between avma and lbot, in which case it is suitably updated,
— larger than or equal to 1top, in which case it does not change, or

— between 1bot and 1ltop in which case gerepile raises an error (“significant pointers lost
in gerepile”).

3) avma is updated (we add 1top — lbot to the old value).

4) We return the (possibly updated) object q: if q initially pointed between avma and 1bot,
we return the updated address, as in 2). If not, the original address is still valid, and is returned!

As stated above, no component of the remaining objects (in particular q) should belong to the
erased segment [1lbot, 1top[, and this is checked within gerepile. But beware as well that the
addresses of the objects in the translated zone change after a call to gerepile, so you must not
access any pointer which previously pointed into the zone below 1top. If you need to recover more
than one object, use one of the gerepilemany functions below.

As a consequence of the preceding explanation, if a PARI object is to be relocated by gerepile
then, apart from universal objects, the chunks of memory used by its components should be in
consecutive memory locations. All GENs created by documented PARI functions are guaranteed to
satisfy this. This is because the gerepile function knows only about two connected zones: the
garbage that is erased (between 1bot and 1ltop) and the significant pointers that are copied and
updated. If there is garbage interspersed with your objects, disaster occurs when we try to update
them and consider the corresponding “pointers”. In most cases of course the said garbage is in fact
a bunch of other GENs, in which case we simply waste time copying and updating them for nothing.
But be wary when you allow objects to become disconnected.

In practice this is achieved by the following programming idiom:

ltop = avma; garbage(); lbot = avma; q = anything();
return gerepile(ltop, lbot, q); /* returns the updated q */

Beware that

ltop = avma; garbage();
return gerepile(ltop, avma, anything())

might work, but should be frowned upon. We cannot predict whether avma is evaluated after or
before the call to anything(): it depends on the compiler. If we are out of luck, it is after the call,
so the result belongs to the garbage zone and the gerepile statement becomes equivalent to avma
= 1top. Thus we return a pointer to random garbage.

e A simple variant is
GEN gerepileupto(pari_sp ltop, GEN q)

which cleans the stack between 1top and the connected object q and returns q updated. For this
to work, q must have been created before all its components, otherwise they would belong to the
garbage zone! Unless mentioned otherwise, documented PARI functions guarantee this.

12

e Another variant (a special case of gerepileall below, where n = 1) is
GEN gerepilecopy (pari_sp 1ltop, GEN x))

which is functionally equivalent to gerepileupto(ltop, gcopy(x)) but more efficient. In this
case, the GEN parameter x need not satisfy any property before the garbage collection (it may be
disconnected, components created before the root and so on). Of course, this is less efficient than
either gerepileupto or gerepile, because x has to be copied to a clean stack zone first.

e To cope with complicated cases where many objects have to be preserved, you can use
void gerepileall(pari_sp ltop, int n, ...)

where the routine expects n further arguments, which are the addresses of the GENs you want to
preserve. It cleans up the most recent part of the stack (between 1top and avma), updating all the
GENs added to the argument list. A copy is done just before the cleaning to preserve them, so they
do not need to be connected before the call. With gerepilecopy, this is the most robust of the
gerepile functions (the less prone to user error), hence the slowest.

An alternative syntax, obsolete but kept for backward compatibility, is given by
void gerepilemany (pari_sp ltop, GEN *gptr[], int n)

which works exactly as above, except that the preserved GENs are the elements of the array gptr
(of length n): gptr[0], gptr(1i], ..., gptrin-1].

e More efficient, but tricky to use is

void gerepilemanysp (pari_sp ltop, pari_sp lbot, GEN *gptr[], int n)

which cleans the stack between 1bot and 1top and updates the GENs pointed at by the elements
of gptr without doing any copying. This is subject to the same restrictions as gerepile, the only
difference being that more than one address gets updated.

4.3.2 Examples.

4.3.2.1 gerepile

Let x and y be two preexisting PARI objects and suppose that we want to compute x2 + y2.
This is done using the following program:
GEN pl = gsqr(x);
GEN p2 = gsqr(y), z = gadd(pl,p2);

The GEN z indeed points at the desired quantity. However, consider the stack: it contains as
unnecessary garbage pl and p2. More precisely it contains (in this order) z, p2, p1. (Recall that,
since the stack grows downward from the top, the most recent object comes first.)

It is not possible to get rid of p1l, p2 before z is computed, since they are used in the final
operation. We cannot record avma before pl is computed and restore it later, since this would
destroy z as well. It is not possible either to use the function cgiv since p1 and p2 are not at the
bottom of the stack and we do not want to give back z.

But using gerepile, we can give back the memory locations corresponding to p1, p2, and
move the object z upwards so that no space is lost. Specifically:

pari_sp ltop = avma; /* remember the current address of the top of the stack */
GEN pl = gsqr(x);

13

GEN p2 = gsqr(y);

pari_sp lbot = avma; /* keep the address of the bottom of the garbage pile */
GEN z = gadd(pl, p2); /* zis now the last object on the stack */

z = gerepile(ltop, lbot, z);

Of course, the last two instructions could also have been written more simply:
z = gerepile(ltop, lbot, gadd(pl,p2));

In fact gerepileupto is even simpler to use, because the result of gadd is the last object on the
stack and gadd is guaranteed to return an object suitable for gerepileupto:

ltop = avma;
z = gerepileupto(ltop, gadd(gsqr(x), gsqr(y)));

Make sure you understand exactly what has happened before you go on (use the figure from the
preceding section).

Remark on assignments and gerepile: When the tree structure and the size of the PARI
objects which will appear in a computation are under control, one may allocate sufficiently large
objects at the beginning, use assignment statements, then simply restore avma. Coming back to
the above example, note that if we know that x and y are of type real fitting into DEFAULTPREC
words, we can program without using gerepile at all:

z = cgetr (DEFAULTPREC); ltop = avma;
gaffect(gadd(gsqr(x), gsqr(y)), z);
avma = ltop;

This is often slower than a craftily used gerepile though, and certainly more cumbersome to use.
As a rule, assignment statements should generally be avoided.

Variations on a theme: it is often necessary to do several gerepiles during a computation.
However, the fewer the better. The only condition for gerepile to work is that the garbage be
connected. If the computation can be arranged so that there is a minimal number of connected
pieces of garbage, then it should be done that way.

For example suppose we want to write a function of two GEN variables x and y which creates
the vector [x2 +v,y% + x]. Without garbage collecting, one would write:

gadd(pl, y);
gadd(p3, x); z = cgetg(3, t_VEC);

pl = gsqr(x); p2
p3 = gsar(y); p4
gel(z, 1) = p2;
gel(z, 2) = p4;

This leaves a dirty stack containing (in this order) z, p4, p3, p2, p1. The garbage here consists of
pl and p3, which are separated by p2. But if we compute p3 before p2 then the garbage becomes
connected, and we get the following program with garbage collecting:

ltop = avma; pl = gsqr(x); p3 = gsqr(y);

lbot = avma; z = cgetg(3, t_VEC);

gel(z, 1) = gadd(pl,y);

gel(z, 2) = gadd(p3,x); z = gerepile(ltop,lbot,z);

Finishing by z = gerepileupto(ltop, z) would be ok as well. Beware that

ltop = avma; pl = gadd(gsqr(x), y); p3 = gadd(gsqr(y), x);

14

z = cgetg(3, t_VEC);
gel(z, 1) = pi;
gel(z, 2) = p3; z = gerepileupto(ltop,z); /* WRONG */

is a disaster since p1l and p3 are created before z, so the call to gerepileupto overwrites them,
leaving gel(z, 1) and gel(z, 2) pointing at random data! On the other hand

ltop = avma; z = cgetg(3, t_VEC);
gel(z, 1) = gadd(gsqr(x), y);
gel(z, 2) = gadd(gsqr(y), x); z = gerepileupto(ltop,z); /* INEFFICIENT x*/

leaves the results of gsqr(x) and gsqr(y) on the stack (and lets gerepileupto update them for
naught). Finally, the most elegant and efficient version (with respect to time and memory use) is
as follows

z = cgetg(3, t_VEC);
ltop = avma; gel(z, 1) = gerepileupto(ltop, gadd(gsqr(x), y));
ltop = avma; gel(z, 2) = gerepileupto(ltop, gadd(gsqr(y), x));

which avoids updating the container z and cleans up its components individually, as soon as they
are computed.

One last example. Let us compute the product of two complex numbers x and y, using the 3M
method which requires 3 multiplications instead of the obvious 4. Let z = x*y, and set x = x,.+i*xx;
and similarly for y and z. We compute p1 = x, % y,, p2 = z; * y;, p3 = (r + x;) * (yr + v;), and
then we have z. = p; — p2, 2; = p3 — (p1 + p2). The program is as follows:

ltop = avma;

pl = gnul(gel(x,1), gel(y,1));

p2 = gnul(gel(x,2), gel(y,2));

p3 = gmul(gadd(gel(x,1), gel(x,2)), gadd(gel(y,1), gel(y,2)));
p4 = gadd(pl,p2);

lbot = avma; z = cgetg(3, t_COMPLEX);

gel(z, 1) = gsub(pl,p2);

gel(z, 2) = gsub(p3,p4); z = gerepile(ltop,lbot,z);

Exercise. Write a function which multiplies a matrix by a column vector. Hint: start with a
cgetg of the result, and use gerepile whenever a coeflicient of the result vector is computed. You
can look at the answer in src/basemath/genl.c:MCmul().

4.3.2.2 gerepileall

Let us now see why we may need the gerepileall variants. Although it is not an infrequent
occurrence, we do not give a specific example but a general one: suppose that we want to do a
computation (usually inside a larger function) producing more than one PARI object as a result,
say two for instance. Then even if we set up the work properly, before cleaning up we have a stack
which has the desired results z1, z2 (say), and then connected garbage from lbot to ltop. If we
write

zl = gerepile(ltop, lbot, z1);

then the stack is cleaned, the pointers fixed up, but we have lost the address of z2. This is where
we need the gerepileall function:

gerepileall(ltop, 2, &=zl, &z2)

15

copies z1 and z2 to new locations, cleans the stack from 1ltop to the old avma, and updates
the pointers z1 and z2. Here we do not assume anything about the stack: the garbage can be
disconnected and z1, z2 need not be at the bottom of the stack. If all of these assumptions are
in fact satisfied, then we can call gerepilemanysp instead, which is usually faster since we do not
need the initial copy (on the other hand, it is less cache friendly).

A most important usage is “random” garbage collection during loops whose size requirements
we cannot (or do not bother to) control in advance:

pari_sp ltop = avma, limit = stack_lim(avma, 1);
GEN x, y;
while (...)
{
garbage(); x = anything();
garbage(); y = anything(); garbageQ;
if (avma < limit) /* memory is running low (half spent since entry) */
gerepileall(1ltop, 2, &x, &y);

}

Here we assume that only x and y are needed from one iteration to the next. As it would be costly
to call gerepile once for each iteration, we only do it when it seems to have become necessary. The
macro stack_lim(avma,n) denotes an address where 2”1 /(2"~! 4 1) of the remaining stack space
is exhausted (1/2 for n =1, 2/3 for n = 2).

4.3.3 Comments.

First, gerepile has turned out to be a flexible and fast garbage collector for number-theoretic
computations, which compares favorably with more sophisticated methods used in other systems.
Our benchmarks indicate that the price paid for using gerepile and gerepile-related copies, when
properly used, is usually less than 1 percent of the total running time, which is quite acceptable!

Second, it is of course harder on the programmer, and quite error-prone if you do not stick to
a consistent PARI programming style. If all seems lost, just use gerepilecopy (or gerepileall)
to fix up the stack for you. You can always optimize later when you have sorted out exactly which
routines are crucial and what objects need to be preserved and their usual sizes.

If you followed us this far, congratulations, and rejoice: the rest is much easier.

4.4 Creation of PARI objects, assignments, conversions.

4.4.1 Creation of PARI objects. The basic function which creates a PARI object is the function
cgetg whose prototype is:

GEN cgetg(long length, long type).

Here length specifies the number of longwords to be allocated to the object, and type is the type
number of the object, preferably in symbolic form (see Section 4.5.1 for the list of these). The
precise effect of this function is as follows: it first creates on the PARI stack a chunk of memory of
size length longwords, and saves the address of the chunk which it will in the end return. If the
stack has been used up, a message to the effect that “the PARI stack overflows” is printed, and an
error raised. Otherwise, it sets the type and length of the PARI object. In effect, it fills its first
codeword (z[0] or *z). Many PARI objects also have a second codeword (types t_INT, t_REAL,

16

t_PADIC, t_POL, and t_SER). In case you want to produce one of those from scratch, which should
be exceedingly rare, it is your responsibility to fill this second codeword, either explicitly (using the
macros described in Section 4.5.1), or implicitly using an assignment statement (using gaffect).

Note that the argument length is predetermined for a number of types: 3 for types t_INTMOD,
t_FRAC, t_COMPLEX, t_POLMOD, t_RFRAC, 4 for type t_QUAD and t_QFI, and 5 for type t_PADIC and
t_QFR. However for the sake of efficiency, no checking is done in the function cgetg, so disasters
will occur if you give an incorrect length.

Notes: 1) The main use of this function is create efficiently a constant object, or to prepare for
later assignments (see Section 4.3.2). Most of the time you will use GEN objects as they are created
and returned by PARI functions. In this case you do not need to use cgetg to create space to hold
them.

2) For the creation of leaves, i.e. t_INT or t_REAL,
GEN cgeti(long length)
GEN cgetr(long length)

should be used instead of cgetg(length, t_INT) and cgetg(length, t_REAL) respectively. Fi-
nally

GEN cgetc(long prec)

creates a t_COMPLEX whose real and imaginary part are t_REALs allocated by cgetr (prec).

Examples: 1) Both z = cgeti(DEFAULTPREC) and cgetg(DEFAULTPREC, t_INT) create a t_INT
whose “precision” is bit_accuracy (DEFAULTPREC) = 64. This means z can hold rational integers
of absolute value less than 264, Note that in both cases, the second codeword is not filled. Of
course we could use numerical values, e.g. cgeti(4), but this would have different meanings on
different machines as bit_accuracy(4) equals 64 on 32-bit machines, but 128 on 64-bit machines.

2) The following creates a complex number whose real and imaginary parts can hold real numbers
of precision bit_accuracy(MEDDEFAULTPREC) = 96 bits:

z = cgetg(3, t_COMPLEX);
gel(z, 1) = cgetr (MEDDEFAULTPREC) ;
gel(z, 2) = cgetr (MEDDEFAULTPREC) ;

or simply z = cgetc (MEDDEFAULTPREC).
3) To create a matrix object for 4 x 3 matrices:

z = cgetg(4, t_MAT);
for(i=1; i<4; i++) gel(z, i) = cgetg(b, t_COL);

If one wishes to create space for the matrix elements themselves, one has to follow this with a
double loop to fill each column vector.

These last two examples illustrate the fact that since PARI types are recursive, all the branches
of the tree must be created. The function cgetg creates only the “root”, and other calls to cgetg
must be made to produce the whole tree. For matrices, a common mistake is to think that z =
cgetg(4, tMAT) (for example) creates the root of the matrix: one needs also to create the column
vectors of the matrix (obviously, since we specified only one dimension in the first cgetg!). This
is because a matrix is really just a row vector of column vectors (hence a priori not a basic type),
but it has been given a special type number so that operations with matrices become possible.

17

Finally, to facilitate input of constant objects when speed is not paramount, there are four

varargs functions:

GEN mkintn(long n, ...) returns the non-negative t_INT whose development in base 23? is
given by the following n words (unsigned long). It is assumed that all such arguments are less
than 232 (the actual sizeof (long) is irrelevant, the behaviour is also as above on 64-bit machines).

mkintn(3, a2, al, a0);
returns a22% + a;23? + ao.

GEN mkpoln(long n, ...) Returns the t_POL whose n coefficients (GEN) follow, in order of
decreasing degree.

mkpoln(3, gen_1, gen_2, gen_0);

returns the polynomial X2 + 2X (in variable 0, use setvarn if you want other variable numbers).
Beware that n is the number of coefficients, hence one more than the degree.

GEN mkvecn(long n, ...) returns the t_VEC whose n coefficients (GEN) follow.

GEN mkcoln(long n, ...) returns the t_COL whose n coefficients (GEN) follow.

Warning: Contrary to the policy of general PARI functions, the latter three functions do not copy
their arguments, nor do they produce an object a priori suitable for gerepileupto. For instance

/* gerepile-safe: components are universal objects */
z = mkvecn(3, gen_1, gen_0, gen_2);

/* not OK for gerepileupto: stoi(3) creates component before root */
z = mkvecn(3, stoi(3), gen_0, gen_2);

/* NO! First vector component x is destroyed */
x = gclone(gen_1);

z = mkvecn(3, x, gen_0, gen_2);
gunclone (x) ;

The following function is also available as a special case of mkintn:
GEN u2toi(ulong a, ulong b)
Returns the GEN equal to 232a + b, assuming that a,b < 232. This does not depend on

sizeof (long): the behaviour is as above on both 32 and 64-bit machines.

4.4.2 Assignments. Firstly, if x and y are both declared as GEN (i.e. pointers to something), the
ordinary C assignment y = x makes perfect sense: we are just moving a pointer around. However,
physically modifying either x or y (for instance, x[1] = 0) also changes the other one, which is
usually not desirable.

18

Very important note: Using the functions described in this paragraph is inefficient and often
awkward: one of the gerepile functions (see Section 4.4.1) should be preferred. See the paragraph
end for one exception to this rule.

The general PARI assignment function is the function gaffect with the following syntax:
void gaffect(GEN x, GEN y)

Tts effect is to assign the PARI object x into the preexisting object y. This copies the whole structure
of x into y so many conditions must be met for the assignment to be possible. For instance it is
allowed to assign a t_INT into a t_REAL, but the converse is forbidden. For that, you must use the
truncation or rounding function of your choice (see section 3.2). It can also happen that y is not
large enough or does not have the proper tree structure to receive the object x. For instance, let y
the zero integer with length equal to 2; then y is too small to accommodate any non-zero t_INT. In
general common sense tells you what is possible, keeping in mind the PARI philosophy which says
that if it makes sense it is valid. For instance, the assignment of an imprecise object into a precise
one does not make sense. However, a change in precision of imprecise objects is allowed.

[{an))

All functions ending in “z” such as gaddz (see Section 4.2.2) implicitly use this function.
In fact what they exactly do is record avma (see Section 4.4.1), perform the required operation,
gaffect the result to the last operand, then restore the initial avma.

You can assign ordinary C long integers into a PARI object (not necessarily of type t_INT).
Use the function gaffsg with the following syntax:

void gaffsg(long s, GEN y)

Note: due to the requirements mentioned above, it is usually a bad idea to use gaffect statements.
There is one exception: for simple objects (e.g. leaves) whose size is controlled, they can be easier
to use than gerepile, and about as efficient.

Coercion. It is often useful to coerce an inexact object to a given precision. For instance at the
beginning of a routine where precision can be kept to a minimum; otherwise the precision of the
input is used in all subsequent computations, which is inefficient if the latter is known to thousands
of digits. One may use the gaffect function for this, but it is easier and more efficient to call

GEN gtofp(GEN x, long prec) converts the complex number x (t_INT, t_REAL, t_FRAC, t_QUAD
or t_COMPLEX) to either a t_REAL or t_COMPLEX whose components are t_REAL of length prec.

4.4.3 Copy. It is also very useful to copy a PARI object, not just by moving around a pointer as
in the y = x example, but by creating a copy of the whole tree structure, without pre-allocating
a possibly complicated y to use with gaffect. The function which does this is called gcopy. Its
syntax is:

GEN gcopy (GEN x)
and the effect is to create a new copy of x on the PARI stack.

Sometimes, on the contrary, a quick copy of the skeleton of x is enough, leaving pointers
to the original data in x for the sake of speed instead of making a full recursive copy. Use GEN
shallowcopy (GEN x) for this. Note that the result is not suitable for gerepileupto !

Make sure at this point that you understand the difference between y = x, y = gcopy(x), y
= shallowcopy(x) and gaffect(x,y).

19

4.4.4 Clones. Sometimes, it is more efficient to create a persistent copy of a PARI object. This is
not created on the stack but on the heap, hence unaffected by gerepile and friends. The function
which does this is called gclone. Its syntax is:

GEN gclone(GEN x)
A clone can be removed from the heap (thus destroyed) using
void gunclone(GEN x)
No PARI object should keep references to a clone which has been destroyed!
4.4.5 Conversions. The following functions convert C objects to PARI objects (creating them on
the stack as usual):
GEN stoi(long s): C long integer (“small”) to t_INT.

GEN dbltor(double s): C double to t_REAL. The accuracy of the result is 19 decimal digits, i.e. a
type t_REAL of length DEFAULTPREC, although on 32-bit machines only 16 of them are significant.

We also have the converse functions:

long itos(GEN x): x must be of type t_INT,
double rtodbl(GEN x): x must be of type t_REAL,
as well as the more general ones:

long gtolong(GEN x),

double gtodouble(GEN x).

4.5 Implementation of the PARI types.

We now go through each type and explain its implementation. Let z be a GEN, pointing at a PARI
object. In the following paragraphs, we will constantly mix two points of view: on the one hand, z
is treated as the C pointer it is, on the other, as PARI’s handle on some mathematical entity, so we
will shamelessly write z # 0 to indicate that the value thus represented is nonzero (in which case
the pointer z is certainly non-NULL). We offer no apologies for this style. In fact, you had better
feel comfortable juggling both views simultaneously in your mind if you want to write correct PARI
programs.

Common to all the types is the first codeword z[0], which we do not have to worry about
since this is taken care of by cgetg. Its precise structure depends on the machine you are using,
but it always contain the following data: the internal type number associated to the symbolic type
name, the length of the root in longwords, and a technical bit which indicates whether the object
is a clone or not (see Section 4.4.4). This last one is used by gp for internal garbage collecting, you
will not have to worry about it.

These data can be handled through the following macros:
long typ(GEN z) returns the type number of z.

void settyp(GEN z, long n) sets the type number of z to n (you should not have to use this
function if you use cgetg).

long lg(GEN z) returns the length (in longwords) of the root of z.

20

long setlg(GEN z, long 1) sets the length of z to 1 (you should not have to use this function if
you use cgetg; however, see an advanced example in Section 4.8).

long isclone(GEN z) is z a clone?
void setisclone(GEN z) sets the clone bit.

void unsetisclone(GEN z) unsets the clone bit.

Remark. The clone bit is there so that gunclone can check it is deleting an object which was
allocated by gclone. Miscellaneous vector entries are often cloned by gp so that a GP statement
like v[1] = x does not involve copying the whole of v: the component v[1] is deleted if its clone
bit is set, and is replaced by a clone of x. Don’t set/unset yourself the clone bit unless you know
what you are doing: in particular never set the clone bit of a vector component when the said
vector is scheduled to be uncloned. Hackish code may abuse the clone bit to tag objects for reasons
unrelated to the above instead of using proper data structures. Don’t do that.

These macros are written in such a way that you do not need to worry about type casts when
using them: i.e. if z is a GEN, typ(z[2]) is accepted by your compiler, as well as the more proper
typ(gel(z,2)). Note that for the sake of efficiency, none of the codeword-handling macros check
the types of their arguments even when there are stringent restrictions on their use.

Some types have a second codeword, used differently by each type, and we will describe it as
we now consider each of them in turn.
4.5.1 Type t_INT (integer): this type has a second codeword z[1] which contains the following
information:

the sign of z: coded as 1, 0 or —1 if z > 0, z = 0, z < 0 respectively.

the effective length of z, i.e. the total number of significant longwords. This means the following:
apart from the integer 0, every integer is “normalized”, meaning that the most significant mantissa
longword is non-zero. However, the integer may have been created with a longer length. Hence the
“length” which is in z[0] can be larger than the “effective length” which is in z[1].

This information is handled using the following macros:

long signe(GEN z) returns the sign of z.

void setsigne(GEN z, long s) sets the sign of z to s.

long lgefint (GEN z) returns the effective length of z.

void setlgefint (GEN z, long 1) sets the effective length of z to 1.

The integer 0 can be recognized either by its sign being 0, or by its effective length being equal
to 2. Now assume that z # 0, and let

n
|z| = E 2B', where z, # 0 and B = 2BITS-IN-LOYG,
i=0

With these notations, n is 1gefint(z) - 3, and the mantissa of z may be manipulated via the
following interface:

GEN int_MSW (GEN z) returns a pointer to the most significant word of z, z,.
GEN int_LSW (GEN z) returns a pointer to the least significant word of z, z.

21

GEN int_ W (GEN z, long i) returns the i-th significant word of z, z;. Accessing the i-th significant
word for ¢ > n yields unpredictable results.

GEN int_precW (GEN z) returns the previous (less significant) word of z, z;_; assuming z points
to z;.

GEN int_nextW (GEN z) returns the next (more significant) word of z, z;11 assuming z points to
Zi.

Unnormalized integers, such that z, is possibly 0, are explicitly forbidden. To enforce this,
one may write an arbitrary mantissa then call

void int_normalize(GEN z, long knownO)

normalizes in place a non-negative integer (such that z, is possibly 0), assuming at least the first
knownO words are zero.

For instance a binary and could be implemented in the following way:

GEN AND(GEN x, GEN y) {
long i, 1lx, ly, lout;
long *xp, *yp, *outp; /* mantissa pointers */

GEN out;
if (!signe(x) || !signe(y)) return gen_O;
1x = 1lgefint(x); xp = int_LSW(x);

ly = 1lgefint(y); yp = int_LSW(y); lout = min(lx,ly); /* > 2 %/

out = cgeti(lout); out[1] = evalsigne(l) | evallgefint(lout);
outp = int_LSW(out);
for (i=2; i < lout; i++)

{
*xoutp = (*xp) & (*yp);
outp = int_nextW(outp);
Xp = int_nextW(xp);
yp = int_nextW(yp);

}
if ('*xint_MSW(out)) out = int_normalize(out, 1);
return out;

¥

This low-level interface is mandatory in order to write portable code since PARI can be compiled
using various multiprecision kernels, for instance the native one or GNU MP, with incompatible
internal structures (for one thing, the mantissa is oriented in different directions).

The following further macros are available:
long mpodd(GEN x) which is 1 if x is odd, and 0 otherwise.

long mod2(GEN x), mod4(x), and so on up to mod64(x), which give the residue class of x
modulo the corresponding power of 2, for positive x. By definition, modn(z) := modn(|z|) for x < 0
(the macros disregard the sign), and the result is undefined if = = 0.

These macros directly access the binary data and are thus much faster than the generic modulo
functions. Besides, they return long integers instead of GENs, so they do not clutter up the stack.

22

4.5.2 Type t_REAL (real number): this type has a second codeword z[1] which also encodes
its sign, obtained or set using the same functions as for a t_INT, and a binary exponent. This
exponent is handled using the following macros:

long expo(GEN z) returns the exponent of z. This is defined even when z is equal to zero, see
Section 1.3.1.

void setexpo(GEN z, long e) sets the exponent of z to e.
Note the functions:
long gexpo(GEN z) which tries to return an exponent for z, even if z is not a real number.

long gsigne(GEN z) which returns a sign for z, even when z is neither real nor integer (a rational
number for instance).

The real zero is characterized by having its sign equal to 0. If z is not equal to 0, then is is
represented as 2°M, where e is the exponent, and M € [1,2[is the mantissa of z, whose digits are
stored in z[2], ..., z[1g(z) — 1].

More precisely, let m be the integer (z[2],..., z[1g(z)-1]) in base 2"BITS_IN_LONG; here,
z[2] is the most significant longword and is normalized, i.e. its most significant bit is 1. Then we
have M = m - 21—bit,accuracy(1g(z))'

Thus, the real number 3.5 to accuracy bit_accuracy(lg(z)) is represented as z[0] (encoding
type = t_REAL, 1g(z)), z[1] (encoding sign = 1, expo = 1), z[2] = 0xe0000000, z[3] = ... =
z[1lg(z) — 1] = 0xO0.

4.5.3 Type t_INTMOD: z[1] points to the modulus, and z[2] at the number representing the class
z. Both are separate GEN objects, and both must be t_INTs, satisfying the inequality 0 < z[2] < z[1].

It is good practice to keep the modulus object on the heap, so that new t_INTMODs resulting
from operations can point at this common object, instead of carrying along their own copies of it
on the stack. The library functions implement this practice almost by default.

4.5.4 Type t_FRAC (rational number): z[1] points to the numerator n, and z[2] to the
denominator d. Both must be of type t_INT such that d # 0, n > 0 and (n,d) = 1 (see gred_frac2).

4.5.5 Type t_COMPLEX (complex number): z[1] points to the real part, and z[2] to the
imaginary part. A priori z[1] and z[2] can be of any type, but only certain types are useful and
make sense (mostly t_INT, t_REAL and t_FRAC).

4.5.6 Type t_PADIC (p-adic numbers): this type has a second codeword z[1] which contains
the following information: the p-adic precision (the exponent of p modulo which the p-adic unit
corresponding to z is defined if z is not 0), i.e. one less than the number of significant p-adic digits,
and the exponent of z. This information can be handled using the following functions:

long precp(GEN z) returns the p-adic precision of z.
void setprecp(GEN z, long 1) sets the p-adic precision of z to 1.

long valp(GEN z) returns the p-adic valuation of z (i.e. the exponent). This is defined even if z
is equal to 0, see Section 1.3.1.

void setvalp(GEN z, long e) sets the p-adic valuation of z to e.

23

In addition to this codeword, z[2] points to the prime p, z[3] points to pP™P(® and z[4]
points to at_INT representing the p-adic unit associated to z modulo z[3] (and to zero if z is zero).
To summarize, if z # 0, we have the equality:

z = pvalp(z) * (2[4] + 0(2[3]))7 where 2[3] _ O(pprECp(Z)),

4.5.7 Type t_QUAD (quadratic number): z[1] points to the canonical polynomial P defining
the quadratic field (as output by quadpoly), z[2] to the “real part” and z[3] to the “imaginary
part”. The latter are of type t_INT, t_FRAC, t_INTMOD, or t_PADIC and are to be taken as the
coefficients of z with respect to the canonical basis (1,X) or Q[X]/(P(X)), see Section 1.2.6.3.
Exact complex numbers may be implemented as quadratics, but t_COMPLEX is in general more
versatile (t_REAL components are allowed) and more efficient.

Operations involving a t_QUAD and t_COMPLEX are implemented by converting the t_QUAD
to a t_REAL (or t_COMPLEX with t_REAL components) to the accuracy of the t_COMPLEX. As a
consequence, operations between t_QUAD and ezact t_COMPLEXs are not allowed.

4.5.8 Type t_POLMOD (polmod): as for t_INTMODs, z[1] points to the modulus, and z[2] to a
polynomial representing the class of z. Both must be of type t_POL in the same variable, satis-
fying the inequality degz[2] < degz[1]. However, z[2] is allowed to be a simplification of such a
polynomial, e.g a scalar. This is tricky considering the hierarchical structure of the variables; in
particular, a polynomial in variable of lesser priority (see Section ?7) than the modulus variable is
valid, since it is considered as the constant term of a polynomial of degree 0 in the correct variable.
On the other hand a variable of greater priority is not acceptable; see Section 7?7 for the problems
which may arise.

4.5.9 Type t_POL (polynomial): this type has a second codeword. It contains a “sign”: 0 if the
polynomial is equal to 0, and 1 if not (see however the important remark below) and a wvariable
number (e.g. 0 for z, 1 for y, etc...).

These data can be handled with the following macros: signe and setsigne as for t _INT and t_REAL,
long varn(GEN z) returns the variable number of the object z,
void setvarn(GEN z, long v) sets the variable number of z to v.

The variable numbers encode the relative priorities of variables as discussed in Section 77. We
will give more details in Section 4.6.2. Note also the function long gvar(GEN z) which tries to
return a variable number for z, even if z is not a polynomial or power series. The variable number
of a scalar type is set by definition equal to BIGINT, which has lower priority than any other variable
number.

The components z[2], z[3],...z[1g(z)-1] point to the coefficients of the polynomial in
ascending order, with z[2] being the constant term and so on.

For an object of type t_POL, leading_term, constant_term, degpol return a pointer to
the leading term (with respect to the main variable of course), constant term, and degree of the
polynomial (with the convention deg(0) = —1). Applied to any other type, the result is unspecified.
Note that no copy is made on the pari stack so the returned value is not safe for a basic gerepile
call. Note that degpol(z) = 1g(z) — 3.

The leading term is not allowed to be an exact 0 (unnormalized polynomial). To prevent this,
one may use

24

GEN normalizepol (GEN x) applied to an unnormalized t_POL x (with all coefficients correctly set
except that leading term(x) might be zero), normalizes x correctly in place and returns x. For
internal use.

long degree(GEN x) returns the degree of x with respect to its main variable even when x is not
a polynomial (a rational function for instance). By convention, the degree of 0 is —1.

Important remark. A zero polynomial can be characterized by the fact that its sign is 0. However,
its length may be greater than 2, meaning that all the coefficients of the polynomial are equal to
zero, but the leading term z[1g(z)-1] is an inexact zero. More precisely, gcmp0(x) is true for all
coefficients x of the polynomial, an isexactzero(x) is false for the leading coefficient. The same
remark applies to t_SERs.

4.5.10 Type t_SER (power series): This type also has a second codeword, which encodes a
“sign”, i.e. 0 if the power series is 0, and 1 if not, a variable number as for polynomials, and an
exponent. This information can be handled with the following functions: signe, setsigne, varn,
setvarn as for polynomials, and valp, setvalp for the exponent as for p-adic numbers. Beware:
do not use expo and setexpo on power series.

The coefficients z[2], z[3],...z[1g(z)-1] point to the coefficients of z in ascending order.
As for polynomials (see remark there), the sign of a t_SER is 0 if and only if the leading coefficient
of the series is an inexact 0. (It cannot be an exact 0.)

Note that the exponent of a power series can be negative, i.e. we are then dealing with a
Laurent series (with a finite number of negative terms).

4.5.11 Type t_RFRAC (rational function): z[1] points to the numerator n, and z[2] on the
denominator d. The denominator must be of type t_POL, with variable of higher priority than the
numerator. The numerator n is not an exact 0 and (n,d) = 1 (see gred_rfac2).

4.5.12 Type t_QFR (indefinite binary quadratic form): z[1], z[2], z[3] point to the three
coefficients of the form and are of type t_INT. z[4] is Shanks’s distance function, and must be of
type t_REAL.

4.5.13 Type t_QFI (definite binary quadratic form): z[1], z[2], z[3] point to the three
coefficients of the form. All three are of type t_INT.

4.5.14 Type t_VEC and t_COL (vector): z[1], z[2],...z[1g(z)-1] point to the components of
the vector.

4.5.15 Type t_MAT (matrix): z[1], z[2],...z[1g(z)-1] point to the column vectors of z,
i.e. they must be of type t_COL and of the same length.

4.5.16 Type t_VECSMALL (vector of small integers): z[1], z[2],...z[1g(z)-1] are ordinary
signed long integers. This type is used instead of a t_VEC of t_INTs for efficiency reasons, for
instance to implement efficiently permutations, polynomial arithmetic and linear algebra over small
finite fields, etc.

The next two types were introduced for specific gp use, and you are better off using the standard
malloc’ed C constructs when programming in library mode. We quote them for completeness,
advising you not to use them:

25

4.5.17 Type t_LIST (list): This one has a second codeword which contains an effective length
(handled through lgeflist / setlgeflist). z[2],..., z[1geflist(z)-1] contain the components of
the list.

4.5.18 Type t_STR (character string):
char * GSTR(z) (= (z+1)) points to the first character of the (NULL-terminated) string.

Implementation note: for the types including an exponent (or a valuation), we actually store
a biased non-negative exponent (bit-ORing the biased exponent to the codeword), obtained by
adding a constant to the true exponent: either HIGHEXPOBIT (for t_REAL) or HIGHVALPBIT (for
t_PADIC and t_SER). Of course, this is encapsulated by the exponent/valuation-handling macros
and needs not concern the library user.

4.6 PARI variables.

4.6.1 Multivariate objects

We now consider variables and formal computations, and give the technical details corresponding
to the general discussion in Section ?7?7. As we have seen in Section 4.5.1, the codewords for types
t_POL and t_SER encode a “variable number”. This is an integer, ranging from 0 to MAXVARN.
Relative priorities may be ascertained using

int varncmp(long v, long w)
which is > 0, = 0, < 0 whenever v has lower, resp. same, resp. higher priority than w.

The way an object is considered in formal computations depends entirely on its “principal
variable number” which is given by the function

long gvar(GEN z)

which returns a variable number for z, even if z is not a polynomial or power series. The variable
number of a scalar type is set by definition equal to BIGINT which has lower priority than any
valid variable number. The variable number of a recursive type which is not a polynomial or power
series is the variable number with highest priority among its components. But for polynomials and
power series only the “outermost” number counts (we directly access varn(z) in the codewords):
the representation is not symmetrical at all.

Under gp, one needs not worry too much since the interpreter defines the variables as it sees
them* and do the right thing with the polynomials produced (however, have a look at the remark
in Section 2.3.12).

But in library mode, they are tricky objects if you intend to build polynomials yourself (and
not just let PARI functions produce them, which is less efficient). For instance, it does not make
sense to have a variable number occur in the components of a polynomial whose main variable has a
lower priority, even though PARI cannot prevent you from doing it; see Section 77 for a discussion
of possible problems in a similar situation.

* The first time a given identifier is read by the GP parser (and is not immediately interpreted
as a function) a new variable is created, and it is assigned a strictly lower priority than any variable
in use at this point. On startup, before any user input has taken place, 'x’ is defined in this way
and has initially maximal priority (and variable number 0).

26

4.6.2 Creating variables A basic difficulty is to “create” a variable. As we have seen in Sec-
tion 4.1, a number of objects is associated to variable number v. Here is the complete list: pol_1[v]
and pol_x[v], which you can use in library mode and which represent, respectively, the monic
monomials of degrees 0 and 1 in v; varentries[v], and polvar[v]. The latter two are only mean-
ingful to gp, but they have to be set nevertheless. All of them must be properly defined before you
can use a given integer as a variable number.

Initially, this is done for 0 (the variable x under gp), and MAXVARN, which is there to address the
need for a “temporary” new variable in library mode and cannot be input under gp. No documented
library function can create from scratch an object involving MAXVARN (of course, if the operands
originally involve MAXVARN, the function abides). We call the latter type a “temporary variable”.
The regular variables meant to be used in regular objects, are called “user variables”.

4.6.2.1 User variables: When the program starts, x is the only user variable (number 0). To
define new ones, use

long fetch_user_var(char *s)
which inspects the user variable named s (creating it if needed), and returns its variable number.

long v = fetch_user_var("y");
GEN gy = pol_x[v];

This function raises an error if s is already registered as a function name.

Caveat: you can use gp_read_str (see Section 4.7.1) to execute a GP command and create GP
variables on the fly as needed:

GEN gy = gp_read_str("’y"); /* returns polx[v], for some v */
long v = varn(gy);

But please note the quote ’y in the above. Using gp_read_str ("y") might work, but is dangerous,
especially when programming functions to be used under gp. The latter reads the value of y,
as currently known by the gp interpreter, possibly creating it in the process. But if y has been
modified by previous gp commands (e.g y = 1), then the value of gy is not what you expected it
to be and corresponds instead to the current value of the gp variable (e.g gen_1).

Technical remark If you are rewriting the gp interpreter, you may use the lower level
entree * fetch_named_var(char *s)
which returns an entreex suitable for inclusion in the interpreter hashlists of symbols.

4.6.2.2 Temporary variables: MAXVARN is available, but is better left to pari internal functions
(some of which do not check that MAXVARN is free for them to use, which can be considered a bug).
You can create more temporary variables using

long fetch_var()

This returns a variable number which is guaranteed to be unused by the library at the time you
get it and as long as you do not delete it (we will see how to do that shortly). This has higher
priority than any temporary variable produced so far (MAXVARN is assumed to be the first such).
This call updates all the aforementioned internal arrays. In particular, after the statement v =
fetch_var(), you can use pol_1[v] and pol_x[v]. The variables created in this way have no
identifier assigned to them though, and they is printed as #<number>, except for MAXVARN which

27

is printed as #. You can assign a name to a temporary variable, after creating it, by calling the
function

void name_var(long n, char *s)

after which the output machinery will use the name s to represent the variable number n. The
GP parser will not recognize it by that name, however, and calling this on a variable known to gp
raises an error. Temporary variables are meant to be used as free variables, and you should never
assign values or functions to them as you would do with variables under gp. For that, you need a
user variable.

All objects created by fetch_var are on the heap and not on the stack, thus they are not
subject to standard garbage collecting (they are not destroyed by a gerepile or avma = ltop
statement). When you do not need a variable number anymore, you can delete it using

long delete_var ()

which deletes the latest temporary variable created and returns the variable number of the previous
one (or simply returns 0 if you try, in vain, to delete MAXVARN). Of course you should make sure
that the deleted variable does not appear anywhere in the objects you use later on. Here is an
example:

long first = fetch_var();
long nl = fetch_var();
long n2 = fetch_var(); /* prepare three variables for internal use */

/* delete all variables before leaving */

do { num = delete_var(); } while (num && num <= first);
The (dangerous) statement

while (delete_var()) /* empty */;

removes all temporary variables in use, except MAXVARN which cannot be deleted.

4.7 Input and output.

Two important aspects have not yet been explained which are specific to library mode: input and
output of PARI objects.
4.7.1 Input.

For input, PARI provides you with one powerful high level function which enables you to input
your objects as if you were under gp. In fact, it is essentially the GP syntactical parser, hence you
can use it not only for input but for (most) computations that you can do under gp. It has the
following syntax:

GEN gp.read_str(char *s)

In fact this function starts by filtering out all spaces and comments in the input string. They it
calls the underlying basic function, the GP parser proper: GEN gp_read_str(char *s), which is
slightly faster but which you probably do not need.

To read a GEN from a file, you can use the simpler interface

28

GEN gp_read_stream (FILE *file)

which reads a character string of arbitrary length from the stream file (up to the first complete
expression sequence), applies gp_read_str to it, and returns the resulting GEN. This way, you do
not have to worry about allocating buffers to hold the string. To interactively input an expression,
use gp_read _stream(stdin).

Finally, you can read in a whole file, as in GP’s read statement
GEN gp._read_file(char *name)

As usual, the return value is that of the last non-empty expression evaluated. Note that gp’s
metacommands are not recognized.

Once in a while, it may be necessary to evaluate a GP expression sequence involving a call to
a function you have defined in C. This is easy using install which allows you to manipulate quite
an arbitrary function (GP knows about pointers!). The syntax is

void install(void *f, char *name, char *code)

where £ is the (address of) the function (cast to the C type void*), name is the name by which
you want to access your function from within your GP expressions, and code is a character string
describing the function call prototype (see Section 4.9.2 for the precise description of prototype
strings). In case the function returns a GEN, it must satisfy gerepileupto assumptions (see Sec-
tion 4.4.1).

4.7.2 Output.

For output, there exist essentially three different functions (with variants), corresponding to the
three main gp output formats (as described in Section 2.1.18), plus three extra ones, respectively
devoted to TEX output, string output, and debugging.

e “raw” format, obtained by using the function brute with the following syntax:
void brute(GEN obj, char x, long n)

This prints the PARI object obj in format x0.n, using the notations from Section 2.1.12. Recall
that here x is either ’e’, £’ or ’g’ corresponding to the three numerical output formats, and
n is the number of printed significant digits, and should be set to —1 if all of them are wanted
(these arguments only affect the printing of real numbers). Usually one does not need that much
flexibility, and gets by with the function

void outbrute(GEN obj), which is equivalent to brute(x,’g’,-1),
or even better, with

void output(GEN obj) which is equivalent to outbrute(obj) followed by a newline and a buffer
flush. This is especially nice during debugging. For instance using dbx or gdb, if obj is a GEN,
typing print output(obj) enables you to see the content of obj (provided the optimizer has not
put it into a register, but it is rarely a good idea to debug optimized code).

e “prettymatrix” format: this format is identical to the preceding one except for matrices. The
relevant functions are:

void matbrute(GEN obj, char x, long n)

void outmat (GEN obj), which is followed by a newline and a buffer flush.

29

e “prettyprint” format: the basic function has an additional parameter m, corresponding to the
minimum) field width used for printing integers:
P g g

void sor(GEN obj, char x, long n, long m)
The simplified version is

void outbeaut(GEN obj) which is equivalent to sor(obj,’g’,-1,0) followed by a newline and
a buffer flush.

e The first extra format corresponds to the texprint GP function, and gives a TEX output of the
result. It is obtained by using:

void texe(GEN obj, char x, long n)

e The second one is the function GENtostr which converts a PARI GEN to an ASCII string. The
syntax is

char* GENtostr(GEN obj), wich returns a malloc’ed character string (which you should free
after use).

e The third and final one outputs the hexadecimal tree corresponding to the gp metacommand \x
using the function

void voir(GEN obj, long nb), which only outputs the first nb words corresponding to leaves
(very handy when you have a look at big recursive structures). If you set this parameter to —1 all
significant words are printed. This last type of output is only used for debugging purposes.

Remark. Apart from GENtostr, all PARI output is done on the stream outfile, which by default
is initialized to stdout. If you want that your output be directed to another file, you should use
the function void switchout (char *name) where name is a character string giving the name of
the file you are going to use. The output is appended at the end of the file. In order to close the
file, simply call switchout (NULL).

Similarly, errors are sent to the stream errfile (stderr by default), and input is done on the
stream infile, which you can change using the function switchin which is analogous to switchout.

(Advanced) Remark. All output is done according to the values of the pariOut / pariErr global
variables which are pointers to structs of pointer to functions. If you really intend to use these,
this probably means you are rewriting gp. In that case, have a look at the code in language/es.c
(init80() or GENtostr () for instance).

4.7.3 Errors.

If you want your functions to issue error messages, you can use the general error handling routine
pari_err. The basic syntax is

pari_err(talker, "error message");

This prints the corresponding error message and exit the program (in library mode; go back to the
gp prompt otherwise). You can also use it in the more versatile guise

pari_err(talker, format, ...);

where format describes the format to use to write the remaining operands, as in the printf function
(however, see the next section). The simple syntax above is just a special case with a constant
format and no remaining arguments.

30

The general syntax is
void pari_err(numerr,...)

where numerr is a codeword which indicates what to do with the remaining arguments and what
message to print. The list of valid keywords is in language/errmessages. c together with the basic
corresponding message. For instance, pari_err(typeer, "extgcd") prints the message:

**%* incorrect type in extgcd.
To issue a warning, use

void pari_warn(warnerr,...) In that case, of course, we do not abort the computation, just
print the requested message and go on. The basic example is

pari_warn(warner, "Strategy 1 failed. Trying strategy 2")

which is the exact equivalent of pari_err(talker,...) except that you certainly do not want to
stop the program at this point, just inform the user that something important has occurred (in
particular, this output would be suitably highlighted under gp, whereas a simple printf would
not).

The valid warning keywords are warner (general), warnprec (increasing precision), warnmem
(garbage collecting) and warnfile (error in file operation), used as follows:

pari_warn(warnprec, "bnfinit", newprec);
pari_warn(warnmem, "bnfinit");
pari_warn(warnfile, "close", "log"); /* error when closing "log" */

4.7.4 Debugging output.

The global variables DEBUGLEVEL and DEBUGMEM (corresponding to the default debug
and debugmem, see Section 2.1) are used throughout the PARI code to govern the amount of
diagnostic and debugging output, depending on their values. You can use them to debug your own

functions, especially after having made them accessible under gp through the command install
(see Section 3.11.2.14).

For debugging output, you can use printf and the standard output functions (brute or
output mainly), but also some special purpose functions which embody both concepts, the main
one being

void fprintferr(char *pariformat, ...)

Now let us define what a PARI format is. It is a character string, similar to the one printf
uses, where % characters have a special meaning. It describes the format to use when printing the
remaining operands. But, in addition to the standard format types, you can use %Z to denote a GEN
object (we would have liked to pick %G but it was already in use!). For instance you could write:

pari_err(talker, "x[%d] = %Z is not invertible!", i, x[i])

since the pari_err function accepts PARI formats. Here i is an int, x a GEN which is not a leaf
and this would insert in raw format the value of the GEN x[i].

31

4.7.5 Timers and timing output.

To profile your functions, you can use the PARI timer. The functions long timer() and long
timer2() return the elapsed time since the last call of the same function (in milliseconds). Two
different functions (identical except for their independent time-of-last-call memories!) are provided
so you can have both global timing and fine tuned profiling.

You can also use void msgtimer(char *format,...), which prints prints Time, then the
remaining arguments as specified by format (which is a PARI format), then the output of timer?2.

This mechanism is simple to use but not foolproof. If some other function uses these timers,
and many PARI functions do use timer2 when DEBUGLEVEL is high enough, the timings will be
meaningless. To handle timing in a reentrant way, PARI defines a dedicated data type, pari_timer.
The functions

void TIMERSstart(pari_timer *T)
long TIMER (pari_timer *T)
long msgTIMER (pari_timer *T, char *format,...)

provide an equivalent to timer and msgtimer, except they use a unique timer T containing all
the information needed, so that no other function can mess with your timings. They are used as
follows:

pari_timer T;
TIMERstart (&T); /* initialize timer */

printf ("Total time: %1d\n", TIMER(&T));
or

pari_timer T;
TIMERstart (&T) ;
for (i = 1; i < 10; i++) {

msgTIMER(&T, "for i = %1d (L[i] = %Z)", i, L[il);
}

4.8 A complete program.

Now that the preliminaries are out of the way, the best way to learn how to use the library mode is
to study a detailed example. We want to write a program which computes the ged of two integers,
together with the Bezout coefficients. We shall use the standard quadratic algorithm which is not
optimal but is not too far from the one used in the PARI function bezout.

Let x,y two integers and initially (S’“" Sy> = <1 O>, so that
te 1y 0 1

() G)=0)

32

To apply the ordinary Euclidean algorithm to the right hand side, multiply the system from the

left by (1)

line of the system reads

, with ¢ = floor(z/y). Iterate until y = 0 in the right hand side, then the first

S22 + syy = ged(z, y).

In practice, there is no need to update s, and ¢, since ged(z,y) and s, are enough to recover s,,.
The following program is now straightforward. A couple of new functions appear in there, whose
description can be found in the technical reference manual in Chapter 5.

#include <pari/pari.h>
/*
GP;install("extgcd", "GG&&", "gcdex", "./libextgcd.so");
*/
/* return d = gcd(a,b), sets u, v such that au + bv = gcd(a,b) */
GEN
extgcd(GEN A, GEN B, GEN *U, GEN *V)
{
pari_sp av = avma;
GEN ux = gen_1, vx = gen_0, a = A, b = B;
if (typ(a) !'= t_INT || typ(b) !'= t_INT) pari_err(typeer, "extgcd");
if (signe(a) < 0) { a = negi(a); ux = negi(ux); }
while (!'gcmpO(b))

GEN r, q = dvmdii(a, b, &r), v = vx;

vx = subii(ux, mulii(q, vx));

ux = v;
a=Db; b=r;
}
*U = ux;
*V = diviiexact(subii(a, mulii(A,ux)), B);
gerepileall(av, 3, &a, U, V); return a;
}
int
main ()
{
GEN x, y, d, u, v;
pari_init(1000000,2);
printf("x = "); x = gp_read_stream(stdin);
printf("y = "); y = gp_read_stream(stdin);
d = extgcd(x, y, &u, &v);
pariprintf("gcd = %Z\nu = %Z\nv = %Z\n", d,u,v);
return O;
}

Note that, for simplicity, the inner loop does not include any garbage collection, hence memory
use is quadratic in the size of the inputs instead of linear.

33

4.9 Adding functions to PARI.

4.9.1 Nota Bene. As mentioned in the COPYING file, modified versions of the PARI package can
be distributed under the conditions of the GNU General Public License. If you do modify PARI,
however, it is certainly for a good reason, hence we would like to know about it, so that everyone
can benefit from it. There is then a good chance that your improvements are incorporated into the
next release.

We classify changes to PARI into four rough classes, where changes of the first three types
are almost certain to be accepted. The first type includes all improvements to the documentation,
in a broad sense. This includes correcting typos or inacurracies of course, but also items which
are not really covered in this document, e.g. if you happen to write a tutorial, or pieces of code
exemplifying fine points unduly omitted in the present manual.

The second type is to expand or modify the configuration routines and skeleton files (the Con-
figure script and anything in the config/ subdirectory) so that compilation is possible (or easier,
or more efficient) on an operating system previously not catered for. This includes discovering and
removing idiosyncrasies in the code that would hinder its portability.

The third type is to modify existing (mathematical) code, either to correct bugs, to add new
functionalities to existing functions, or to improve their efficiency.

Finally the last type is to add new functions to PARI. We explain here how to do this, so that

in particular the new function can be called from gp.

4.9.2 The calling interface from gp, parser codes. A parser code is a character string
describing all the GP parser needs to know about the function prototype. It contains a sequence
of the following atoms:

e Syntax requirements, used by functions like for, sum, etc.:
= separator = required at this point (between two arguments)

e Mandatory arguments, appearing in the same order as the input arguments they describe:

G GEN

& *GEN

L long (we implicitly identify int with long)

S symbol (i.e. GP identifier name). Function expects a *entree

v variable (as S, but rejects symbols associated to functions)

n variable, expects a variable number (a long, not an *entree)

I string containing a sequence of GP statements (a seq), to be processed by gp_read str

(useful for control statements)

E string containing a single GP statement (an expr), to be processed by readexpr
r raw input (treated as a string without quotes). Quoted args are copied as strings
Stops at first unquoted >)’ or ’,’. Special chars can be quoted using "\’
Example: aa"b\n) "c yields the string "aab\n)c"
s expanded string. Example: Pi"x"2 yields "3.142x2"
Unquoted components can be of any PARI type (converted following current output
format)

e Optional arguments:
S* any number of strings, possibly 0 (see s)
Dxxxr argument has a default value

34

The s* code is technical and you probably do not need it, but we give its description for
completeness. It reads all remaining arguments in string context (see Section 2.6.5), and sends
a (NULL-terminated) list of GEN* pointing to these. The automatic concatenation rules in string
context are implemented so that adjacent strings are read as different arguments, as if they had
been comma-separated. For instance, if the remaining argument sequence is: "xx" 1, "yy", the
s* atom sends a GEN *g = {&a, &b, &c, NULL}, where a, b, ¢ are GENs of type t_STR (content
"xx"), t_INT (equal to 1) and t_STR (content "yy").

The format to indicate a default value (atom starts with a D) is “Dwalue, type,”, where type
is the code for any mandatory atom (previous group), value is any valid GP expression which is
converted according to type, and the ending comma is mandatory. For instance DO,L, stands for
“this optional argument is converted to a long, and is 0 by default”. So if the user-given argument
reads 1 + 3 at this point, 4L is sent to the function; and OL if the argument is omitted. The
following special syntaxes are available:

DG optional GEN, send NULL if argument omitted.
D& optional *GEN, send NULL if argument omitted.

DV optional *entree, send NULL if argument omitted.
DI optional *char, send NULL if argument omitted.
Dn optional variable number, —1 if omitted.

e Automatic arguments:

f Fake *long. C function requires a pointer but we do not use the resulting long
P real precision (default realprecision)
P series precision (default seriesprecision, global variable precdl for the library)

e Return type: GEN by default, otherwise the following can appear at the start of the code string:

i return int
1 return long
v return void

No more than 8 arguments can be given (syntax requirements and return types are not con-
sidered as arguments). This is currently hardcoded but can trivially be changed by modifying the
definition of argvec in anal.c:identifier (). This limitation should disappear in future versions.

When the function is called under gp, the prototype is scanned and each time an atom cor-
responding to a mandatory argument is met, a user-given argument is read (gp outputs an error
message it the argument was missing). Each time an optional atom is met, a default value is in-
serted if the user omits the argument. The “automatic” atoms fill in the argument list transparently,
supplying the current value of the corresponding variable (or a dummy pointer).

For instance, here is how you would code the following prototypes, which do not involve default
values:

GEN name(GEN x, GEN y, long prec) ----> "GGp"
void name(GEN x, GEN y, long prec) ----> "vGGp"
void name(GEN x, long y, long prec) ----> "vGLp"
long name (GEN x) ———=> "1G"
int name(long x) -—==> "il,"

If you want more examples, gp gives you easy access to the parser codes associated to all GP
functions: just type \h function. You can then compare with the C prototypes as they stand in
the paridecl.h.

35

Remark: If you need to implement complicated control statements (probably for some improved
summation functions), you need to know about the entree type, which is not documented. Check
the comment at the end of language/init.c and the source code in language/sumiter.c.

4.9.3 Coding guidelines. Code your function in a file of its own, using as a guide other functions
in the PARI sources. One important thing to remember is to clean the stack before exiting your
main function, since otherwise successive calls to the function clutters the stack with unnecessary
garbage, and stack overflow occurs sooner. Also, if it returns a GEN and you want it to be accessible
to gp, you have to make sure this GEN is suitable for gerepileupto (see Section 4.4.1).

If error messages or warnings are to be generated in your function, use pari_err and pari_warn
respectively. Recall that pari_err does not return but ends with a longjmp statement. As well,
instead of explicit printf / fprintf statements, use the following encapsulated variants:

void pariflush(): flush output stream.
void pariputc(char c): write character ¢ to the output stream.
void pariputs(char *s): write s to the output stream.

void fprintferr(char *s): write s to the error stream (this function is in fact much more versa-
tile, see Section 4.8).

Declare all public functions in an appropriate header file, if you want to access them from C.
For example, if dynamic loading is not available, you may need to modify PARI to access these
functions, so put them in paridecl.h. The other functions should be declared static in your file.

Your function is now ready to be used in library mode after compilation and creation of the
library. If possible, compile it as a shared library (see the Makefile coming with the extgcd
example in the distribution). It is however still inaccessible from gp.

4.9.4 Integration with gp as a shared module

To tell gp about your function, you must do the following. First, find a name for it. It does
not have to match the one used in library mode, but consistency is nice. It has to be a valid
GP identifier, i.e. use only alphabetic characters, digits and the underscore character (_), the first
character being alphabetic.

Then figure out the correct parser code corresponding to the function prototype, as explained
above (Section 4.9.2).

Now, assuming your Operating System is supported by install, write a GP script like the
following:

install(libname, code, gpname, library)
addhelp(gpname, "some help text")

(see Section 3.11.2.3 and 3.11.2.14). The addhelp part is not mandatory, but very useful if you
want others to use your module. libname is how the function is named in the library, usually the
same name as one visible from C.

Read that file from your gp session (from your preferences file for instance, see Section 2.8),
and that’s it. You can now use the new function gpname under gp, and we would very much like
to hear about it!

36

4.9.5 Integration the hard way

If install is not available, things are more complicated: you have to hardcode your function
in the gp binary (or install Linux). Here is what needs to be done:

You need to choose a section and add a file functions/section/gpname containing the follow-
ing, keeping the notation above:

Function: g¢gpname

Section: section
C-Name: libname
Prototype: code

Help: some help text

(If the help text does not fit on a single line, continuation lines must start by a whitespace character.)
A GP2C-related Description field is also available to improve the code GP2C generates when
compiling scripts involving your function. See the GP2C documentation for details.

At this point you can recompile gp, which will first rebuild the functions database.

4.9.6 Example. A complete description could look like this:

{
install(bnfinitO, "GDO,L,DGp", ClassGroupInit, "libpari.so");
addhelp(ClassGroupInit, "ClassGroupInit(P,{flag=0},{data=[1}):
compute the necessary data for ...");

}

which means we have a function ClassGroupInit under gp, which calls the library function bn-
finit0 . The function has one mandatory argument, and possibly two more (two ’D’ in the code),
plus the current real precision. More precisely, the first argument is a GEN, the second one is con-
verted to a long using itos (0 is passed if it is omitted), and the third one is also a GEN, but we pass
NULL if no argument was supplied by the user. This matches the C prototype (from paridecl.h):

GEN bnfinitO(GEN P, long flag, GEN data, long prec)

This function is in fact coded in basemath/buch2.c, and is in this case completely identical
to the GP function bnfinit but gp does not need to know about this, only that it can be found
somewhere in the shared library libpari.so.

Important note: You see in this example that it is the function’s responsibility to correctly
interpret its operands: data = NULL is interpreted by the function as an empty vector. Note that
since NULL is never a valid GEN pointer, this trick always enables you to distinguish between a
default value and actual input: the user could explicitly supply an empty vector!

Note: If install is not available, we have to add a file
functions/number fields/ClassGroupInit
containing the following:

Function: ClassGroupInit

Section: number_fields

C-Name: bnfinitO

Prototype: GDO,L,DGp

Help: ClassGroupInit(P,{flag=0},{tech=[]1}): this routine does ...

37

38

Chapter 5:
Technical Reference Guide for Low-Level Functions

In this chapter, we describe all public low-level functions of the PARI library. These essentially
include functions for handling all the PARI types. Higher level functions, such as arithmetic or tran-
scendental functions, are described in Chapter 3 of the GP user’s manual. A general introduction
to the major concepts of PARI programming can be found in Chapter 4.

Many other undocumented functions can be found throughout the source code. These private
functions are more efficient than the library wrappers, but sloppier on argument checking and
damage control. Use them at your own risk!

Important advice: generic routines eventually call lower level functions. Optimize your algo-
rithms first, not overhead and conversion costs between PARI routines. For generic operations,
use generic routines first, don’t waste time looking for the most specialized one available unless
you identify a genuine bottleneck. The PARI source code is part of the documentation; look for
inspiration there.

We let BIL abbreviate BITS_IN_LONG. The type long denotes a BIL-bit signed long integer.
The type ulong is defined as unsigned long. The word stack always refer to the PARI stack,
allocated through an initial pari_init call. Refer to Chapters 1-2 and 4 for general background.

5.1 Initializing the library.

The following functions enable you to start using the PARI functions in a program, and cleanup
without exiting the whole program.
5.1.1 General purpose

void pari_init(size_t size, ulong maxprime) initialize the library, with a stack of size bytes
and a prime table up to the maximum of maxprime and 2'¢. Unless otherwise mentionned, no
PARI function will function properly before such an initialization.

void pari_close(void) stop using the library (assuming it was initialized with pari_init) and
frees all allocated objects.
5.1.2 Technical functions

void pari_init_opts(size_t size, ulong maxprime, ulong opts) aspari_init, more flexible.
opts is a mask of flags among the following:

INIT_JMPm: install pari error handler. When an exception is raised, the program is terminated
with exit (1).

INIT_SIGm: install pari signal handler.

INIT DFTm: initialize the GP_DATA environment structure. This one must be enabled once. If
you close pari, then restart it, you need not reinitialize GP_DATA; if you do not, then old values are
restored.

39

void pari_close_opts(ulong init_opts) as pari_close, for a library initialized with a mask of
options using pari_init_opts. opts is a mask of flags among

INIT_SIGm: restore SIG_DFL default action for signals tampered with by pari signal handler.
INIT DFTm: frees the GP_DATA environment structure.
void pari_sig_init(void (*f) (int)) install the signal handler f (see signal(2)): the signals
SIGBUS, SIGFPE, SIGINT, SIGBREAK, SIGPIPE and SIGSEGV are concerned.
5.1.3 Notions specific to the GP interpreter

An entree is the generic object associated to an identifier (a name) in GP’s interpreter, be it
a built-in or user function, or a variable. For a function, it has at least the following fields:

char *name : the name under which the interpreter knows us.

ulong valence : obsolete, set it to 1.

void *value : a pointer to the C function to call.

long menu : an integer from 1 to 11 (to which group of function help do we belong).
char *code : the prototype code.

char *help : the help text for the function.

A routine in GP is described to the analyzer by an entree structure. Built-in pari routines
are grouped in modules, which are arrays of entree structs, the last of which satisfy name = NULL
(sentinel).

There are currently six modules in GP: general functions (functions_basic), gp-specific func-
tions (functions_£fp), gp-specific highlevel functions (functions_highlevel), member functions,
and two modules of obsolete functions. The function pari_init initializes the interpreter and de-
clares all symbols in functions basic. You may declare further functions on a case by case basis
or as a whole module using

void pari_add_function(entree *ep) adds a single routine to the table of symbols in the inter-
preter. It assumes pari_init has been called.

void pari_add_module(entree *mod) adds all the routines in module mod to the table of symbols
in the interpreter. It assumes pari_init has been called.

For instance, gp implements a number of private routines, which it adds to the default set via the
call

pari_add_module(functions_gp);
pari_add_module(functions_highlevel) ;

40

5.2 Handling GENs.

Almost all these functions are either macros or inlined. Unless mentioned otherwise, they do not
evaluate their arguments twice. Most of them are specific to a set of types, although no consistency
checks are made: e.g. one may access the sign of a t_PADIC, but the result is meaningless.

5.2.1 Length conversions

long ndec2nlong(long x) converts a number of decimal digits to a number of words. Returns
1+ floor(x x BILlog, 10).

long ndec2prec(long x) converts a number of decimal digits to a number of codewords. This is
equal to 2 + ndec2nlong(x).

long prec2ndec(long x) converts a number of of codewords to a number of decimal digits.

long nbits2nlong(long x) converts a number of bits to a number of words. Returns the smallest
word count containing x bits, i.e ceil(x/BIL).

long nbits2prec(long x) converts a number of bits to a number of codewords. This is equal to
2 + nbits2nlong(x).

long nchar2nlong(long x) converts a number of bytes to number of words. Returns the smallest
word count containing x bytes, i.e ceil(z/sizeof(long)).

long bit_accuracy(long x) converts a t_REAL length into a number of significant bits. Returns
(z — 2)BIL. The macro bit_accuracy_mul(x,y) computes the same thing multiplied by y.
5.2.2 Read type-dependent information

long typ(GEN x) returns the type number of x. The header files included through pari.h define
symbolic constants for the GEN types: t_INT etc. Never use their actual numerical values. E.g to
determine whether x is a t_INT, simply check

if (syp(x) == t_INT) { }

The types are internally ordered and this simplifies the implementation of commutative binary
operations (e.g addition, gcd). Avoid using the ordering directly, as it may change in the future;
use type grouping macros instead (Section 5.2.5).

long lg(GEN x) returns the length of x in BIL-bit words.
long lgefint (GEN x) returns the effective length of the t_INT x in BIL-bit words.

long signe(GEN x) returns the sign (—1, 0 or 1) of x. Can be used for t_INT, t_REAL, t_POL and
t_SER (for the last two types, only 0 or 1 are possible).

long gsigne(GEN x) same as signe, but also valid for t_FRAC (and marginally less efficient for
the other types). Raise a type error if typ(x) is not among those three.

long expi(GEN x) returns the binary exponent of the real number equal to the t_INT x. This is
a special case of gexpo.

long expo(GEN x) returns the binary exponent of the t_REAL x.

long gexpo(GEN x) same as expo, but also valid when x is not a t_REAL (returns the largest
exponent found among the components of x). When x is an exact 0, this returns ~HIGHEXPOBIT,
which is lower than any valid exponent.

41

long valp(GEN x) returns the p-adic valuation (for a t_PADIC) or X-adic valuation (for a t_SER,
taken with respect to the main variable) of x.

long precp(GEN x) returns the precision of the t_PADIC x.
long varn(GEN x) returns the variable number of the t_POL or t_SER x (between 0 and MAXVARN).

long gvar(GEN x) returns the main variable number when any variable at all occurs in the com-
posite object x (the smallest variable number which occurs), and BIGINT otherwise.

long degpol(GEN x) returns the degree of t_POL x, assuming its leading coefficient is non-zero
(an exact 0 is impossible, but an inexact 0 is allowed). By convention the degree of an exact 0
polynomial is —1. If the leading coefficient of x is 0, the result is undefined.

int precision(GEN x) If x is of type t_REAL, returns the precision of x (the length of x in BIL-bit
words if x is not zero, and a reasonable quantity obtained from the exponent of x if x is numerically
equal to zero). If x is of type t_COMPLEX, returns the minimum of the precisions of the real and
imaginary part. Otherwise, returns 0 (which stands in fact for infinite precision).

int gprecision(GEN x) as precision for scalars; returns the lowest precision encountered among
the components otherwise.

long sizedigit (GEN x) returns 0 if x is exactly 0. Otherwise, returns gexpo(x) multiplied by
log,4(2). This gives a crude estimate for the maximal number of decimal digits of the components
of x.

5.2.3 Eval type-dependent information. These routines convert type-dependant information
to bitmask to fill the codewords of GEN objects (see Section 4.5.1). E.g for a t_REAL z:
z[1] = evalsigne(-1) | evalexpo(2)
Compatible components of a codeword for a given type can be OR-ed as above.
ulong evaltyp(long x) convert type x to bitmask (first codeword of all GENs)

long evallg(long x) convert length x to bitmask (first codeword of all GENs). Raise overflow error
if x is so large that the corresponding length cannot be represented

long _evallg(long x) as evallg without the overflow check.

ulong evalvarn(long x) convert variable number x to bitmask (second codeword of t_POL and
t_SER)

long evalsigne(long x) convert sign x (in —1,0,1) to bitmask (second codeword of t_INT,
t_REAL, t_POL, t_SER)

long evalprecp(long x) convert p-adic (X-adic) precision x to bitmask (second codeword of
t_PADIC, t_SER)

long evalvalp(long x) convert p-adic (X-adic) valuation x to bitmask (second codeword of
t_PADIC, t_SER). Raise overflow error if x is so large that the corresponding valuation cannot
be represented

long _evalvalp(long x) same as evalvalp without the overflow check.

long evalexpo(long x) convert exponent x to bitmask (second codeword of t_REAL). Raise over-
flow error if x is so large that the corresponding exponent cannot be represented

long _evalexpo(long x) same as evalexpo without the overflow check.

42

long evallgefint (long x) convert effective length x to bitmask (second codeword t_INT). This
should be less or equal than the length of the t_INT, hence there is no overflow check for the
effective length.

long evallgeflist (long x) convert effective length x to bitmask (second codeword t_LIST). This
should be less or equal than the length of the t_LIST, hence there is no overflow check for the
effective length.

5.2.4 Set type-dependent information. Use these macros with extreme care since usually the
corresponding information is set otherwise, and the components and further codeword fields (which
are left unchanged) may not be compatible with the new information.

void settyp(GEN x, long s) sets the type number of x to s.

void setlg(GEN x, long s) setsthe length of x to s. This is an efficient way of truncating vectors,
matrices or polynomials.

void setlgefint (GEN x, long s) sets the effective length of the t_INT x to s. The number s
must be less than or equal to the length of x.

void setsigne(GEN x, long s) sets the sign of x to s. If x is a t_INT or t_REAL, s must be equal
to —1, 0 or 1, and if x is a t_POL or t_SER, s must be equal to 0 or 1.

void setexpo(GEN x, long s) sets the binary exponent of the t_REAL x to s. The value s must
be a 24-bit signed number.

void setvalp(GEN x, long s) sets the p-adic or X-adic valuation of x to s, if x is a t_PADIC or
a t_SER, respectively.

void setprecp(GEN x, long s) sets the p-adic precision of the t_PADIC x to s.

void setvarn(GEN x, long s) sets the variable number of the t_POL or t_SER x to s (where
0<s< MAXVARN).

5.2.5 Type groups . In the following macros, t denotes the type of a GEN. Some of these macros

may evaluate their argument twice. Always use them as in

long tx = typ(x);
if (is_intreal_t(tx)) { }

int is_recursive_t(long t) true iff t is a recursive type (the recursive types are t_INT, t_REAL,
t_STR or t_VECSMALL).

int is_intreal t(long t) true iff t is t_INT or t_REAL.

int is_rational_t(long t) true iff t is t_INT or t_FRAC.

int is_vec_t(long t) true iff t is t_VEC or t_COL.

int is_matvec_t(long t) true iff t is t_MAT, t_VEC or t_COL.

int is_scalar_t(long t) true iff t is a scalar, i.e a t_INT, t_REAL, t_INTMOD, t_FRAC, t_COMPLEX,
t_PADIC, t_QUAD, or t_POLMOD.

int is_extscalar_t(long t) true iff t is a scalar (see is_scalar_t) or t is t_POL.

int is_const_t(long t) true iff t is a scalar which is not t_POLMOD.

43

5.2.6 Accessors and components. The first two functions return GEN components as copies on
the stack:

GEN compo(GEN x, long n) creates a copy of the n-th true component (i.e. not counting the
codewords) of the object x.

GEN truecoeff(GEN x, long n) creates a copy of the coefficient of degree n of x if x is a scalar,
t_POL or t_SER, and otherwise of the n-th component of x.

On the contrary, the following routines return the address of a GEN component. No copy is made
on the stack:

GEN constant_term (GEN x) returns the address the constant term of t_POL x. By convention, a
0 polynomial (whose sign is 0) has gen_0 constant term.

GEN leading_term (GEN x) returns the address the leading term of t_POL x. This may be an
inexact 0.

GEN gel(GEN x, long i) returns the address of the x[i] entry of x. (el stands for element.)

GEN gcoeff (GEN x, long i, long j) returns the address of the x[i,j] entry of t_MAT x, i.e. the
coefficient at row i and column j.

GEN gmael(GEN x, long i, long j) returns the address of the x[i] [j] entry of x. (mael stands
for multidimensional array element.)

GEN gmael2(GEN A, long x1, long x2) is an alias for gmael. Similar macros gmael3, gmael4,
gmaelb are available.

5.3 Handling the PARI stack.

5.3.1 Allocating memory on the stack

GEN cgetg(long n, long t) allocates memory on the stack for an object of length n and type t,
and initializes its first codeword.

GEN cgeti(long n) allocates memory on the stack for a t_INT of length n, and initializes its first
codeword. Identical to cgetg(n,t_INT).

GEN cgetr(long n) allocates memory on the stack for a t_REAL of length n, and initializes its first
codeword. Identical to cgetg(n,t_REAL).

GEN cgetc(long n) allocates memory on the stack for a t_COMPLEX, whose real and imaginary
parts are t_REALs of length n.

GEN cgetp(GEN x) creates space sufficient to hold the t_PADIC x, and sets the prime p and the
p-adic precision to those of x, but does not copy (the p-adic unit or zero representative and the
modulus of) x.

GEN new_chunk(size_t n) allocates a GEN with n components, without filling the required code
words. This is the low-level constructor underlying cgetg, which calls new_chunk then sets the first
code word. It works by simply returning the address ((GEN)avma) - n, after checking that it is
larger than (GEN)bot.

char* stackmalloc(size_t n) allocates memory on the stack for n chars (not n GENs). This is
faster than using malloc, and easier to use in most situations when temporary storage is needed.

44

In particular there is no need to free individually all variables thus allocated: a simple avma =
oldavma might be enough. On the other hand, beware that this is not permanent independant
storage, but part of the stack.

Objects allocated through these last two functions cannot be gerepile’d. They are not valid GENs
since they have no PARI type.

5.3.2 Garbage collection. See Section 4.4.1 for a detailed explanation and many examples.
void cgiv (GEN x) frees object x if it is the last created on the stack (otherwise nothing happens).
GEN gerepile(pari_sp p, pari_sp q, GEN x) general garbage collector for the stack.

void gerepileall(pari_sp av, int n, ...) cleans up the stack from av on (i.e from avma to av),
preserving the n objects which follow in the argument list (of type GEN*). E.g: gerepileall(av,
2, &x, &y) preserves x and y.

void gerepileallsp(pari_sp av, pari_sp ltop, int n, ...) cleans up the stack between av
and 1top, updating the n elements which follow n in the argument list (of type GEN*). Check that
the elements of g have no component between av and 1top, and assumes that no garbage is present
between avma and 1top. Analogous to (but faster than) gerepileall otherwise.

GEN gerepilecopy (pari_sp av, GEN x) cleans up the stack from av on, preserving the object x.
Special case of gerepileall (case n = 1), except that the routine returns the preserved GEN instead
of updating its adress through a pointer.

void gerepilemany (pari_sp av, GEN* g[], int n) alternative interface to gerepileall

void gerepilemanysp(pari_sp av, pari_sp ltop, GEN* g[], int n) alternative interface to
gerepileallsp.

void gerepilecoeffs(pari_sp av, GEN x, int n) cleans up the stack from av on, preserving
x[0], ..., x[n-1] (which are GENs).

void gerepilecoeffssp(pari_sp av, pari_sp ltop, GEN x, int n) cleans up the stack from
av to ltop, preserving x[0], ..., x[n-1] (which are GENs). Same assumptions as in gerepile-
manysp, of which this is a variant. For instance

z = cgetg(3, t_COMPLEX) ;

av = avma; garbage(); ltop = avma;
z[1] fun1();

z[2] = fun2(Q);

gerepilecoeffssp(av, ltop, z + 1, 2);
return z;

cleans up the garbage between av and ltop, and connects z and its two components. This is
marginally more efficient than the standard

av = avma; garbage(); ltop = avma;

z = cgetg(3, t_COMPLEX);

z[1] = fun1Q;

z[2] = fun2(); return gerepile(av, ltop, z);

GEN gerepileupto(pari_sp av, GEN q) analogous to (but faster than) gerepilecopy. Assumes
that q is connected and that its root was created before any component.

45

GEN gerepileuptoint (pari_sp av, GEN q) analogous to (but faster than) gerepileupto. As-
sumes further that q is a t_INT. The length and effective length of the resulting t_INT are equal.

GEN gerepileuptoleaf (pari sp av, GEN q) analogous to (but faster than) gerepileupto. As-
sumes further that q is a leaf, i.e a non-recursive type (is_recursive_t(typ(q)) is non-zero).
Contrary to gerepileuptoint, gerepileuptoleaf leaves length and effective length of a t_INT
unchanged.

void stackdummy (pari_sp av, pari_sp ltop) inhibits the memory area between av included
and 1top excluded with respect to gerepile, in order to avoid a call to gerepile(av, ltop,...).
The stack space is not reclaimed though.

More precisely, this routine assumes that av is recorded earlier than 1top, then marks the
specified stack segment as a non-recursive type of the correct length. Thus gerepile will not inspect
the zone, at most copy it. To be used in the following situation:

av0 = avma; z = cgetg(t_VEC, 3);
gel(z,1) = HUGE(Q); av = avma; garbage(); ltop = avma;
gel(z,2) = HUGE(); stackdummy(av, ltop);

Compared to the orthodox

gel(z,2) = gerepile(av, ltop, gel(z,2));
or even more wasteful

z = gerepilecopy(av0, z);

we temporarily lose (av—1top) words but save a costly gerepile. In principle, a garbage collection
higher up the call chain should reclaim this later anyway.

Without the stackdummy, if the [av,1ltop] zone is arbitrary (not even valid GENs as could
happen after direct truncation via setlg), we would leave dangerous data in the middle of z, which
would be a problem for a later

gerepile(..., ... , 2);

And even if it were made of valid GENs, inhibiting the area makes sure gerepile will not inspect
their components, saving time.

Another natural use in low-level routines is to “shorten” an existing GEN z to its first 1 — 1
components:

setlg(z, 1);
stackdummy ((pari_sp) (z + 1g(z)), (pari_sp)(z + 1));

or to its last 1 components:

long L = 1g(z) - 1;
stackdummy ((pari_sp)(z + L), (pari_sp)z);
z += L; setlg(z, L);

46

5.3.3 Copies and clones

GEN gclone(GEN x) creates a new permanent copy of the object x on the heap. The clone bit of
the result is set.

void gunclone(GEN x) delete the clone x (created by gclone). Fatal error if x not a clone.
GEN gcopy (GEN x) creates a new copy of the object x on the stack.

int isonstack (GEN x) true iff x belongs to the stack. This is a macro whose argument is evaluated
several times.

void copyifstack (GEN x, GEN y) setsy = gcopy(x) if x belongs to the stack, and y = x other-
wise. This macro evaluates its arguments once, contrary to

y = isonstack(x)? gcopy(x): x;
void icopyifstack (GEN x, GEN y) as copyifstack assuming x is a t_INT.
long taille(GEN x) returns the total number of BIL-bit words occupied by the tree representing x.

void traverseheap (void (*f) (GEN, void *), void *data) this applies f (x, data) to each ob-
ject on the PARI heap, most recent first. Mostly for debugging purposes.

GEN getheap() a simple wrapper around traverseheap. Returns a two-component row vector
giving the number of objects on the heap and the amount of memory they occupy in long words.

5.4 Level 0 kernel (operations on ulongs).

5.4.1 Micro-kernel. Level 0 operations simulate basic operations of the 68020 processor on
which PARI was originally implemented. They need “global” ulong variables overflow (which
will contain only 0 or 1) and hiremainder to function properly. However, for certain architectures
these are replaced with local variables for efficiency; and the ‘functions’ mentioned below are really
chunks of inlined assembler code. So, a routine using one of these lowest-level functions where the
description mentions either hiremainder or overflow must declare the corresponding

LOCAL_HIREMAINDER;
LOCAL_OVERFLOW;

in a declaration block. Variables hiremainder and overflow then become available in the enclosing
block. For instance a loop over the powers of an ulong p protected from overflows could read

while (pk < lim)
{
LOCAL_HIREMAINDER;

pk = mulll(pk, p); if (hiremainder) break;
}

ulong addll(ulong x, ulong y) adds x and y, returns the lower BIL bits and puts the carry bit
into overflow.

ulong addllx(ulong x, ulong y) adds overflow to the sum of the x and y, returns the lower
BIL bits and puts the carry bit into overflow.

47

ulong subll(ulong x, ulong y) subtracts x and y, returns the lower BIL bits and put the carry
(borrow) bit into overflow.

ulong subllx(ulong x, ulong y) subtracts overflow from the difference of x and y, returns the
lower BIL bits and puts the carry (borrow) bit into overflow.

int bfffo(ulong x) returns the number of leading zero bits in x. That is, the number of bit
positions by which it would have to be shifted left until its leftmost bit first becomes equal to 1,
which can be between 0 and BIL — 1 for nonzero x. When x is 0, the result is undefined.

ulong mulll(ulong x, ulong y) multiplies x by y, returns the lower BIL bits and stores the
high-order BIL bits into hiremainder.

ulong addmul(ulong x, ulong y) adds hiremainder to the product of x and y, returns the
lower BIL bits and stores the high-order BIL bits into hiremainder.

ulong divll(ulong x, ulong y) returns the Euclidean quotient of (hiremainder << BIL)+x by
y and stores the remainder into hiremainder. An error occurs if the quotient cannot be represented
by an ulong, i.e. if initially hiremainder > y.

5.4.2 Modular kernel. The following routines are not part of the level 0 kernel per se, but
implement modular operations on words in terms of the above. They are written so that no
overflow may occur. Let m > 1 be the modulus; all operands representing classes modulo m are
assumed to belong to [0,m — 1[. The result may be wrong for a number of reasons otherwise: it
may not be reduced, overflow can occur, etc.

ulong Fl add(ulong x, ulong y, ulong m) returns the smallest positive representative of x4y
modulo m.

ulong Fl neg(ulong x, ulong m) returns the smallest positive representative of —z modulo m.

ulong Fl sub(ulong x, ulong y, ulong m) returns the smallest positive representative of z —y
modulo m.

long FIl center(ulong x, ulong m, ulong mo2) returns the representative in | —m/2,m/2| of
x modulo m. Assume 0 < z < m and mo2 = m>>1.

ulong Fl.mul(ulong x, ulong y, ulong m) returns the smallest positive representative of zy
modulo m.

ulong Flinv(ulong x, ulong m) returns the smallest positive representative of x=! modulo m.
If = is not invertible mod m, raise an exception.

ulong Fl div(ulong x, ulong y, ulong m) returns the smallest positive representative of zy~!

modulo m. If y is not invertible mod m, raise an exception.

ulong Fl pow(ulong x, ulong n, ulong m) returns the smallest positive representative of z"
modulo m.

ulong Fl sqrt(ulong x, ulong p) returns the square root of x modulo p (smallest positive rep-
resentative). Assumes p to be prime, and x to be a square modulo p.

ulong gener_Fl(ulong p) returns a primitive root modulo p, assuming p is prime.
ulong gener_Fl_ local(ulong p, GEN L), see gener_Fp_local, L is an Flv.

long krouu(ulong x, ulong y) returns the Kronecker symbol (z|y), i.e.—1, 0 or 1. Assumes y
is non-zero. If y is an odd prime, this is the Legendre symbol.

48

5.5 Level 1 kernel (operations on longs, integers and reals).
Note: Many functions consist of an elementary operation, immediately followed by an assignment
statement. They will be introduced as in the following example:
GEN gadd|z|(GEN x, GEN y[, GEN z]) followed by the explicit description of the function
GEN gadd(GEN x, GEN y)

which creates its result on the stack, returning a GEN pointer to it, and the parts in brackets indicate
that there exists also a function

void gaddz(GEN x, GEN y, GEN z)

which assigns its result to the pre-existing object z, leaving the stack unchanged. All such functions
are obtained using macros (see the file paricom.h), hence you can easily extend the list. These
assignment variants are inefficient; don’t use them.

5.5.1 Creation

GEN cgeti(long n) allocates memory on the PARI stack for a t_INT of length n, and initializes
its first codeword. Identical to cgetg(n,t_INT).

GEN cgetr(long n) allocates memory on the PARI stack for a t_REAL of length n, and initializes
its first codeword. Identical to cgetg(n,t_REAL).

GEN cgetc(long n) allocates memory on the PARI stack for a t_COMPLEX, whose real and imagi-
nary parts are t_REALs of length n.

GEN real_1(long prec) create a t_REAL equal to 1 to prec words of accuracy.
GEN real_-ml(long prec) create a t_REAL equal to —1 to prec words of accuracy.
GEN real 0_bit(long bit) create a t_REAL equal to 0 with exponent —bit.
GEN real_0(long prec) is a shorthand for
real_0_bit(-bit_accuracy(prec))
GEN int2n(long n) creates a t_INT equal to 1<<n (i.e 2" if n > 0, and 0 otherwise).
GEN int2u(ulong n) creates a t_INT equal to 2.
GEN real2n(long n, long prec) create a t_REAL equal to 2" to prec words of accuracy.
GEN stroi(char *s) convert the character string s to a t_INT.

GEN stror(char *s, long prec) convert the character string s to a t_REAL of precision prec.

49

5.5.2 Assignment. In this section, the z argument in the z-functions must be of type t_INT
or t_REAL.

void mpaff(GEN x, GEN z) assigns x into z (where x and z are t_INT or t_REAL). Assumes that
1g(z) > 2.

void affii(GEN x, GEN z) assigns the t_INT x into the t_INT z.

void affir(GEN x, GEN z) assigns the t_INT x into the t_REAL z. Assumes that 1g(z) > 2.
void affiz(GEN x, GEN z) assigns t_INT x into t_INT or t_REAL z. Assumes that 1g(z) > 2.
void affsi(long s, GEN z) assigns the long s into the t_INT z. Assumes that 1g(z) > 2.
void affsr(long s, GEN z) assigns the long s into the t_REAL z. Assumes that 1g(z) > 2.

void affsz(long s, GEN z) assigns the long s into the t_INT or t_REAL z. Assumes that 1g(z) >
2.

void affui(ulong u, GEN z) assigns the ulong u into the t_INT z. Assumes that 1g(z) > 2.
void affur(ulong u, GEN z) assigns the ulong u into the t_REAL z. Assumes that 1g(z) > 2.
void affrr(GEN x, GEN z) assigns the t_REAL x into the t_REAL z.

The function affrs and affri do not exist. So don’t use them.

5.5.3 Copy

GEN icopy (GEN x) copy relevant words of the t_INT x on the stack: the length and effective length
of the copy are equal.

GEN rcopy (GEN x) copy the t_REAL x on the stack.

GEN mpcopy (GEN x) copy the t_INT or t_REAL x on the stack. Contrary to icopy, mpcopy
preserves the original length of a t_INT.

5.5.4 Conversions

GEN itor(GEN x, long prec) converts the t_INT x to a t_REAL of length prec and return the
latter. Assumes that prec > 2.

long itos(GEN x) converts the t_INT x to a long if possible, otherwise raise an exception.

long itos_or_O(GEN x) converts the t_INT x to a long if possible, otherwise return 0.

ulong itou(GEN x) converts the t_INT |x| to an ulong if possible, otherwise raise an exception.
long itou_or_O(GEN x) converts the t_INT |x| to an ulong if possible, otherwise return 0.

GEN stoi(long s) creates the t_INT corresponding to the long s.

GEN stor(long s, long prec) converts the long s into a t_REAL of length prec and return the
latter. Assumes that prec > 2.

GEN utoi(ulong s) converts the ulong s into a t_INT and return the latter.
GEN utoipos(ulong s) converts the non-zero ulong s into a t_INT and return the latter.

GEN utoineg(ulong s) converts the non-zero ulong s into a t_INT and return the latter.

50

GEN utor(ulong s, long prec) converts the ulong s into a t_REAL of length prec and return
the latter. Assumes that prec > 2.

GEN rtor(GEN x, long prec) converts the t_REAL x to a t_REAL of length prec and return the
latter. If prec < 1g(x), round properly. If prec > 1g(x), padd with zeroes. Assumes that prec > 2.

The following function is also available as a special case of mkintn:
GEN u2toi(ulong a, ulong b)
Returns the GEN equal to 232a + b, assuming that a,b < 232. This does not depend on
sizeof (long): the behaviour is as above on both 32 and 64-bit machines.
5.5.5 Integer parts
GEN ceilr (GEN x) smallest integer larger or equal to the t_REAL x (i.e. the ceil function).
GEN floorr(GEN x) largest integer smaller or equal to the t_REAL x (i.e. the floor function).
GEN roundr(GEN x) rounds the t_REAL x to the nearest integer (towards +o00).
GEN truncr(GEN x) truncates the t_REAL x (not the same as floorr if x is and negative).
GEN mpceil[z](GEN x[, GEN z]) as ceilr except that x may be a t_INT.

GEN ceil_safe(GEN x), x being a real number (not necessarily a t_REAL) returns an integer which
is larger than any possible incarnation of x. (Recall that a t_REAL represents an interval of possible
values.)

GEN mpfloor[z](GEN x[, GEN z]) as floorr except that x may be a t_INT.

GEN mpround[z](GEN x[, GEN z]) as roundr except that x may be a t_INT.

GEN mptrunc|z|(GEN x[, GEN z]) as truncr except that x may be a t_INT.

GEN diviiround (GEN x, GEN y) if x and y are t_INTs, returns the quotient x/y of x and vy,

rounded to the nearest integer. If x/y falls exactly halfway between two consecutive integers, then
it is rounded towards 4+o0o (as for roundr).

5.5.6 Valuation and shift

long vals(long s) 2-adic valuation of the long s. Returns —1 if s is equal to 0.

long vali(GEN x) 2-adic valuation of the t_INT x. Returns —1 if x is equal to 0.

GEN mpshift[z] (GEN x, long n[, GEN z]) shifts the t_INT or t_REAL x by n. If n is positive,
this is a left shift, i.e. multiplication by 2. If n is negative, it is a right shift by —n, which amounts
to the truncation of the quotient of x by 27".

GEN shifti(GEN x, long n) shifts the t_INT x by n.
GEN shiftr(GEN x, long n) shifts the t_REAL x by n.

long Z_pvalrem(GEN x, GEN p, GEN *r) applied to t_INTs x # 0 and p, |p| > 1, returns the
highest exponent e such that p¢ divides x. The quotient x/p® is returned in *r. In particular, if p
is a prime, this returns the valuation at p of x, and *r is the prime-to-p part of x.

long Z_pval(GEN x, GEN p) as Z_pvalrem but only returns the “valuation”.
long Z lvalrem(GEN x, ulong p, GEN *r) as Z_pvalrem, except that p is an ulong (p > 1).

o1

long Z_lval(GEN x, ulong p) as Z_pval, except that p is an ulong (p > 1).

long u_lvalrem(ulong x, ulong p, ulong *r) as Z_pvalrem, except the inputs/outputs are
now ulongs.

long u_pvalrem(ulong x, GEN p, ulong *r) as Z_pvalrem, except x and r are now ulongs.

long u_lval(ulong x, ulong p) as Z_pval, except the inputs/outputs are now ulongs.

5.5.7 Factorization

GEN Z_factor(GEN n) factors the t_INT n. The “primes” in the factorization are actually strong
pseudoprimes.

long Z_issquarefree(GEN x) returns 1 if the t_INT n is square-free, and 0 otherwise.

long Z_issquare(GEN n) returns 1 if t_INT n is a square, and 0 otherwise. This is tested first
modulo small prime powers, then sqrtremi is called.

long Z_issquarerem (GEN n, GEN *sqrtn) as Z_issquare. If n is indeed a square, set sqrtn to
its integer square root.

int isprime(GEN n), returns 1 if the t_INT n is a (fully proven) prime number and 0 otherwise.
int uisprime(ulong p), returns 1 if p is a prime number and 0 otherwise.

long Z_issquarerem(GEN n, GEN *sqrtn) as Z_issquare. If n is indeed a square, set sqrtn to
its integer square root.

long uissquarerem (ulong n, ulong *sqrtn) as Z_issquarerem, for an ulong operand n.

5.5.8 Generic unary operators. Let “op” be a unary operation among
op=neg: negation (—x).
op=abs: absolute value (|x|).

The names and prototypes of the low-level functions corresponding to op are as follows. The result
is of the same type as x.

GEN mpop (GEN x) creates the result of op applied to the t_INT or t_REAL x.
GEN opi(GEN x) creates the result of op applied to the t_INT x.
GEN opr(GEN x) creates the result of op applied to the t_REAL x.

GEN mpopz(GEN x, GEN z) assigns the result of applying op to the t_INT or t_REAL x into the
t_INT or t_REAL z.

52

Remark: it has not been considered useful to include functions void opsz(long,GEN), void
opiz (GEN,GEN) and void oprz(GEN, GEN).

5.5.9 Comparison operators

int mpcmp(GEN x, GEN y) compares the t_INT or t_REAL x to the t_INT or t_REAL y. The
result is the sign of x — y.

int cmpii(GEN x, GEN y) compares the t_INT x to the t_INT y.

int cmpir(GEN x, GEN y) compares the t_INT x to the t_REAL y.

int cmpis(GEN x, long s) compares the t_INT x to the long s.

int cmpsi(long s, GEN x) compares the long s to the t_INT x.

int cmpsr(long s, GEN x) compares the long s to the t_REAL x.

int cmpri(GEN x, GEN y) compares the t_REAL x to the t_INT y.

int cmprr(GEN x, GEN y) compares the t_REAL x to the t_REAL y.

int cmprs(GEN x, long s) compares the t_REAL x to the long s.

int equalii(GEN x, GEN y) compares the t_INTs x and y. The result is 1 if x =y, 0 otherwise.
int equalsi(long s, GEN x)

int equalis(GEN x, long s) compare the t_INT x and the long s. The result is 1if x =y, 0
otherwise.

int equalui(ulong s, GEN x)

int equaliu(GEN x, ulong s) compare the t_INT x and the ulong s. The result is 1 if |x| =y,
0 otherwise.

int absi_cmp(GEN x, GEN y) compares the t_INTs x and y. The result is the sign of |x| — |y].

int absi_equal (GEN x, GEN y) compares the t_INTs x and y. The result is 1 if |x| = |y|, O
otherwise.

int absr_cmp(GEN x, GEN y) compares the t_REALs x and y. The result is the sign of |x| — |y].

5.5.10 Generic binary operators. Let “op” be a binary operation among
op=add: addition (x + y). The result is a t_REAL unless both x and y are t_INTs (or longs).
op=sub: subtraction (x - y). The result is a t_REAL unless both x and y are t_INT (or longs).

op=mul: multiplication (x * y). The result is a t_REAL unless both x and y are t_INTs (or
longs), or if x or y is an exact 0.

op=div: division (x / y). In the case where x and y are both t_INTs or longs, the result is
the Euclidean quotient, where the remainder has the same sign as the dividend x. It is the ordinary
division otherwise. If one of x or y is a t_REAL, the result is a t_REAL unless x is an exact 0. A
division-by-0 error occurs if y is equal to 0.

op=rem: remainder (“x % y”). This operation is defined only when x and y are longs or
t_INT. The result is the Euclidean remainder corresponding to div, i.e. its sign is that of the
dividend x. The result is always a t_INT.

53

op=mod: true remainder (x % y). This operation is defined only when x and y are longs or
t_INTs. The result is the true Euclidean remainder, i.e. non-negative and less than the absolute
value of y.

The names and prototypes of the low-level functions corresponding to op are as follows. In this
section, the z argument in the z-functions must be of type t_INT or t_REAL. t_INT is only allowed
when no ‘r’ appears in the argument code (no t_REAL operand is involved).

GEN mpop(z|(GEN x, GEN y[, GEN z]) applies op to the t_INT or t_REAL x and y.
GEN opsi[z](long s, GEN x[, GEN z]) applies op to the long s and the t_INT x.
GEN opsr[z|(long s, GEN x[, GEN z]) applies op to the long s and the t_REAL x.
GEN opss(z|(long s, long t[, GEN z]) applies op to the longs s and t.

GEN opii[z](GEN x, GEN y[, GEN z]) applies op to the t_INTs x and y.

GEN opir[z](GEN x, GEN y[, GEN z]) applies op to the t_INT x and the t_REAL y.
GEN opis[z](GEN x, long s[, GEN z]) applies op to the t_INT x and the long s.
GEN opri[z] (GEN x, GEN y[, GEN z]) applies op to the t_REAL x and the t_INT y.
GEN oprr|z](GEN x, GEN y[, GEN z]) applies op to the t_REALs x and y.

GEN oprs|z](GEN x, long s[, GEN z]) applies op to the t_REAL x and the long s.
Some miscellaneous routines whose meaning should be clear from their names:

GEN muluu(ulong x, ulong y)

GEN mului(ulong x, GEN y)

GEN muliu(GEN x, ulong y)

GEN sqri(GEN x) squares the t_INT x

GEN truedivii(GEN x, GEN y) returns the true Euclidean quotient (with non-negative remainder
less than |y|).

GEN truedivis(GEN x, long y) returns the true Euclidean quotient (with non-negative remainder
less than |y|).

GEN centermodii(GEN x, GEN y, GEN y2), given t_INTs x, y, returns z congruent to x modulo
y, such that —y/2 < z < y/2. Assumes that y2 = shifti(y, -1). the representative of ssquares
the t_INT x

54

5.5.11 Modulo to longs. The following variants of modii do not clutter the stack:

long smodis(GEN x, long y) computes the true Euclidean remainder of the t_INT x by the
long y. This is the non-negative remainder, not the one whose sign is the sign of x as in the div
functions.

long smodsi(long x, GEN y) computes the true Euclidean remainder of the long x by a t_INT y.

long smodss(long x, long y) computes the true Euclidean remainder of the long x by a
t_long y.

ulong umodiu(GEN x, ulong y) computes the true Euclidean remainder of the t_INT x by the
ulong y.

ulong umodui(ulong x, GEN y) computes the true Euclidean remainder of the ulong x by the
t_INT lyl.

The routine smodsi does not exist, since it would not always be defined: for a negative x, its
result x + |y| would in general not fit into a long. Use either umodui or modsi.

5.5.12 Exact division and divisibility

void diviiexact (GEN x, GEN y) returns the Euclidean quotient x/y, assuming y divides x. Uses
Jebelean algorithm (Jebelean-Krandick bidirectional exact division is not implemented).

void diviuexact (GEN x, ulong y) returns the Euclidean quotient |x|/y (note the absolue value!),
assuming y divides x and y is non-zero.

int dvdii(GEN x, GEN y) if the t_INT y divides the t_INT x, returns 1 (true), otherwise returns
0 (false).

int dvdiiz(GEN x, GEN y, GEN z) if the t_INT y divides the t_INT x, assigns the quotient to
the t_INT z and returns 1 (true), otherwise returns 0 (false).

int dvdisz(GEN x, long y, GEN z) if the t_long y divides the t_INT x, assigns the quotient to
the t_INT z and returns 1 (true), otherwise returns 0 (false).

int dvdiuz(GEN x, ulong y, GEN z) if the t_ulong y divides the t_INT x, assigns the quotient
|x|/y to the t_INT z and returns 1 (true), otherwise returns 0 (false).

5.5.13 Division with remainder. The following functions return two objects, unless specifically
asked for only one of them — a quotient and a remainder. The quotient is returned and the
remainder is returned through the variable whose address is passed as the r argument. The term
true Euclidean remainder refers to the non-negative one (mod), and Fuclidean remainder by itself
to the one with the same sign as the dividend (rem). All GENs, whether returned directly or through
a pointer, are created on the stack.

GEN dvmdii(GEN x, GEN y, GEN *r) returns the Fuclidean quotient of the t_INT x by a t_INT y
and puts the remainder into *r. If r is equal to NULL, the remainder is not created, and if r is
equal to ONLY_REM, only the remainder is created and returned. In the generic case, the remainder
is created after the quotient and can be disposed of individually with a cgiv(r). The remainder is
always of the sign of the dividend x. If the remainder is 0 set r = gen_0.

void dvmdiiz(GEN x, GEN y, GEN z, GEN t) assigns the Euclidean quotient of the t_INTs x
and y into the t_INT or t_REAL z, and the Euclidean remainder into the t_INT or t_REAL t.

95

Analogous routines dvmdis [z], dvmdsi[z], dvmdss[z] are available, where s denotes a long ar-
gument. But the following routines are in general more flexible:

long sdivss_rem(long s, long t, long *r) computes the Euclidean quotient and remainder
of the longs s and t. Puts the remainder into *r, and returns the quotient. The remainder is of
the sign of the dividend s, and has strictly smaller absolute value than t.

long sdivsi_rem(long s, GEN x, long *r) computes the Euclidean quotient and remainder of
the long s by the t_INT x. As sdivss_rem otherwise.

long sdivsi(long s, GEN x) as sdivsi_rem, without remainder.

GEN divis_rem(GEN x, long s, long *r) computes the Euclidean quotient and remainder of
the t_INT x by the long s. As sdivss_rem otherwise.

GEN diviu_rem(GEN x, ulong s, long *r) computes the Euclidean quotient and remainder of
the t_INT x by the ulong s. As sdivss_rem otherwise.

GEN divsi_rem(long s, GEN y, long *r) computes the Euclidean quotient and remainder of
the t_long s by the GEN y. As sdivss_rem otherwise.

GEN divss_rem(long x, long y, long *r) computes the Euclidean quotient and remainder of
the t_long x by the long y. As sdivss_rem otherwise.

GEN truedvmdii(GEN x, GEN y, GEN *r), as dvmdii but with a non-negative remainder.

5.5.14 Square root and remainder

GEN sqrtremi(GEN N, GEN *r), returns the integer square root S of the non-negative t_INT N
(rounded towards 0) and puts the remainder R into *r. Precisely, N = S2 4+ Rwith 0 < R<2S.
If r is equal to NULL, the remainder is not created. In the generic case, the remainder is created
after the quotient and can be disposed of individually with cgiv(R). If the remainder is 0 set R =
gen 0.

Uses a divide and conquer algorithm (discrete variant of Newton iteration) due to Paul Zim-

mermann (“Karatsuba Square Root”, INRIA Research Report 3805 (1999)).

GEN sqrti(GEN N), returns the integer square root S of the non-negative t_INT N (rounded towards
0). This is identical to sqrtremi(N, NULL).

5.5.15 Pseudo-random integers

long random_bits(long k) returns a random 0 < z < 2k Assumes that 0 < k < 31.

long parirand31(long k) as random_bits with k£ = 31.

GEN randomi(GEN n) returns a random t_INT between 0 and n — 1. The result is pasted from
successive calls to pari_rand31.

56

5.5.16 Modular operations. In this subsection, all GENs are t_INT.

ulong Fp_powu(GEN x, ulong n, GEN m) raises x to the n-th power modulo p (smallest non-
negative residue).

GEN Fp_pow (GEN x, GEN n, GEN m) returns x™ modulo p (smallest non-negative residue).

GEN Fp_inv(GEN a, GEN m) returns an inverse of a modulo m (smallest non-negative residue).
Raise an error if a is not invertible.

GEN Fp_invsafe(GEN a, GEN m) as Fp_inv, but return NULL if a is not invertible.

int invimod(GEN a, GEN m, GEN *g), return 1 if a modulo m is invertible, else return 0 and set
g = ged(a,m).

GEN Fp_sqrt(GEN x, GEN p) returns a square root of x modulo p (the smallest non-negative
residue), where x, p are t_INTs, and p is assumed to be prime. Return NULL if x is not a quadratic
residue modulo p.

GEN Fp_sqrtn(GEN x, GEN n, GEN p, GEN *zn) returns an n-th root of x modulo p (smallest
non-negative residue), where x, n, p are t_INTs, and p is assumed to be prime. Return NULL if x is
not an n-th power residue. Otherwise, if zn is non-NULL set it to a primitive n-th root of 1.

long kross(long x, long y) returns the Kronecker symbol (z]y), i.e.—1, 0 or 1. If y is an odd
prime, this is the Legendre symbol. (Contrary to krouu, kross also supports y = 0)

long krois(GEN x, long y) returns the Kronecker symbol (z|y) of t_INT x and long y. As kross
otherwise.

long krosi(long x, GEN y) returns the Kronecker symbol (z|y) of long x and t_INT y. As kross
otherwise.

long kronecker (GEN x, GEN y) returns the Kronecker symbol (z|y) of t_INTs x and y. As kross
otherwise.

GEN gener_Fp(GEN p) returns a primitive root modulo p, assuming p is prime.

GEN gener_Fp_local(GEN p, GEN L), L being a vector of primes dividing p — 1, returns an integer
x which is a generator of the ¢-Sylow of Fy for every ¢ in L. In other words, z®=1/C £ 1 for all
such ¢. In particular, returns Fp_gener (p) if L contains all primes dividing p — 1.

5.5.17 Miscellaneous functions

void addumului(ulong a, ulong b, GEN x) return a + b|X|.

long cged(long x, long y), returns the GCD of the t_longs x and y.

long cbezout(long a,long b, long *u,long *v), returns the GCD d of a and b and sets u, v
to the Bezout coefficients such that au + bv = d.

GEN bezout(GEN a,GEN b, GEN *u,GEN *v), returns the GCD d of t_INTs a and b and sets u, v
to the Bezout coefficients such that au + bv = d.

GEN factoru(ulong n), returns the factorization of n. The result is a 2-component vector [P, E],
where P and E are t_VECSMALL containing the prime divisors of n, and the v,(n).

GEN factoru_pow (ulong n), returns the factorization of n. The result is a 3-component vector

[P, E,C], where P, E and C are t_VECSMALL containing the prime divisors of n, the v,(n) and the
pvp (n)

57

GEN gcdii(GEN x, GEN y), returns the GCD of the t_INTs x and y.
GEN Icmii(GEN x, GEN y), returns the LCM of the t_INTs x and y.
long maxss(long x, long y), return the largest of x and y.
long minss(long x, long y), return the smallest of x and y.

GEN powuu(ulong n, ulong k), returns n*.

GEN powiu(GEN n, ulong k), assumes n is a t_INT and returns n.

ulong upowuu(ulong n, ulong k), returns n* modulo 28, This is meant to be used for tiny
k, where in fact n* fits into an ulong.

void rdivii(GEN x, GEN y, long prec), assuming x and y are both of type t_INT, return the
quotient x/y as a t_REAL of precision prec.

void rdivis(GEN x, long y, long prec), assuming x is of type t_INT, return the quotient x/y
as a t_REAL of precision prec.

void rdivsi(long x, GEN y, long prec), assuming y is of type t_INT, return the quotient x/y
as a t_REAL of precision prec.

void rdivss(long x, long y, long prec), return the quotient x/y as a t_REAL of precision
prec.

5.6 Level 2 kernel (modular arithmetic).

These routines implement univariate polynomial arithmetic and linear algebra over finite fields, in
fact over finite rings of the form (Z/pZ)[X]/(T), where p is not necessarily prime and T' € (Z/pZ)[X]
is possibly reducible; and finite extensions thereof. All this can be emulated with t_INTMOD and
t_POLMOD coefficients and using generic routines, at a considerable loss of efficiency. Also, some
specialized routines are available that have no obvious generic equivalent.

5.6.1 Naming scheme. A function name is built in the following way: A;_..._A,fun for an
operation fun with n arguments of class A1,..., A,. A class name is given by a base ring followed
by a number of code letters. Base rings are among

Fl: Z/IZ where | < 2™ is not necessarily prime. Implemented using ulongs

Fp: Z/pZ where p is a t_INT, not necessarily prime. Implemented as t_INTs z, preferably
satisfying 0 < z < p. More precisely, any t_INT can be used as an Fp, but reduced inputs are
treated more efficiently. Outputs from Fpxxx routines are reduced.

Fq: Z[X]/(p,T(X)), p a t_INT, T a t_POL with Fp coefficients or NULL (in which case no
reduction modulo T is performed). Implemented as t_POLs z with Fp coefficients, deg(z) < degT.

Z: the integers Z, implemented as t_INTs.

z: the integers Z, implemented using (signed) longs.

Q: the rational numbers Q, implemented as t_INTs and t_FRACs.

Rg: a commutative ring, whose elements can be gadd-ed, gmul-ed, etc.

Possible letters are:

58

X: polynomial in X (t_POL in a fixed variable), e.g. FpX means Z/pZ[X]|
Y: polynomial in Y # X. E.g. FpXY means ((Z/pZ)[Y])[X]

V: vector (t_VEC or t_COL), treated as a line vector (independantly of the actual type). E.g.
ZV means Z* for some k.

C: vector (t_VEC or t_COL), treated as a column vector (independantly of the actual type).
The difference with V is purely semantic.

M: matrix (t_MAT). E.g. QM means a matrix with rational entries

Q: representative (t_POL) of a class in a polynomial quotient ring. E.g. an FpXQ belongs to
(Z/pZ)[X]/(T (X)), FpXQV means a vector of such elements, etc.

X, m, v, ¢, q: as their uppercase counterpart, but coefficient arrays are implemented using
t_VECSMALLs, which coefficient understood as ulongs.

x (and q) are implemented by a t_VECSMALL whose first coefficient is used as a code-word and
the following are the coefficients , similarly to a t_POL. This is known as a 'POLSMALL’.

m are implemented by a t_MAT whose components (columns) are t_VECSMALLs. This is know
as a 'MATSMALL'’.

v and c are regular t_VECSMALLs. Difference between the two is purely semantic.
Omitting the letter means the argument is a scalar in the base ring. Standard functions fun are
add: add
sub: subtract
mul: multiply
sqr: square
div: divide (Euclidean quotient)
rem: Euclidean remainder
divrem: return Fuclidean quotient, store remainder in a pointer argument.
gcd: GCD
extged: return GCD, store Bezout coefficients in pointer arguments
pow: exponentiate
compo: composition
5.6.2 ZX, ZV, ZM. A ZV (resp. a ZM, resp. a ZX) is a t_VEC or t_COL (resp. t_MAT, resp. t_POL) with
t_INT coefficients.
5.6.2.1 ZV
GEN ZV _add(GEN x, GEN y) adds x and y.
GEN ZV _sub(GEN x, GEN y) subtracts x and y.

59

5.6.2.2 ZX

GEN ZX renormalize(GEN x, long 1), as normalizepol, where 1 = 1g(x), in place.
GEN ZX_add(GEN x,GEN y) adds x and y.

GEN ZX_sub(GEN x,GEN y) subtracts x and y.

GEN ZX _neg(GEN x,GEN p) returns —x.

GEN ZX_Z_add(GEN x,GEN y) adds the integer y to the polynomial x.

GEN ZX_Z mul(GEN x,GEN y) multiplies the polynomial x by the integer y.

GEN ZX_mul(GEN x,GEN y) multiplies x and y.

GEN ZX sqr(GEN x,GEN p) returns x.

GEN ZX _caract(GEN T, GEN A, long v) returns the characteristic polynomial of Mod(A, T),
where T is a ZX, A is a ZX. More generally, A is allowed to be a QX, hence possibly has rational
coefficients, assuming the result is a ZX, i.e. the algebraic number Mod (A, T) is integral over Z.

GEN ZX_disc(GEN T) returns the discriminant of the ZX T.
int ZX_is_squarefree(GEN T) returns 1 if the ZX T is squarefree, 0 otherwise.
GEN ZX_resultant(GEN A, GEN B) returns the resultant of the ZX A and B.

GEN ZX_QX_resultant (GEN A, GEN B) returns the resultant of the ZX A and the QX B, assuming
the result is an integer.

GEN ZY _ZXY _resultant(GEN A, GEN B) under the assumption that A in Z[Y], B in Q[Y][X],
and R = Resy (A, B) € Z[X], returns the resultant R.

GEN ZY _ZXY _rnfequation(GEN A, GEN B, long *lambda), assume A in Z[Y], B in Q[Y][X],
and R = Resy (A, B) € Z[X]. If lambda = NULL, returns R as in ZY_ZXY_resultant. Otherwise,
lambda must point to some integer, e.g. 0 which is used as a seed. The function then finds a
small A € Z (starting from *lambda) such that Ry (X) := Resy (A, B(X + \Y)) is squarefree, resets
*lambda to the chosen value and returns Rj.

GEN ZM_inv (GEN M, GEN d) if Mis a ZM and d is a t_INT such that M’ := dM~! is integral, return
M’. Tt is allowed to set d = NULL, in which case, the determinant of M is computed and used
instead.

GEN QM_inv(GEN M, GEN d) as above, with M a QM. We still assume that M’ has integer coeffi-
cients.

5.6.3 FpX. Let p an understood t_INT, to be given in the function arguments; in practice p is not
assumed to be prime, but be wary. An Fp object is a t_INT belonging to [0,p—1], an FpX is a t_POL
in a fixed variable whose coefficients are Fp objects. Unless mentionned otherwise, all outputs in
this section are FpXs. All operations are understood to take place in (Z/pZ)[X].

60

5.6.3.1 Basic operations. In what follows p is always a t_INT, not necessarily prime.

GEN Rg to Fp(GEN z, GEN p), z a scalar which can be mapped to Z/pZ: a t_INT, a t_INTMOD
whose modulus is divisible by p, a t_FRAC whose denominator is coprime to p, or a t_PADIC with
underlying prime p. Returns 1ift(z * Mod(1,p)), normalized.

GEN RgX _to FpX(GEN z, GEN p), z a t_POL, returns the FpX obtained by applying Rg_to_Fp
coefficientwise.

GEN RgV _to FpV (GEN z, GEN p), z a t_VEC or t_COL, returns the FpV (as a t_VEC) obtained
by applying Rg_to_Fp coeflicientwise.

GEN RgC_to_FpC(GEN z, GEN p), z a t_VEC or t_COL, returns the FpC (as a t_COL) obtained
by applying Rg_to_Fp coeflicientwise.

GEN FpX_to.mod(GEN z, GEN p), z a ZX. Returns z * Mod(1,p), normalized. Hence the re-
turned value has t_INTMOD coefficients.

GEN FpX_red(GEN z, GEN p), z a ZX, returns 1ift(z * Mod(1,p)), normalized.

GEN FpXV _red(GEN z, GEN p), z a t_VEC of ZX. Applies FpX_red componentwise and returns
the result (and we obtain a vector of FpXs).

Now, except for p, the operands and outputs are all FpX objects. Results are undefined on other
inputs.

GEN FpX_add(GEN x,GEN y, GEN p) adds x and y.

GEN FpX_neg(GEN x,GEN p) returns —x.

GEN FpX renormalize(GEN x, long 1), as normalizepol, where 1 = 1g(x), in place.
GEN FpX_sub(GEN x,GEN y,GEN p) subtracts y from x.

GEN FpX_mul(GEN x,GEN y,GEN p) multiplies x and y.

GEN FpX_sqr(GEN x,GEN p) returns x2.

GEN FpX_divrem(GEN x, GEN y, GEN p, GEN *pr) returns the quotient of x by y, and sets pr
to the remainder.

GEN FpX_div(GEN x, GEN y, GEN p) returns the quotient of x by y.

GEN FpX_div_by X x(GEN A, GEN a, GEN p, GEN #*r) returns the quotient of the FpX A by
(X — a), and sets r to the remainder A(a).

GEN FpX_rem(GEN x, GEN y, GEN p) returns the remainder x mod y

GEN FpX_gcd(GEN x, GEN y, GEN p) returns a (not necessarily monic) greatest common divisor
of z and y.

GEN FpX _extgcd(GEN x, GEN y, GEN p, GEN *u, GEN *v) returns d = GCD(x,y), and sets
xu, *v to the Bezout coefficients such that xux + xvy = d.

GEN FpX_center(GEN z, GEN p) returns the polynomial whose coefficient belong to the symmet-
ric residue system (clean version of centermod, which assumes the coefficients already belong to

0,p —1]).

61

5.6.3.2 Miscellaneous operations

GEN FpX_normalize(GEN z, GEN p) divides the FpX z by its leading coefficient. If the latter is 1,
z itself is returned, not a copy. If not, the inverse remains uncollected on the stack.

GEN FpX_Fp_add(GEN y, GEN x, GEN p) add the Fp x to the FpX y, possibly modifying the
argument y (thus the operation uses constant time instead of linear linear). This function is not
suitable for gerepileupto nor for gerepile.

GEN FpX_Fp_mul(GEN y, GEN x, GEN p) multiplies the FpX y by the Fp x.

GEN FpX rescale(GEN P, GEN h, GEN p) returns h°(") P(z/h). P is an FpX and h is a non-zero
Fp (the routine would work with any non-zero t_INT but is not efficient in this case).

GEN FpX_eval(GEN x, GEN y, GEN p) evaluates the FpX x at the Fp y. The result is an Fp.

GEN FpXV _FpC_mul(GEN V, GEN W, GEN p) multiplies a line vector ofFpX by a column vector
of Fp (scalar product). The result is an FpX.

GEN FpXV _prod(GEN V, GEN p), V being a vector of FpX, returns their product.

GEN FpV _roots_to_pol(GEN V, GEN p, long v), V being a vector of INTs, returns the monic
FpX [, (poL x[v] — V[1]).
GEN FpX_chinese_coprime(GEN x,GEN y, GEN Tx,GEN Ty, GEN Tz, GEN p) returns an FpX,

congruent to x mod Tx and to y mod Ty. Assumes Tx and Ty are coprime, and Tz = Tx * Ty
or NULL (in which case it is computed within).

GEN FpV _polint(GEN x, GEN y, GEN p) returns the FpX interpolation polynomial with value
y[i] at x[i]. Assumes lengths are the same, components are t_INTs, and the x[i] are distinct
modulo p.

long FpX_is_squarefree(GEN f, GEN p) returns 1 if the FpX f is squarefree, 0 otherwise.

long FpX_is_irred (GEN f, GEN p) returns 1 if the FpX f is irreducible, 0 otherwise. Assumes
that p is prime. If £ has few factors, FpX_nbfact(f,p) == 1 is much faster.

long FpX_is_totally_split (GEN f, GEN p) returns 1 if the FpX £ splits into a product of distinct
linear factors, 0 otherwise. Assumes that p is prime.

GEN FpX_factor(GEN f, GEN p), factors the FpX f. Assumes that p is prime. The returned
value v has two components: v[1] is a vector of distinct irreducible (FpX) factors, and v[2] is a
t_VECSMALL of corresponding exponents. The order of the factors is deterministic (the computation
is not).

long FpX_nbfact(GEN f, GEN p), assuming the FpX f is squarefree, returns the number of its
irreducible factors. Assumes that p is prime.

long FpX_degfact(GEN f, GEN p), as FpX_factor, but the degrees of the irreducible factors are
returned instead of the factors themselves (as a t_VECSMALL). Assumes that p is prime.

long FpX_nbroots(GEN f, GEN p) returns the number of distinct roots in Z/pZ of the FpX f£.
Assumes that p is prime.

GEN FpX _roots(GEN f, GEN p) returns the roots in Z/pZ of the FpX £ (without multiplicity, as
a vector of Fps). Assumes that p is prime.

GEN FpX _rand(long d, long v, GEN p) returns a random FpX in variable v, of degree less
than d.

62

GEN FpX resultant(GEN x, GEN y, GEN p) returns the resultant of x and y, both FpX. The
result is a t_INT belonging to [0,p — 1].

GEN FpY _FpXY _resultant(GEN a, GEN b, GEN p), a a t_POL of t_INTs (say in variable Y),
b a t_POL (say in variable X') whose coefficients are either t_POLs in Z[Y] or t_INTs. Returns
Resy (a,b), which is an FpX. The function assumes that Y has lower priority than X.

5.6.4 FpXQ, Fq. Let p a t_INT and T an FpX for p, both to be given in the function arguments; an
FpXQ object is an FpX whose degree is strictly less than the degree of T. An Fq is either an FpXQ
or an Fp. Both represent a class in (Z/pZ)[X]/(T), in which all operations below take place. In
addition, Fq routines also allow T = NULL, in which case no reduction mod T is performed on the
result.

For efficiency, the routines in this section may leave small unused objects behind on the stack
(their output is still suitable for gerepileupto). Besides T and p, arguments are either FpXQ or Fq
depending on the function name. (All Fq routines accept FpXQs by definition, not the other way
round.)

GEN Rg to_ FpXQ(GEN z, GEN T, GEN p), z a GEN which can be mapped to F,[X]/(T): any-
thing Rg_to_Fp can be applied to, a t_POL to which RgX_to_FpX can be applied to, a t_POLMOD
whose modulus is divisible by 7' (once mapped to a FpX), a suitable t_RFRAC. Returns z as an
FpXQ, normalized.

GEN RgX_to FpXQX(GEN z, GEN T, GEN p), z a t_POL, returns the FpXQ obtained by applying
Rg_to_FpXQ coefficientwise.

GEN RgX to FqX(GEN z, GEN T, GEN p), z a t_POL, returns the FpXQ obtained by applying
Rg_to_FpXQ coefficientwise and simplifying scalars to t_INTs.

GEN Fq red(GEN x, GEN T, GEN p), x a ZX or t_INT, reduce it to an Fq (T = NULL is allowed iff
x is a t_INT).

GEN FgqX_red(GEN x, GEN T, GEN p), x a t_POL whose coefficients are ZXs or t_INTs, reduce
them to Fgs. (If T = NULL, as FpXX_red(x, p).)

GEN FqV_red(GEN x, GEN T, GEN p), x a vector of ZXs or t_INTs, reduce them to Fgs. (If
T = NULL, only reduce components mod p to FpXs or Fps.)

GEN FpXQ_mul(GEN y, GEN x, GEN T,GEN p)

GEN FpXQ_sqr(GEN y, GEN T, GEN p)

GEN FpXQ_div(GEN x, GEN y, GEN T,GEN p)

GEN FpXQ_inv(GEN x, GEN T, GEN p) computes the inverse of x
GEN FpXQ_invsafe(GEN x,GEN T,GEN p), as FpXQ_inv, returning NULL if x is not invertible.
GEN FpXQ_pow(GEN x, GEN n, GEN T, GEN p) computes x".
GEN Fq.add(GEN x, GEN y, GEN T/*unused*/, GEN p)

GEN Fq_sub(GEN x, GEN y, GEN T/*unused*/, GEN p)

GEN Fq_-mul(GEN x, GEN y, GEN T, GEN p)

GEN Fq._neg(GEN x, GEN T, GEN p)

GEN Fq_neg_inv(GEN x, GEN T, GEN p) computes —x !

63

GEN Fq_inv(GEN x, GEN pol, GEN p) computes x ', raising an error if x is not invertible.

GEN Fq-invsafe(GEN x, GEN pol, GEN p) as Fq-inv, but returns NULL if x is not invertible.
GEN Fq_pow(GEN x, GEN n, GEN pol, GEN p) returns x".

GEN FpXQ_charpoly(GEN x, GEN T, GEN p) returns the characteristic polynomial of x

GEN FpXQ_minpoly(GEN x, GEN T, GEN p) returns the minimal polynomial of x

GEN FpXQ_powers(GEN x, long n, GEN T, GEN p) returns [x°,...,x"] as a t_VEC of FpXQs.
GEN FpX_FpXQ_compo(GEN f,GEN x,GEN T,GEN p) returns f(x).

GEN FpX_FpXQV _compo(GEN f,GEN V,GEN T,GEN p) returns f(x), assuming that V was com-
puted by FpXQ_powers(x,n,T,p).

5.6.5 FpXX. Contrary to what the name implies, an FpXQX is a t_POL whose coefficients are either
t_INTs or t_FpXs. This reduce memory overhead at the expense of consistency.

GEN FpXX_add(GEN x, GEN y, GEN p) adds x and y.

GEN FpXX_red(GEN z, GEN p), z a t_POL whose coefficients are either ZXs or t_INTs. Returns
the t_POL equal to z with all components reduced modulo p.

GEN FpXX_renormalize(GEN x, long 1), as normalizepol, where 1 = 1g(x), in place.
5.6.6 FpXQX, FgX. Contrary to what the name implies, an FpXQX is a t_POL whose coefficients are
Fgs. So the only difference between FgX and FpXQX routines is that T = NULL is not allowed in the

latter. (It was thought more useful to allow t_INT components than to enforce strict consistency,
which would not imply any efficiency gain.)

5.6.6.1 Basic operations

GEN FgX_mul(GEN x, GEN y, GEN T, GEN p)

GEN FqX_Fq_-mul(GEN P, GEN U, GEN T, GEN p) multiplies the FgX y by the Fq x.
GEN FgX_normalize(GEN z, GEN T, GEN p) divides the FgX z by its leading term.
GEN FgqX_sqr(GEN x, GEN T, GEN p)

GEN FqX_divrem(GEN x, GEN y, GEN T, GEN p, GEN *z)

GEN FgX_div(GEN x, GEN y, GEN T, GEN p)

GEN FgX_rem(GEN x, GEN y, GEN T, GEN p)

GEN FgX_gcd(GEN P, GEN Q, GEN T, GEN p)

GEN FpXQX_red(GEN z, GEN T, GEN p) z a t_POL whose coefficients are ZXs or t_INTs, reduce
them to FpXQs.

GEN FpXQX_mul(GEN x, GEN y, GEN T, GEN p)

GEN FpXQX _sqr(GEN x, GEN T, GEN p)

GEN FpXQX_divrem(GEN x, GEN y, GEN T, GEN p, GEN *pr)

GEN FpXQX _gcd(GEN x, GEN y, GEN T, GEN p)

GEN FpXQX_extgcd(GEN x, GEN y, GEN T, GEN p, GEN *ptu, GEN *ptv)

64

GEN FpXQYQ_pow(GEN x, GEN n, GEN S, GEN T, GEN p), x and T being FpXQXs, returns x*
modulo S.

GEN FpXQXV _prod(GEN V, GEN T, GEN p), V being a vector of FpXQX, returns their product.

GEN FqV _roots_to_pol(GEN V, GEN T, GEN p, long v), V being a vector of Fgs, returns the
monic FgX [],(polx[v] — V[i]).

5.6.6.2 Miscellaneous operations

GEN init_Fq(GEN p, long n, long v) returns an irreducible polynomial of degree n over F,,, in
variable v.

long FgX_is_squarefree(GEN P, GEN T, GEN p)

GEN FgX_factor(GEN x, GEN T, GEN p) same output convention as FpX_factor. Assumes p is
prime and T irreducible in F,[X].

GEN FpX _factorff_irred(GEN P, GEN T, GEN p). Assumes p prime and T irreducible in F,[X].
P being an irreducible FpX, factors it over the finite field F,[Y]/(T(Y)) and returns the vector of
irreducible FqXs factors (the exponents, being all equal to 1, are not included).

GEN FpX_ffisom(GEN P, GEN Q, GEN p). Assumes p prime, P, Q are ZXs, both irreducible mod p,
and deg(P) | deg Q. Outputs a monomorphism between F,[X|/(P) and F,[X]/(Q), as a polynomial
R such that Q | P(R) in F,,[X]. If P and Q have the same degree, it is of course an isomorphism.

void FpX_ffintersect (GEN P, GEN Q, long n, GEN p, GEN *SP,GEN *SQ, GEN MA,GEN MB)

Assumes p is prime, P, Q are ZXs, both irreducible mod p, and n divides both the degree of P and
Q. Compute SP and SQ such that the subfield of F,[X]/(P) generated by SP and the subfield of
F,[X]/(Q) generated by SQ are isomorphic of degree n. The polynomials P and Q do not need to
be of the same variable. If MA (resp. MB) is not NULL, it must be the matrix of the Frobenius map

in Fp[X]/(P) (resp. Fp[X]/(Q)).

GEN FpXQ_ffisom_inv(GEN S, GEN T, GEN p). Assumes p is prime, T a ZX, which is irreducible
modulo p, S a ZX representing an automorphism of F, := F,[X]/(T). (S(X) is the image of X by
the automorphism.) Returns the inverse automorphism of S, in the same format, i.e. an FpX H
such that H(S) = X modulo (T, p).

long FgX_nbfact(GEN u, GEN T, GEN p). Assumes p is prime and T irreducible in F,[X].
long FgX _nbroots(GEN f, GEN T, GEN p) Assumes p is prime and T irreducible in F,[X].
5.6.7 FpV, FpM, FqM. A ZV (resp. a ZM) is a t_VEC or t_COL (resp. t_MAT) with t_INT coefficients.
An FpV or FpM, with respect to a given t_INT p, is the same with Fp coordinates; operations are

understood over Z/pZ. An FgM is a matrix with Fq coefficients (with respect to given T, p), not
necessarily reduced (i.e arbitrary t_INTs and ZXs in the same variable as T).

5.6.7.1 Basic operations

GEN FpC_to_mod(GEN z, GEN p), z a ZC. Returns Col(z) * Mod(1,p), hence a t_COL with
t_INTMOD coefficients.

GEN FpV_to_mod(GEN z, GEN p), z a ZV. Returns Vec(z) * Mod(1,p), hence a t_VEC with
t_INTMOD coefficients.

GEN FpM _to_.mod(GEN z, GEN p), z a ZM. Returns z * Mod(1,p), hence with t_INTMOD coeffi-
cients.

65

GEN FpC_red(GEN z, GEN p), z a ZC. Returns 1ift(Col(z) * Mod(1l,p)), hence a t_COL.
GEN FpV _red(GEN z, GEN p), z a ZV. Returns 1ift(Vec(z) * Mod(1,p)), hence a t_VEC
GEN FpM_red(GEN z, GEN p), z a ZM. Returns 1ift(z * Mod(1,p)), which is an FpM.

GEN FpC_Fp_mul(GEN x, GEN y, GEN p) multiplies the ZC x (seen as a column vector) by the
t_INT y and reduce modulo p to obtain an FpC.

GEN FpC_FpV_mul(GEN x, GEN y, GEN p) multiplies the ZC x (seen as a column vector) by the
ZV y (seen as a row vector, assumed to have compatible dimensions), and reduce modulo p to obtain
an FpM.

GEN FpM_mul(GEN x, GEN y, GEN p) multiplies the two ZMs x and y (assumed to have compat-
ible dimensions), and reduce modulo p to obtain an FpM.

GEN FpM_FpC_mul(GEN x, GEN y, GEN p) multiplies the ZM x by the ZC y (seen as a column
vector, assumed to have compatible dimensions), and reduce modulo p to obtain an FpC.

GEN FpV_FpC_mul(GEN x, GEN y, GEN p) multiplies the ZV x (seen as a row vector) by the
ZC y (seen as a column vector, assumed to have compatible dimensions), and reduce modulo p to
obtain an Fp.

5.6.7.2 Fp-linear algebra. The implementations are not asymptotically efficient (O(n?®) standard
algorithms).

GEN FpM _deplin(GEN x, GEN p) returns a non-trivial kernel vector, or NULL if none exist.
GEN FpM _gauss(GEN a, GEN b, GEN p) as gauss

GEN FpM_image(GEN x, GEN p) as image

GEN FpM . _intersect (GEN x, GEN y, GEN p) as intersect

GEN FpM_inv(GEN x, GEN p) returns the inverse of x, or NULL if x is not invertible.
GEN FpM _invimage(GEN m, GEN v, GEN p) as inverseimage

GEN FpM ker(GEN x, GEN p) as ker

long FpM _rank(GEN x, GEN p) as rank

GEN FpM _indexrank(GEN x, GEN p) as indexrank but returns a t_VECSMALL

GEN FpM _suppl(GEN x, GEN p) as suppl

5.6.7.3 Fg-linear algebra

GEN FqM _gauss(GEN a, GEN b, GEN T, GEN p) as gauss

GEN FgM ker(GEN x, GEN T, GEN p) as ker

GEN FqM _suppl(GEN x, GEN T, GEN p) as suppl

66

5.6.8 F1x Let p an understood ulong, assumed to be prime, to be given the the function arguments;
an F1 is an ulong belonging to [0,p — 1], an F1x z is a t_VECSMALL representing a polynomial with
small integer coefficients. Specifically z[0] is the usual codeword, z[1] = evalvarn(v) for some
variable v, then the coefficients by increasing degree. An F1xX is a t_POL whose coefficients are
Flxs.

In the following, an argument called sv is of the form evalvarn(v) for some variable number v.
5.6.8.1 Basic operations

ulong Rg to_FI(GEN z, ulong p), z which can be mapped to Z/pZ: a t_INT, a t_INTMOD whose
modulus is divisible by p, a t _FRAC whose denominator is coprime to p, or a t_PADIC with underlying
prime p. Returns 1ift(z * Mod(1,p)), normalized, as an F1.

GEN Flx red(GEN z, ulong p) converts from zx with non-negative coefficients to F1x (by reduc-
ing them mod p).

GEN Flx_add(GEN x, GEN y, ulong p)

GEN Flx_neg(GEN x, ulong p)

GEN Flx_neg_inplace(GEN x, ulong p), same as F1x neg, in place (x is destroyed).
GEN Flx_sub(GEN x, GEN y, ulong p)

GEN Flx_ mul(GEN x, GEN y, ulong p)

GEN Flx_sqr(GEN x, ulong p)

GEN Flx_divrem(GEN x, GEN y, ulong p, GEN *pr)

GEN Flx div(GEN x, GEN y, ulong p)

GEN Flx rem(GEN x, GEN y, ulong p)

GEN Flx_deriv(GEN z, ulong p)

GEN Flx_gcd(GEN a, GEN b, ulong p) returns a (not necessarily monic) greatest common divisor
of x and y.

GEN Flx_gcd_i(GEN a, GEN b, ulong p), same as Flx_gcd without collecting garbage.
GEN Flx_extgcd(GEN a, GEN b, ulong p, GEN *ptu, GEN *ptv)

GEN Flx_pow (GEN x, long n, ulong p)

5.6.8.2 Miscellaneous operations

GEN Flx_normalize(GEN z, ulong p), as FpX_normalize.

GEN Flx_Fl_.mul(GEN y, ulong x, ulong p)

GEN Flx_ recip(GEN x), returns the reciprocal polynomial

ulong Flx resultant (GEN a, GEN b, ulong p), returns the resultant of a and b

ulong Flx_extresultant (GEN a, GEN b, ulong p, GEN *ptU, GEN *ptV) returns the resultant
and sets Bezout coefficients (if the resultant is 0, the latter are not set).

GEN Flx_invmontgomery (GEN T, ulong p), returns the Montgomery inverse of T, i.e. trun-
cate(x / polrecip(T)+0(x"n). Assumes T(0) # 0.

67

GEN Flx_rem_montgomery (GEN x, GEN mg, GEN T, ulong p), returns x modulo T, where mg
is the Montgomery inverse of T.

GEN Flx_renormalize(GEN x, long 1), as FpX_renormalize, where 1 = 1g(x), in place.
GEN Flx_shift (GEN T, long n), returns T multiplied by x".

long Flx_valuation(GEN x) returns the valuation of x, i.e. the multiplicity of the 0 root.
GEN FlxYqQ_pow (GEN x, GEN n, GEN S, GEN T, ulong p), as FpXQYQ_pow.

GEN Flx_div_by_X_x(GEN A, ulong a, ulong p, ulong *rem), returns the Euclidean quotient
of the F1x A by X — a, and sets rem to the remainder A(a).

ulong Flx_eval(GEN x, ulong y, ulong p), as FpX_eval.

GEN FIxV_Flc_mul(GEN V, GEN W, ulong p), as FpXV_FpC_mul.
int Flx_is_squarefree(GEN z, ulong p)

long Flx_nbfact(GEN z, ulong p), as FpX_nbfact.

long Flx_nbroots(GEN f, ulong p), as FpX_nbroots.

GEN Flv_polint(GEN x, GEN y, ulong p, long sv) as FpV_polint, returning an F1lx in variable
.

GEN Flv_roots_to_pol(GEN a, ulong p, long sv) as FpV_roots_to_pol returning an Flx in
variable v.

5.6.9 F1lxq. See FpXQ operations.

GEN Flxq-mul(GEN y, GEN x, GEN pol, ulong p)

GEN Flxq_sqr(GEN y, GEN pol, ulong p)

GEN Flxq_inv(GEN x, GEN T, ulong p)

GEN Flxq-invsafe(GEN x, GEN T, ulong p)

GEN Flxq_pow (GEN x, GEN n, GEN pol, ulong p)

GEN Flxq_powers(GEN x, long 1, GEN T, ulong p)

GEN FlIxqV roots_to_pol(GEN V, GEN T, ulong p, long v) as FqQV_roots_to_pol returning an
FlxgX in variable v.

5.6.10 F1xX. See FpXX operations.

GEN F1xX_add(GEN P, GEN Q, ulong p)

GEN FIxX _renormalize(GEN x, long 1), as normalizepol, where 1 = 1g(x), in place.

GEN F1xX_shift(GEN a, long n)

68

5.6.11 F1xgX. See FpXQX operations.

GEN FlxqX mul(GEN x, GEN y, GEN T, ulong p)

GEN FlxqX_Flxq -mul(GEN P, GEN U, GEN T, ulong p)

GEN FlxqX normalize(GEN z, GEN T, ulong p)

GEN FlxqX_sqr(GEN x, GEN T, ulong p)

GEN FlxqX_divrem(GEN x, GEN y, GEN T, ulong p, GEN *pr)
GEN FlxqX red(GEN z, GEN T, ulong p)

GEN FlxqXV _prod(GEN V, GEN T, ulong p)

GEN FlxqXQ_pow(GEN x, GEN n, GEN S, GEN T, ulong p)

5.6.12 Flv, Flm. See FpV, FpM operations.

GEN Flm_Flc_mul(GEN x, GEN y, ulong p)

GEN Flm_deplin(GEN x, ulong p)

GEN Flm_gauss(GEN a, GEN b, ulong p)

GEN Flm_indexrank (GEN x, ulong p)

GEN Flm_inv(GEN x, ulong p)

GEN Flm ker(GEN x, ulong p)

GEN Flm ker sp(GEN x, ulong p, long deplin), as Flm ker, in place (destroys x).
GEN Flm _mul(GEN x, GEN y, ulong p)

5.6.13 F1xqV, F1xgM. See FqV, FgM operations.
GEN FlxqM ker(GEN x, GEN T, ulong p)

5.6.14 QX.
GEN QXQ_inv(GEN A, GEN B) returns the inverse of A modulo B where A and B are QXs.

5.6.15 RgX.
GEN RgX_add(GEN x,GEN y) adds x and y.
GEN RgX _sub(GEN x,GEN y) subtracts x and y.
GEN RgX neg(GEN x,GEN p) returns —x.

The functions above are currently implemented through the generic routines, but it might
change in the future.

GEN RgX _mul(GEN x, GEN y) multiplies the two t_POL (in the same variable) x and y. Uses
Karatsuba algorithm.

GEN RgX_mulspec(GEN a, GEN b, long na, long nb). Internal routine: a and b are arrays
of coefficients representing polynomials == a[i]X? and =7 b[i]X’. Returns their product (as a
true GEN).

69

GEN RgX_sqr(GEN x) squares the t_POL x. Uses Karatsuba algorithm.

GEN RgX_sqrspec(GEN a, long na). Internal routine: a is an array of coefficients representing
polynomial } > a[i]X*. Return its square (as a true GEN).

GEN RgX_divrem(GEN x, GEN y, GEN *r)
GEN RgX_div(GEN x, GEN y, GEN *r)

GEN RgX_div_by X x(GEN A, GEN a, GEN *r) returns the quotient of the RgX A by (X — a),
and sets r to the remainder A(a).

GEN RgX_rem(GEN x, GEN y, GEN *r)

GEN RgX mulXn(GEN x, long n) returns x+t". This may be a t_FRAC if n < 0 and the valuation
of x is not large enough.

GEN RgX shift(GEN x, long n) returns x *t" if n > 0, and x\¢~" otherwise.

GEN RgX_shift_shallow (GEN x, long n) as RgX_shift, but shallow (coefficients are not copied).
This is not suitable for gerepile or gerepileupto.

GEN RgX extgcd(GEN x, GEN y, GEN *u, GEN *v) returns d = GCD(x,y), and sets *u, *v to
the Bezout coefficients such that sux + *vy = d.

GEN RgXQ_mul(GEN y, GEN x, GEN T)

GEN RgXQ_norm(GEN x, GEN T) returns the norm of Mod(x, T).

GEN RgXQ_sqr(GEN x, GEN T)

GEN RgXQ powers(GEN x, long n, GEN T, GEN p) returns [x°,...,x"] as a t_VEC of RgXQs.

GEN RgXQC_red(GEN z, GEN T) z a vector whose coefficients are RgXs (arbitrary GENs in fact),
reduce them to RgXQs (applying grem coefficientwise) in a t_COL.

GEN RgXQV _red(GEN z, GEN T) z a t_POL whose coefficients are RgXs (arbitrary GENs in fact),
reduce them to RgXQs (applying grem coefficientwise) in a t_VEC.

GEN RgXQX_red(GEN z, GEN T) z a t_POL whose coefficients are RgXs (arbitrary GENs in fact),
reduce them to RgXQs (applying grem coefficientwise).

GEN RgXQX_mul(GEN x, GEN y, GEN T)
GEN RgX_Rg mul(GEN y, GEN x) multiplies the RgX y by the scalar x.
GEN RgX _Rg div(GEN y, GEN x) divides the RgX y by the scalar x.

GEN RgXQX RgXQ mul(GEN x, GEN y, GEN T) multiplies the RgXQX y by the scalar (RgXQ)
X.

GEN RgXQX_sqr(GEN x, GEN T)

GEN RgXQX_divrem (GEN x, GEN y, GEN T, GEN *pr)

GEN RgXQX_div(GEN x, GEN y, GEN T, GEN *r)

GEN RgXQX rem(GEN x, GEN y, GEN T, GEN *r)

GEN RgX _rescale(GEN P, GEN h) returns h9°&(") P(z/h). P is an RgX and h is non-zero. (Leaves

small objects on the stack. Suitable but inefficient for gerepileupto.)

70

GEN RgX_unscale(GEN P, GEN h) returns P(hz). (Leaves small objects on the stack. Suitable
but inefficient for gerepileupto.)

GEN RgXV _unscale(GEN v, GEN h)

5.6.16 Conversions involving single precision objects

5.6.16.1 To single precision

GEN ZX to_FIx(GEN x, ulong p) reduce ZX x modulo p (yielding an F1x).

GEN ZV _to_Flv(GEN x, ulong p) reduce ZV x modulo p (yielding an Flv).

GEN ZXV _to FIxV (GEN v, ulong p), as ZX_to_Flx, repeatedly called on the vector’s coefficients.

GEN ZXX_to_F1xX(GEN B, ulong p, long v), as ZX_to_Flx, repeatedly called on the polyno-
mial’s coefficients.

GEN ZXXV_to_FIxXV (GEN V, ulong p, long v), as ZXX_to_F1xX, repeatedly called on the
vector’s coeflicients.

GEN ZM _to_FIlm(GEN x, ulong p) reduce ZM x modulo p (yielding an Flm).
GEN ZV _to_zv(GEN z), converts coefficients using itos

GEN ZV _to_nv(GEN z), converts coefficients using itou

GEN ZM _to_zm(GEN z), converts coefficients using itos

GEN FqC_to_FIxC(GEN x, GEN T, GEN p), converts coefficients in Fq to coefficient in Flx, result
being a column vector.

GEN FqV _to_FIxV (GEN x, GEN T, GEN p), converts coeflicients in Fq to coefficient in Flx, result
being a line vector.

GEN FgM_to_FIxM(GEN x, GEN T, GEN p), converts coefficients in Fq to coefficient in Flx.
5.6.16.2 From single precision

GEN Flx_to_ZX(GEN z), converts to ZX (t_POL of non-negative t_INTs in this case)

GEN Flx_to_ZX _inplace(GEN z), same as F1x_to_ZX, in place (z is destroyed).

GEN FIxX _to ZXX(GEN B), converts an F1xX to a polynomial with ZX or t_INT coefficients (re-
peated calls to F1x_to_ZX).

GEN FIxC_to_ZXC(GEN x), converts a vector of F1x to a column vector of polynomials with t_INT
coefficients (repeated calls to F1x_to_ZX).

GEN FIxM _to_ ZXM(GEN z), converts a matrix of F1x to a matrix of polynomials with t_INT
coefficients (repeated calls to F1x_to_ZX).

GEN zx to_ZX(GEN z), as F1x_to_ZX, without assuming coefficients are non-negative.

GEN Flc_to_ZC(GEN z), converts to ZC (t_COL of non-negative t_INTs in this case)

GEN Flv_to_ZV (GEN z), converts to ZV (t_VEC of non-negative t_INTs in this case)

GEN Flm_to_ZM(GEN z), converts to ZM (t_MAT with non-negative t_INTs coefficients in this case)
GEN zc_to_ZC(GEN z) as Flc_to_ZC, without assuming coefficients are non-negative.

GEN zv_to_ZV (GEN z) as Flv_to_ZV, without assuming coefficients are non-negative.

GEN zm_to_ZM (GEN z) as Flm_to_ZM, without assuming coefficients are non-negative.

71

5.6.16.3 Mixed precision linear algebra Assumes dimensions are compatible. Multiply a
multiprecision object by a single-precision one.

GEN RgM _zc_mul(GEN x, GEN y)

GEN RgM_zm mul(GEN x, GEN y)

GEN RgV _zc_mul(GEN x, GEN y)

GEN RgV_zm mul(GEN x, GEN y)

GEN ZM _zc_mul(GEN x, GEN y)

GEN ZM_zm_mul(GEN x, GEN y)

5.6.16.4 Miscellaneous

GEN zero_Flx(long sv) returns a zero Flx in variable v.
GEN zero_zx(long sv) as zero Flx

GEN polx_Flx(long sv) returns the variable v as degree 1 Flx.
GEN polx_zx(long sv) as polx Flx

GEN Fl to_Flx(ulong x, long sv) converts a unsigned long to a scalar Flx in shifted variable
sv.

GEN Z_to_Flx(GEN x, ulong p, long v) converts a t_INT to a scalar polynomial in variable v.

GEN Flx_to_Flv(GEN x, long n) converts from Flx to Flv with n components (assumed larger
than the number of coefficients of x).

GEN zx_to_zv(GEN x, long n) as Flx_to_Flv.

GEN Flv_to_FIx(GEN x, long sv) converts from vector (coefficient array) to (normalized) poly-
nomial in variable v.

GEN zv_to_zx(GEN x, long n) as Flv_to_Flx.
GEN matid_Flm (long n) returns an Flm which is an n X n identity matrix.

GEN Flm _to_FIxV (GEN x, long sv) converts the colums of Flm x to an array of Flx (repeated
calls to F1v_to_F1x).

GEN zm_to_zxV (GEN x, long n) as Flm to_F1xV.

GEN Flm_to_FIxX (GEN x, long sv,long w) converts the colums of Flm x to the coefficient of
an F1xX, and normalize the result.

GEN FIxV _to FIm(GEN v, long n) reverse Flm to F1xV, to obtain an F1m with n rows (repeated
calls to F1x_to_F1v).

GEN FlxX_to_FIm(GEN v, long n) reverse Flm_to_F1xX, to obtain an F1lm with n rows (repeated
calls to F1x_to_Flv).

72

5.7 Operations on general PARI objects.

5.7.1 Assignment
void gaffsg(long s, GEN x) assigns the long s into the object x.

void gaffect(GEN x, GEN y) assigns the object x into the object y.

5.7.2 Conversions

5.7.2.1 Scalars

double rtodbl(GEN x) applied to a t_REAL x, converts x into a double if possible.
GEN dbltor(double x) converts the double x into a t_REAL.

double gtodouble(GEN x) if x is a real number (not necessarily a t_REAL), converts x into a
double if possible.

long gtolong (GEN x) if x is an integer (not necessarily a t_INT), converts x into a long if possible.
GEN fractor (GEN x, long 1) applied to a t_FRAC x, converts x into a t_REAL of length prec.

GEN quadtoc(GEN x, long 1) applied to a t_QUAD x, converts x into a t_REAL or t_COMPLEX
depending on the sign of the discriminant of x, to precision 1 BIL-bit words.line brk at hyphen here
[GN]

GEN ctofp(GEN x, long prec) converts the t_COMPLEX x to a a complex whose real and imaginary
parts are t_REAL of length prec, using gtofp;

GEN gtofp(GEN x, long prec) converts the complex number x (t_INT, t_REAL, t_FRAC, t_QUAD
or t_COMPLEX) to either a t_REAL or t_COMPLEX whose components are t_REAL of length prec.

GEN gcvtop(GEN x, GEN p, long 1) converts x into a t_PADIC p-adic number of precision 1.

GEN gprec(GEN x, long 1) returns a copy of x whose precision is changed to [digits. The
precision change is done recursively on all components of x. Digits means decimal, p-adic and
X-adic digits for t_REAL, t_SER, t_PADIC components, respectively.

GEN gprec_w(GEN x, long 1) returns a shallow copy of x whose t_REAL components have their
precision changed to | words. This is often more useful than gprec. Shallow copy means that
unaffected components are not copied; in particular, this funciton is not suitable for gerepileupto.

GEN gprec_wtrunc(GEN x, long 1) returns a shallow copy of x whose t_REAL components have
their precision truncated to | words. Contrary to gprec_w, this function may never increase the
precision of x. Shallow copy means that unaffected components are not copied; in particular, this
funciton is not suitable for gerepileupto.

5.7.2.2 Modular objects

GEN gmodulo(GEN x, GEN y) creates the object Mod(x,y) on the PARI stack, where x and y
are either both t_INTs, and the result is a t_INTMOD, or x is a scalar or a t_POL and y a t_POL,
and the result is a t_POLMOD.

GEN gmodulgs(GEN x, long y) same as gmodulo except y is a long.

GEN gmodulss(long x, long y) same as gmodulo except both x and y are longs.

73

5.7.2.3 Between polynomials and coefficient arrays

GEN gtopoly(GEN x, long v) converts or truncates the object x into a t_POL with main variable
number v. A common application would be the conversion of coefficient vectors (coefficients are
given by decreasing degree). E.g. [2,3] goes to 2xv + 3

GEN gtopolyrev(GEN x, long v) converts or truncates the object x into a t_POL with main
variable number v, but vectors are converted in reverse order compared to gtopoly (coefficients
are given by increasing degree). E.g. [2,3] goes to 3*xv + 2. In other words the vector represents
a polynomial in the basis (1,v,v?%,v3,...).

GEN normalizepol (GEN x) applied to an unnormalized t_POL x (with all coefficients correctly set
except that leading term(x) might be zero), normalizes x correctly in place and returns x. For
internal use.

The following routines do not copy coefficients on the stack (they only move pointers around),
hence are very fast but not suitable for gerepile calls. Recall that an RgV (resp. an RgX, resp. an
RgM) is a t_VEC or t_COL (resp. a t_POL, resp. a t_MAT) with arbitrary components. Similarly, an
RgXV is a t_VEC or t_COL with RgX components, etc.

GEN RgV_to . RgX(GEN x, long v) converts the RgV x to a (normalized) polynomial in variable v
(as gtopolyrev, without copy).

GEN RgX to_RgV (GEN x, long N) converts the t_POL x to a t_COL v with N components. Other
types than t_POL are allowed for x, which is then considered as a constant polynomial. Coefficients
of x are listed by increasing degree, so that y[i] is the coefficient of the term of degree i — 1 in x.

GEN RgM _to_RgXV (GEN x, long v) converts the RgM x to a t_VEC of RgX, by repeated calls to
RgV_to_RgX.

GEN RgXV _to_ RgM(GEN v, long N) converts the vector of RgX v to a t_MAT with N rows, by
repeated calls to RgX_to_RgV.

GEN RgM_to_RgXX(GEN x, long v,long w) converts the RgM x into a t_POL in variable v,
whose coefficients are t_POLs in variable w. This is a shortcut for

RgV_to_RgX(RgM_to_RgXV(x, w), v);

There are no consistency checks with respect to variable priorities: the above is an invalid object
if varncmp(v,w) > 0.

GEN RgXX_to.RgM(GEN x, long N) converts the t_POL x with RgX (or constant) coefficients
to a matrix with N rows.

GEN RgXY _swap(GEN P, long n, long w) converts the bivariate polynomial P(u,v) (a t_POL
with t_POL coefficients) to P(pol_x[w],u), assuming n is an upper bound for deg, (P).

GEN greffe(GEN x, long 1, int use_stack) applied to a t_POL x, creates a t_SER of length 1
starting with x, but without actually copying the coefficients, just the pointers. If use_stack is 0,
this is created through malloc, and must be freed after use. Intended for internal use only.

GEN gtoser(GEN x, long v) converts the object x into a t_SER with main variable number v.
GEN gtocol(GEN x) converts the object x into a t_COL
GEN gtomat (GEN x) converts the object x into a t_MAT.

GEN gtovec(GEN x) converts the object x into a t_VEC.

74

GEN gtovecsmall (GEN x) converts the object x into a t_VECSMALL.

GEN normalize (GEN x) applied to an unnormalized t_SER x (i.e. type t_SER with all coefficients
correctly set except that x[2] might be zero), normalizes x correctly in place. Returns x. For
internal use.

5.7.3 Clean Constructors

GEN zeropadic(GEN p, long n) creates a 0 t_PADIC equal to O(p®).

GEN zeroser(long v, long n) creates a 0 t_SER in variable v equal to O(X™).

GEN scalarser(GEN x, long v, long prec) creates a constant t_SER in variable v and precision
prec, whose constant coefficient is (a copy of) x, in other words x + O(vP*®¢). Assumes that x is
nON-Zero.

GEN zeropol(long v) creates a 0 t_POL in variable v.

GEN scalarpol(GEN x, long v) creates a constant t_POL in variable v, whose constant coefficient
is (a copy of) x.

GEN zerocol(long n) creates a t_COL with n components set to gen_0.
GEN zerovec(long n) creates a t_VEC with n components set to gen_O.

GEN col_ei(long n, long i) creates a t_COL with n components set to gen_0, but the i-th one
which us set to gen_1 (i-th vector in the canonical basis).

GEN vec_ei(long n, long i) creates a t_VEC with n components set to gen_0, but the i-th one
which us set to gen_1 (i-th vector in the canonical basis).

GEN zeromat(long m, long n) creates a t_MAT with m x n components set to gen_0. Note that
the result allocates a single column, so modifying an entry in one column modifies it in all columns.
To fully allocate a matrix initialized with zero entries, use zeromatcopy.

GEN zeromatcopy(long m, long n) creates a t_MAT with m x n components set to gen_0. Note
that

See also next section for analogs of the following functions:
GEN mkcolcopy (GEN x) creates a 1-dimensional t_COL containing x.
GEN mkmatcopy (GEN x) creates a 1-by-1 t_MAT containing x.
GEN mkveccopy (GEN x) creates a 1-dimensional t_VEC containing x.
GEN mkvec2copy (GEN x, GEN y) creates a 2-dimensional t_VEC equal to [x,y].
GEN mkvecs(long x) creates a 1-dimensional t_VEC containing stoi (x).
GEN mkvec2s(long x, long y) creates a 2-dimensional t_VEC containing [stoi(x), stoi(y)].

GEN mkvec3s(long x, long y, long z) creates a 3-dimensional t_VEC containing [stoi(x),
stoi(y), stoi(z)].

GEN mkvecsmall(long x) creates a 1-dimensional t_VECSMALL containing x.
GEN mkvecsmall2(long x, long y) creates a 2-dimensional t_VECSMALL containing [x, y].

GEN mkvecsmall3(long x, long y, long z) creates a 3-dimensional t_VECSMALL containing
[x, y, zl.

75

5.7.4 Unclean Constructors

Contrary to the policy of general PARI functions, the functions in this subsection do not copy
their arguments, nor do they produce an object a priori suitable for gerepileupto. In particular,
they are faster than their clean equivalent (which may not exist). If you restrict their arguments
to universal objects (e.g gen_0), then the above warning does not apply.

GEN mkcomplex (GEN x, GEN y) creates the t_COMPLEX x + iy.
GEN mkfrac(GEN x, GEN y) creates the t_FRAC x/y. Assumes that y > 1 and (z,y) = 1.

GEN mkrfrac(GEN x, GEN y) creates the t_RFRAC x/y. Assumes that y is a t_POL, x a compatible
type whose variable has lower or same priority, with (z,y) = 1.

GEN mkcol(GEN x) creates a 1-dimensional t_COL containing x.

GEN mkintmod (GEN x, GEN y) creates the t_INTMOD Mod(x, y). The input must be t_INTs
satisfying 0 < x < y.

GEN mkpolmod (GEN x, GEN y) creates the t_POLMOD Mod(x, y). The input must satisfy degz <
deg y with respect to the main variable of the t_POL y. x may be a scalar.

GEN mkmat (GEN x) creates a 1-by-1 t_MAT containing x.

GEN mkvec(GEN x) creates a 1-dimensional t_VEC containing x.

GEN mkvec2(GEN x, GEN y) creates a 2-dimensional t_VEC equal to [x,y].

GEN mkvec3(GEN x, GEN y, GEN z) creates a 3-dimensional t_VEC equal to [x,y,z].

GEN mkvec4 (GEN x, GEN y, GEN z, GEN t) creates a 4-dimensional t_VEC equal to [x,y,z,t].

GEN mkintn(long n, ...) returns the non-negative t_INT whose development in base 232 is
given by the following n words (unsigned long). It is assumed that all such arguments are less
than 232 (the actual sizeof (long) is irrelevant, the behaviour is also as above on 64-bit machines).

mkintn(3, a2, al, a0);
returns a2 + a;2%% + ap.

GEN mkpoln(long n, ...) Returns the t_POL whose n coefficients (GEN) follow, in order of
decreasing degree.

mkpoln(3, gen_1, gen_2, gen_0);

returns the polynomial X2 + 2X (in variable 0, use setvarn if you want other variable numbers).
Beware that n is the number of coefficients, hence one more than the degree.

GEN mkvecn(long n, ...) returns the t_VEC whose n coefficients (GEN) follow.

GEN mkcoln(long n, ...) returns the t_COL whose n coefficients (GEN) follow.

76

5.7.5 Integer parts

GEN gfloor (GEN x) creates the floor of x, i.e. the (true) integral part.

GEN gfrac(GEN x) creates the fractional part of x, i.e. x minus the floor of x.

GEN gceil (GEN x) creates the ceiling of x.

GEN ground (GEN x) rounds towards +oo the components of x to the nearest integers.

GEN grndtoi(GEN x, long *e) same as ground, but in addition sets *e to the binary exponent
of x — ground(x). If this is positive, all significant bits are lost. This kind of situation raises an
error message in ground but not in grndtoi.

GEN gtrunc(GEN x) truncates x. This is the false integer part if x is a real number (i.e. the unique
integer closest to x among those between 0 and x). If x is a t_SER, it is truncated to a t_POL; if x
is a t_RFRAC, this takes the polynomial part.

GEN gcvtoi(GEN x, long *e) same as grndtoi except that rounding is replaced by truncation.

5.7.6 Valuation and shift

GEN gshift|z](GEN x, long n[, GEN z]) yields the result of shifting (the components of) x left by
n (if n is non-negative) or right by —n (if n is negative). Applies only to t_INT and vectors/matrices
of such. For other types, it is simply multiplication by 2.

GEN gmul2n(z|(GEN x, long n[, GEN z]) yields the product of x and 2*. This is different from
gshift when n is negative and x is a t_INT: gshift truncates, while gmul2n creates a fraction if
necessary.

long ggval(GEN x, GEN p) returns the greatest exponent e such that p® divides x, when this
makes sense.

long gval(GEN x, long v) returns the highest power of the variable number v dividing the
t_POL x.

long polvaluation(GEN P, GEN *z) returns the valuation v of the t_POL P with respect to its
main variable X. Check whether coefficients are 0 using gcmpO. If z is non-NULL, set it to P/X".

long polvaluation_inexact (GEN P, GEN *z) as polvaluation but use isexactzero instead of
gcmpO.

long ZX _valuation(GEN P, GEN *z) as polvaluation, but assumes P has t_INT coeflicients.

5.7.7 Comparison operators

int isexactzero(GEN x) returns 1 (true) if x is exactly equal to 0, O (false) otherwise. Note that
many PARI functions return a pointer to gen_0 when they are aware that the result they return is
an exact zero, so it is almost always faster to test for pointer equality first, and call isexactzero
(or gcmpO) only when the first test fails.

int isinexact (GEN x) returns O (false) if x has an inexact component, and 1 (true) otherwise.

int isint(GEN x, GEN *n) returns 0 (false) if x does not round to an integer. Otherwise, returns
1 (true) and set n to the rounded value.

int issmall(GEN x, long *n) returns 0 (false) if x does not round to a small integer (suitable for
itos). Otherwise, returns 1 (true) and set n to the rounded value.

77

int gempO(GEN x) returns 1 (true) if x is equal to 0, 0 (false) otherwise.

int gempl(GEN x) returns 1 (true) if x is equal to 1, 0 (false) otherwise.

int gemp_1(GEN x) returns 1 (true) if x is equal to —1, 0 (false) otherwise.

long gecmp(GEN x, GEN y) comparison of x with y (returns the sign of x —y).
long gcmpsg(long s, GEN x) comparison of the long s with x.

long gcempgs(GEN x, long s) comparison of x with the long s.

long lexcmp (GEN x, GEN y) comparison of x with y for the lexicographic ordering.

long gequal (GEN x, GEN y) returns 1 (true) if x is equal to y, 0 otherwise. A priori, this makes
sense only if x and y have the same type. When the types are different, a true result means that
x - y was successfully computed and found equal to 0 (by gcmp0). In particular

gequal (cgetg(l, t_VEC), gen_0)

is true, and the relation is not transitive. E.g. an empty t_COL and an empty t_VEC are not equal
but are both equal to gen_O.

long gequalsg(long s, GEN x) returns 1 (true) if the long s is equal to x, 0 otherwise.
long gequalgs(GEN x, long s) returns 1 (true) if x is equal to the long s, 0 otherwise.

long iscomplex (GEN x) returns 1 (true) if x is a complex number (of component types embed-
dable into the reals) but is not itself real, 0 if x is a real (not necessarily of type t_REAL), or raises
an error if x is not embeddable into the complex numbers.

long ismonome (GEN x) returns 1 (true) if x is a non-zero monomial in its main variable, 0 oth-
erwise.

5.7.8 Generic unary operators

GEN gnegz|(GEN x[, GEN z]) yields —x.

GEN gabs|z](GEN x[, GEN z]) yields |x|.

GEN gsqr(GEN x) creates the square of x.

GEN ginv (GEN x) creates the inverse of x.

5.7.9 Divisibility, Euclidean division
GEN gdivexact(GEN x, GEN y) returns the quotient x/y, assuming y divides x.
int gdvd(GEN x, GEN y) returns 1 (true) if y divides x, 0 otherwise.

GEN gdiventres(GEN x, GEN y) creates a 2-component vertical vector whose components are the
true Euclidean quotient and remainder of x and y.

GEN gdivent|z|(GEN x, GEN y[, GEN z]) yields the true Euclidean quotient of x and the t_INT
or t_POL y.

GEN gdiventsg|z|(long s, GEN y[, GEN z]), as gdivent except that x is a long.

GEN gdiventgs(z|(GEN x, long s[, GEN z]), as gdivent except that y is a long.

78

GEN gmod[z|(GEN x, GEN y[, GEN z]) yields the true remainder of x modulo the t_INT or
t_POL y. A t_REAL or t_FRAC y is also allowed, in which case the remainder is the unique real r
such that 0 < r < |y| and y = ¢x + r for some (in fact unique) integer q.

GEN gmodsg[z](long s, GEN y[, GEN z]) as gmod, except x is a long.
GEN gmodgs|z](GEN x, long s[, GEN z]) as gmod, except y is a long.

GEN gdivmod (GEN x, GEN y, GEN xr) If r is not equal to NULL or ONLY_REM, creates the (false)
Euclidean quotient of x and y, and puts (the address of) the remainder into *r. If r is equal
to NULL, do not create the remainder, and if r is equal to ONLY_REM, create and output only the
remainder. The remainder is created after the quotient and can be disposed of individually with a
cgiv(xr).

GEN poldivrem (GEN x, GEN y, GEN *r) same as gdivimod but specifically for t_POLs x and vy,
not necessarily in the same variable. Either of x and y may also be scalars (treated as polynomials
of degree 0)

GEN gdeuc(GEN x, GEN y) creates the Euclidean quotient of the t_POLs x and y. Either of x and
y may also be scalars (treated as polynomials of degree 0)

GEN grem (GEN x, GEN y) creates the Fuclidean remainder of the t_POL x divided by the t_POL y.

GEN gdivround(GEN x, GEN y) if x and y are t_INT, as diviiround. Operate componentwise if
x is a t_COL, t_VEC or t_MAT. Otherwise as gdivent.

GEN centermod_i(GEN x, GEN y, GEN y2), as centermodii, componentwise.

GEN centermod(GEN x, GEN y), as centermod_ i, except that y2 is computed (and left on the
stack for efficiency).

GEN ginvmod(GEN x, GEN y) creates the inverse of x modulo y when it exists. y must be of type
t_INT (in which case x is of type t_INT) or t_POL (in which case x is either a scalar type or a
t_POL).

5.7.10 GCD, content and primitive part

GEN subres(GEN x, GEN y) creates the resultant of the t_POLs x and y computed using the sub-
resultant algorithm. Either of x and y may also be scalars (treated as polynomials of degree 0)

GEN ggcd(GEN x, GEN y) creates the GCD of x and y.
GEN glem(GEN x, GEN y) creates the LCM of x and y.

GEN gbezout(GEN x,GEN y, GEN *u,GEN *v) creates the GCD of x and y, and puts (the ad-
dresses of) objects u and v such that ux + vy = ged(x,y) into *u and *v.

GEN bezoutpol(GEN a,GEN b, GEN *u,GEN *v), returns the GCD d of t_INTs a and b and sets
u, v to the Bezout coefficients such that au + bv = d.

GEN content (GEN x) creates the GCD of all the components of x.
GEN primitive_part(GEN x, GEN *c), sets c to content (x) and returns the primitive part x / c.

GEN primpart(GEN x) as primitive_part but the content is lost. (For efficiency, the content
remains on the stack.)

79

5.7.11 Generic binary operators. Let “op” be a binary operation among
op=add: addition (x + y).
op=sub: subtraction (x - y).
op=mul: multiplication (x * y).
op=div: division (x / y).
op=max: maximum (max(x, y))
op=min: minimum (min(x, y))
The names and prototypes of the functions corresponding to op are as follows:
GEN gop[z](GEN x, GEN y[, GEN z])
GEN gopgs|z](GEN x, long s[, GEN z])
GEN gopsg|z](long s, GEN y[, GEN z])

GEN gpow (GEN x, GEN y, long 1) creates xY. If y is a t_INT, return powgi(x,y) (the precision
1 is not taken into account). Otherwise, the result is exp(y * log(x)) computed to precision 1.

GEN gpowgs(GEN x, long n) creates x® using binary powering.
GEN powgi(GEN x, GEN y) creates x¥, where y is a t_INT, using left-shift binary powering.

GEN gsubst(GEN x, long v, GEN y) substitutes the object y into x for the variable number v.

5.7.12 Miscellaneous functions

const char* type_name(long t) given a type number t this routine returns a string containing
its symbolic name. E.g type_name (t_INT) returns "t_INT". The return value is read-only.

5.8 Further type specific functions.

5.8.1 Vectors and Matrices See Section 5.7.3 and Section 5.7.4 for various useful constructors.
Coefficients are accessed and set using gel, gcoeff, see Section 5.2.6. There are many internal
functions to extract or manipulate subvectors or submatrices but, like the accessors above, none of
them are suitable for gerepileupto. Worse, there are no type verification, nor bound checking, so
use at your own risk.

80

Note. In the function names below, 7 stands for interval and p for permutation.

GEN shallowcopy (GEN x) returns a t_GEN whose components are the components of x (no copy is
made). The result may now be used to compute in place without destroying z. This is essentially
equivalent to

GEN y = cgetg(lg(x), typ(x));
for (i = 1; i < 1g(x); i++) y[i] = x[i];
return y;

except that t_POLMOD (resp. t_MAT) are treated specially since a dummy copy of the representative
(resp. all columns) is also made.

GEN shallowtrans(GEN x) returns the transpose of x, without copying its components, i. e., it
returns a GEN whose components are (physically) the components of z. This is the internal function
underlying gtrans.

GEN shallowconcat (GEN x, GEN y) concatenate xr and y, without copying compoents, i. e., it
returns a GEN whose components are (physically) the comonents of z and y.

GEN vconcat(GEN A, GEN B) concatenate vertically the two t_MAT A and B of compatible dimen-
sions. A NULL pointer is accepted for an empty matrix. See shallowconcat.

GEN row (GEN A, long i) return A[i,], the i-th row of the t_MAT A.

GEN row_i(GEN A, long i, long jl1, long j2) return part of the i-th row of t_MAT A: A[i, j1],
A[i,jl + 1] cee ,A[i,jg]. Assume jl < jg.

GEN rowslice(GEN A, long il, long i2) return the t_MAT formed by the i;-th through io-th
rows of t_MAT A. Assume i1 < 5.

GEN rowpermute(GEN A, GEN p), p being a t_VECSMALL representing a list [p1,...,p,] of rows
of t_MAT A, returns the matrix whose rows are A[p1,],..., A[pn,].

GEN rowslicepermute(GEN A, GEN p, long x1, long x2), short for
rowslice(rowpermute(A,p), x1, x2)
(more efficient).

GEN vecslice(GEN A, long j1, long j2), return A[ji],...,A[j2]. If A is a t_MAT, these corre-
spond to columns of A. The object returned has the same type as A (t_VEC, t_COL or t_MAT).
Assume j; < js.

GEN vecpermute(GEN A, GEN p) p is a t_VECSMALL representing a list [p1,...,p,] of indices.
Returns a GEN which has the same type as A (t_VEC, t_COL or t_MAT), and whose components are
Alpi], ..., Alpn]. If A is a t_MAT, these are the columns of A.

GEN vecslicepermute(GEN A, GEN p, long y1, long y2) short for
vecslice(vecpermute(A,p), yl, y2)

(more efficient).

5.8.2 Low-level vectors and columns functions

Theses functions handle t_VEC as an abstract container type of GENs. No specific meaning is
attached to the content.

They accept both t_VEC and t_COL as input, but col functions always return t_COL and vec
functions alway return t_VEC.

81

Note. All the functions below are shallow.

GEN const_col(long n, long c) returns a t_COL of n components equal to c.

GEN const_vec(long n, long c) returns a t_VEC of n components equal to c.

int vec_isconst (GEN v) Returns 1 if all the components of v are equal, else returns 0.

int vec_is1tol(GEN v) Returns 1 if the components of v are pair-wise distinct, i.e. if ¢ — v[i] is
a 1-to-1 mapping, else returns 0.

GEN vec_shorten(GEN v, long n) shortens the vector v to n components.

GEN vec_lengthen(GEN v, long n) lengthens the vector v to n components. The extra compo-
nents are not initialised.

5.8.3 Function to handle t_VECSMALL

Theses functions handle t_VECSMALL as an abstract container type of small signed integers.
No specific meaning is attached to the content.

GEN const_vecsmall(long n, long c) returns a t_VECSMALL of n components equal to c.
GEN vec_to_vecsmall(GEN z) identical to ZV_to_zv(z).

GEN vecsmall to_vec(GEN z) identical to zv_to_ZV(z).

GEN vecsmall to_col(GEN z) identical to zv_to_ZC(z).

GEN vecsmall _copy (GEN x) makes a copy of x on the stack.

GEN vecsmall _shorten(GEN v, long n) shortens the t_VECSMALL v to n components.

GEN vecsmall lengthen(GEN v, long n) lengthens the t_VECSMALL v to n components. The
extra components are not initialised.

GEN vecsmall_indexsort (GEN x) performs an indirect sort of the components of the t_VECSMALL
x and return a permutation stored in a t_VECSMALL.

void vecsmall_sort (GEN v) sorts the t_VECSMALL v in place.
GEN vecsmall uniq(GEN v) given a sorted t_VECSMALL v, return the vector of unique occurences.
int vecsmall lexcmp (GEN x, GEN y) compares two t_VECSMALL lexically

int vecsmall prefixcmp (GEN x, GEN y) truncate the longest t_VECSMALL to the length of the
shortest and compares them lexicographically.

GEN vecsmall prepend(GEN V, long s) prepend s to the t_VECSMALL V.

GEN vecsmall append (GEN V, long s) append s to the t_VECSMALL V.

GEN vecsmall_concat(GEN u, GEN v) concat the t_VECSMALL u and v.

long vecsmall coincidence(GEN u, GEN v) returns the numbers of indices where u and v agree.

long vecsmall pack(GEN v, long base, long mod) handles the t_VECSMALL v as the digit of
a number in base base and return this number modulo mod. This can be used as an hash function.

82

5.8.4 Functions to handle bits-vectors Theses functions manipulate vectors of bits (stored in
t_VECSMALL). Bits are numbered from 0.

GEN bitvec_alloc(long n) allocates a bits-vector suitable for n bits.

GEN bitvec_shorten(GEN bitvec, long n) shortens a bits-vector bitvec to n bits.

long bitvec_test (GEN bitvec, long b) returns the bit of index b of bitvec.

void bitvec_set(GEN bitvec, long b) (in place) sets the bit of index b of bitvec.

void bitvec_clear (GEN bitvec, long b) (in place) clears the bit of index b of bitvec.

5.8.5 Functions to handle vectors of t_VECSMALL Theses functions manipulate vectors of
t_VECSMALL (vecvecsmall).

GEN vecvecsmall _sort (GEN x) sorts lexicographically the components of the vector x.

GEN vecvecsmall indexsort (GEN x) performs an indirect lexicographic sorting of the components
of the vector x and return a permutation stored in a t_VECSMALL.

long vecvecsmall search(GEN x, GEN y, long flag) x being a sorted vecvecsmall and y a
t_VECSMALL, search y inside x. fla has the same meaning as for setsearch.

83

84

Appendix A:
A Sample program and Makefile

We assume that you have installed the PARI library and include files as explained in Appendix
A or in the installation guide. If you chose differently any of the directory names, change them
accordingly in the Makefiles.

If the program example that we have given is in the file extgcd. c, then a sample Makefile might
look as follows. Note that the actual file examples/Makefile is more elaborate and you should
have a look at it if you intend to use install() on custom made functions, see Section 3.11.2.14.

CC = cc

INCDIR = /home/kb/PARI/pari/../GP/include
LIBDIR = /home/kb/PARI/pari/../GP/lib
CFLAGS = -0 -I$(INCDIR) -L$(LIBDIR)

all: extged

extged: extged.c
$(CC) $(CFLAGS) -o extgcd extgecd.c -lpari -1lm

We then give the listing of the program examples/extgcd.c seen in detail in Section 4.8.

#include <pari/pari.h>
/%
GP;install("extgcd", "GG&&", "gcdex", "./libextgcd.so");
*/
/* return d = gcd(a,b), sets u, v such that au + bv = gcd(a,b) */
GEN
extgcd(GEN A, GEN B, GEN U, GEN *V)
{
pari_sp av = avma;
GEN ux = gen_1, vx = gen_0, a = A, b = B;
if (typ(a) !'= t_INT || typ(b) !'= t_INT) pari_err(typeer, "extgcd");
if (signe(a) < 0) { a = negi(a); ux = negi(ux); }
while (!gcmpO(b))

{
GEN r, q = dvmdii(a, b, &r), v = vx;
vx = subii(ux, mulii(q, vx));
ux = v;
a=">b; b=r;
}
*U = ux;
*V = diviiexact(subii(a, mulii(A,ux)), B);
gerepileall(av, 3, &a, U, V); return a;
}
int

85

main ()
{
GEN x, y, d, u, v;
pari_init(1000000,2);
printf("x = "); x = gp_read_stream(stdin);
printf("y = "); y = gp_read_stream(stdin);
d = extgcd(x, y, &u, &v);
pariprintf("gcd = %Z\nu = %Z\nv = %Z\n", d,u,v);
return O;

86

Appendix B:
Summary of Available Constants

In this appendix we give the list of predefined constants available in the PARI library. All
of them are in the heap and not on the PARI stack. We start by recalling the universal objects
introduced in Section 4.1:

t_INT: gen_O, gen_1, gen_ml, gen_2
t_FRAC: ghalf

t_COMPLEX: gi

t_POL: pol_1[..], pol_x[..]

Only polynomials in the variables 0 and MAXVARN are defined initially. Use fetch_var() (see
Section 4.6.2.2) to create new ones.

The other objects are not initialized by default:

bern(i). This is the 2i-th Bernoulli number (By = 1, By = 1/6, By = —1/30, etc...). To
initialize them, use the function:

void mpbern(long n, long prec)

This creates the even numbered Bernoulli numbers up to Bo,_o as real numbers of precision
prec. They can then be used with the macro bern(i). Note that this is not a function but simply
an abbreviation, hence care must be taken that i is inside the right bounds (i.e. 0 < i <n —1)
before using it, since no checking is done by PARI itself.

geuler. This is Euler’s constant. It is initialized by the first call to mpeuler (see Section 3.3.6).
gpi. This is the number 7. It is initialized by the first call to mppi (see Section 3.3.6).

The use of both geuler and gpi is deprecated since it is always possible that some library
function increases the precision of the constant after you've computed it, hence modifying the
computation accuracy without your asking for it and increasing your running times for no good
reason. You should always use mpeuler and mppi (note that only the first call will actually compute
the constant, unless a higher precision is required).

In addition, some single or double-precision real numbers (like PI) are predefined, and their
list is in the file paricom.h.

Finally, one has access to a table of (differences of) primes through the pointer diffptr. This
is used as follows: when

void pari_init(size_t size, ulong maxprime)

is called, this table is initialized with the successive differences of primes up to (just a little beyond)
maxprime (see Section 4.1). The prime table will occupy roughly maxprime/log(maxprime) bytes
in memory, so be sensible when choosing maxprime (it is 500000 by default under gp). In any case,
the implementation requires that maxprime < 2B — 2048, whatever memory is available.

The largest prime computable using this table is available as the output of

ulong maxprime ()

87

After the following initializations (the names p and ptr are arbitrary of course)

byteptr ptr = diffptr;
ulong p = 0;

calling the macro NEXT_PRIME_VIADIFF_CHECK(p, ptr) repeatedly will assign the successive prime
numbers to p. Overrunning the prime table boundary will raise the error primer1, which will just
print the error message:

***x not enough precomputed primes

and then abort the computations. The alternative macro NEXT_PRIME_VIADIFF operates in the
same way, but will omit that check, and is slightly faster. It should be used in the following way:

byteptr ptr = diffptr;
ulong p = O;
if (maxprime() < goal) pari_err(primerl); /* not enough primes */
while (p <= goal) /* run through all primes up to goal */
{
NEXT_PRIME_VIADIFF(p, ptr);

}

Here, we use the general error handling function pari_err (see Section 4.7.3), with the codeword
primerl, raising the “not enough primes” error.

You can use the function initprimes from the file arith2.c to compute a new table on the
fly and assign it to diffptr or to a similar variable of your own. Beware that before changing
diffptr, you should really free the (malloced) precomputed table first, and then all pointers into
the old table will become invalid.

PARI currently guarantees that the first 6547 primes, up to and including 65557, are present
in the table, even if you set maxprime to zero. in the pari_init call.

88

Index

SomeWord refers to PARI-GP concepts.
SomeWord is a PARI-GP keyword.
SomeWord is a generic index entry.

A
absi_cmp L 53
absi_equal 53
absr_cmp 53
addhelp 36
addiio 9
addir 9
addis 9
addll 47
addllx 47
addmul 48
addrio 9
addrr 9
addumului L. 57
affii 49
affir 49
affiz 49
affrr 50
affsi 49
affsr 49
affsz 49
affui 50
affur 50
assignmento L. 18
AVINA e e e e e e e e 10, 19
B
bern 87
bezout 32, 57
bezoutpol 79
bfffo Lo 47
BIGDEFAULTPREC 9
BIGINT . . . o oo 24, 26
BIL 39
BITS_IN_LONG 9, 10, 39
bitvec_alloc 82
bitvec_clear 83
bitvec_set 82
bitvec_shorten 82
bitvec_test 82
bit_accuracy 10, 41
bit_accuracy_mul(x,y) 41
brute 000 29, 31

89

C
cbezout o7
ceilro ol
ceil_safe o1
centermod 79
centermodii 54
centermod_i 79
cged o7
cgetco 17, 44, 49
cgetg 16, 17, 44
cgetio 17, 44, 49
Cgetp 44
cgetr 17, 44, 49
cgiv 11, 45
character string 26
clone., 8, 19
cmpii ... Lo 52
cmpir 52
cmpis 52
cmprio 52
CIPTT . . . v oot o3
CIPTS . . v v v v e e e o3
cmpsi 52
CIPST . .« v v v v o e e 52
column vector 25
col_ei 75
complex number 23
COMPO . .« v v v v et et 43
constant_term 24, 44
const_col 81
const_vec 82
const_vecsmall 82
content 79
CONVErSioNS v v v v v 20
COPY = v v e e e e e e 19
copyifstack 47
creation 16
ctofpo 73
D
dbltor 20, 73
debug 31
debugging 31
DEBUGLEVEL 31, 32
DEBUGMEM 31
debugmem 31
DEFAULTPREC 9
definite binary quadratic form 25

degpol 24, 42 fetch_named_var 27

degree 24 fetch_user_var 27
delete_var 28 fetch_var 27
destruction 11 Flc_to_ZC 71
diffptr oL 8, 87 Flm_deplin 69
diviiexact 55 Flm_Flc_mul 69
diviiround 51 Flm_gauss 69
divis_rem 56 Flm_indexrank 69
diviuexact 55 Flm_dinv 69
diviu_rem 56 Flm_ker 69
divll 48 Flm_ ker_sp 69
divsi_rem 56 Flm_mul 69
divss_rem 56 Flm_to_F1xV 72
dvdii 0. 55 Flm_to_F1xX 72
dvdiiz 55 Flm_to_ZM 71
dvdisz 55 floorr 51
dvdiuzo 55 Flv_polint 68
dvmdii 55 Flv_roots_to_pol 68
dvmdiiz 55 Flv_to_Flx 72
dvmdis 55 Flv_to_ZV, 71
dvmdsi 55 F1xC_to_ZXC 71
dvmdss 55 F1xM_to_ZXM 71
FlxgM_ker 69
E FlxqV_roots_to_pol 68
effective length 21 FIXQXQpow . . v 09
FlxgXV_prod 68
entree 35 i
cqualii 53 FlxgX_divrem 68
QAL e FlxqX_Flxq mul 68
equalis, 53
. B FlxgX_mul 68
equaliuo 53 .
: - FlxgX_normalize 68
equalsi, 53
] FlxgX_red 68
equalui 53
. FlxgX_sqr 68
errfile 30 .
Flxq_inv 68
EITOT . . v v v e e e e e e 30 .
Flxg_invsafe 68
evalexpo 42
Flxq_mul 68
evallg 42
. Flxgq_pow 68
evallgefint 42
. Flxg_powers 68
evallgeflist 43
1 49 Flxq_sqr 68
evalp?eCp """"""""" 4 FIxVFleml 68
evalilgne """"""""" 4 FlxVitoFlm ... 72
eval yi """""""""" o Flxkadd ... 68
evalva P 49 FlxX_renormalize 68
CVALVATIL e 4] FlaKoshift ... 63
D S oy o5 4y FLEKtoFlm ... 72
R 29 F1xX_to_ZXX . o v v v 71
FlxYgQ_pow 68
F :
Flx_add 67
factoru 57 Flx_deriv 67
factoru_pow 57 Flx_div 67

90

Flx_divrem 67
Flx_div_by X_x 68
Flx_eval 68
Flx_extged 67
Flx_extresultant 67
Flx_ Fl_mul 67
Flx_gcd 67
Flx_ged_i 67
Flx_invmontgomery 67
Flx_is_squarefree 68
Flx_mul 67
Flx_nbfact 68
Flx_nbroots 68
Flx neg 67
Flx_neg_inplace 67
Flx_normalize 67
Flx_pow 67
Flx_recip 67
Flx_red 67
Flx_rem 67
Flx_rem_montgomery 67
Flx_renormalize 67
Flx_resultant 67
Flx_shift 67
Flx_sqr 67
Flx_sub 67
Flx_to_ Flv 72
Flx_to_ZX 71
Flx_to_ZX_inplace 71
Flx_valuation 67
Fl_add 48
Fl_center 48
Fl_div 48
Fl_inv 48
Flmul 48
Flneg 48
Fl pow 48
Fl_sqrt 48
Fl_sub 48
Fl_to Flx 72
format L. 29, 31
FpC_FpV_mul 66
FpC_Fp_mul 66
FpC_red 65
FpC_to_mod 65
FpM_deplin 66
FpM_FpC_mul 66
FpM_gauss 66
FpM_image 66

91

FpM_indexrank 66
FpM_intersect 66
FpM_inv o 66
FpM_invimage 66
FpM_ker 66
FpM_mul 66
FpM_rank 66
FpM_red 65
FpM_suppl 66
FpM_to_mod 65
fprintferr 31, 36
FpV_FpC_mul 66
FpV_polint 62
FpV_red 65
FpV_roots_to_pol 62
FpV_to_mod 65
FpXQXV_prod 64
FpXQX_divrem 64
FpXQX_extged 64
FpXQX_ged 64
FpXQX_mul 64
FpXQX_red 64
FpXQX_sqr 64
FpXQYQ_pow 64
FpXQ_charpoly 64
FpXQ_div 63
FpXQ_ffisom_inv 65
FpXQ_inv 63
FpXQ_invsafe 63
FpXQ_minpoly 64
FpXQ_mul 63
FpXQ_pow 63
FpXQ_powers 64
FpXQ_sqr, 63
FpXV_FpC_mul 62
FpXV_prod 62
FpXV_red 61
FpXX_add 64
FpXX_red 64
FpXX_renormalize 64
FpX_add 61
FpX_center 61
FpX_chinese_coprime 62
FpX_degfact 62
FpX_div . . o oo 61
FpX_divrem 61
FpX_div_by_ X_x 61
FpX_eval 62
FpX_extged 61

FpX_factor 62
FpX_factorff_irred 65
FpX_ffintersect 65
FpX_ffisom 65
FpX_FpXQV_compo 64
FpX_FpXQ_compo 64
FpX_Fp_add 61
FpX_Fp_mul 62
FpX_gedo 61
FpX_is_irred 62
FpX_is_squarefree 62
FpX_is_totally_split 62
FpX_mul 61
FpX_nbfact 62
FpX_nbroots 62
FpX_neg, 61
FpX_normalize 61
FpX_rand 62
FpX_red L. 61
FpX_rem 61
FpX_renormalize 61
FpX_rescale 62
FpX_resultant 62
FpX_roots 62
FpX_sqr 61
FpX_sub 61
FpX_to_mod 61
FpY_FpXY_resultant 62
Fp_inv 0. 56
Fp_invsafe 56
Fp_pow, 56
Fp_powu 56
Fp_sqrt 57
Fp_sqrtn 57
FqC_to_F1xC 71
FgM_gauss 66
FgM_ker 66
FgM_suppl 66
FgM_to_F1xM 71
FqV_red 63
FgV_roots_to_pol 64
FqV_to_F1xV 71
FgX_div, 64
FgX_divrem 64
FgX_factor 65
FgX_Fq_mul 64
FgX_gedo 64
FgX_is_squarefree 65
FgX_mul 64

92

FgX_nbfact 65
FgX_nbroots 65
FgX_normalize 64
FgX_red oo 63
FgX_rem 64
FgX_sqr 64
Fg_add 63
Fg_inv 0. 63
Fg_invsafe 63
Fq_mul 63
Fgneg 63
Fg_neg_inv 63
Fg_pow 63
Fg_red 63
Fg_sub 63
fractor Lo 73
functions_basic 40
functions_fp 40
functions_highlevel 40
G
gaddgso 9
gaddgsz 9
gaddsg 9
gaddsgz oL 9
gaddz 9,19
gaddlz], 49
gaffect 18, 19, 72
gaffsg L. 19, 72
garbage collecting 10
gbezout 79
gedii o7
gceilo 76
gclone, 19, 46
GCMP 7
gempO 7
gempl 7
GCMPES e e 78
GCMPSE e 78
gemp_1 7
gcoeff 8, 44, 80
BCOPY -« v e e e e e e e 19, 46
gevtol oo 7
gevtop 73
gdeuc 79
gdiventgs[z] 78
gdiventres 78
gdiventsglz]l 78

gdivent[z] 78
gdivexact, 78
gdivmod 78
gdivround 79
gdvdo 78
gel 8, 44, 80
GEN 7
gener F1 48
gener_F1_local 48
gener_ Fp 57
gener_Fp_local 57
GENtostr 30
gen_ 0o 7
gen_1 7
gem_2 7
gen_ml 7
gequal 78
gequalgs 78
gequalsg 78
gerepile 11, 13, 18, 19, 45
gerepileall oo 15
gerepileall 12, 13, 16, 45
gerepileallsp 45
gerepilecoeffs 45
gerepilecoeffssp 45
gerepilecopy 12, 16, 45
gerepilemany 13, 45
gerepilemanysp 13, 45
gerepileupto 12, 13, 18, 19, 45, 75, 80
gerepileuptoint 45
gerepileuptoleaf 45
getheap 47
geuler 87
BeXPO 23, 41
gfloor 76
gfraco 76
gged . ..o 79
ggval 7
ghalf, 7
gl ..o 7
ginv Lo 78
ginvmod 79
glem 79
gmael 8, 44
gmaell 8
gmael2 44
gmaeld 44
gmaeld L. 44
gmaelb 44

93

gmodgs[z] 78
gmodsglz]l 78
gmodulgs 73
gmodulo 73
gmodulss 73
gmod[z], 78
gmul2nflz] 7
gPL ... 87
BPOW 80
BPOWES . « v v v e 80
BPTEC 73
gprecision 42
BPTEC_W . .« v i it 73
gprec_wtrunc 73
gp_read_file 29
gp_read_str 27, 28
gp_read_stream 28
gred_frac2 23
gred_rfac2 25
greffe 0. 74
grem 79
grndtoio 76
ground 76
gshiftlz]l 7
gsigne 23, 41
ESAT e 78
GSTR 26
gsubsto 80
gtocol 74
gtodouble 20, 73
gtofpo 19, 73
gtolong 20, 73
gtomat 74
gtopoly 73
gtopolyrev 73
gtoser L. 74
gtovec 74
gtovecsmall 74
gtrans 80
gtrunc 76
gunclone 20, 46
gval oo 7
gvar 24, 26, 42
H
heap 8
heap o 87
hexadecimal tree 30

I
1COPY . . . o oo 50
icopyifstack 47
indefinite binary quadratic form 25
infile 30
init_ Fq 65
mput. o oo 28
install 29, 31, 36
int2n Lo 49
int2u L. 49
integer 21
int_LSW 21
int_MSW 21
int_nextW 22
int_normalize 22
int_precW L. 21
int W 21
invmod 56
isclone 20
iscomplex 78
isexactzero 7
isinexact 77
isinto 77
ismonome 78
isonstack, 46
isprime 52
issmall 77
is_const_t 43
is_extscalar_t 43
is_intreal_t 43
is_matvec_t 43
is_ratiomal_t 43
is_recursive_t 43
is_scalar_t 43
is_vec_t 43
itoro 50
itoso 20, 50
itos_or_ 0O 50
itou . o.o. ... 50
itou_or_O 50
K
krois 57
Kronecker symbol 48, 57
kronecker 57
krosi 57
kross 0 57
krouu 48

94

lemiio 57
leading term 24, 44
Legendre symbol 48, 57
lexcmp 78
1g . . .o 20, 41
lgefint 21, 41
lgeflist 25
library mode 7
Linux 36
list 25
LONG_IS_64BIT 9
M
matbrute 29
matid_Flm 72
matrix 25
maxprime L. 7, 87
MAXSS « & v o v e e e e e e e e e e 57
MAXVARNo 7,27
MEDDEFAULTPREC 9
minss 58
mkcol 76
mkcolcopy 75
mkcoln 18, 76
mkcomplex 76
mkfrac 76
mkintmod 76
mkintn 17, 18, 50, 76
mkmat 76
mkmatcopy 75
mkpolmod 76
mkpoln, 18, 76
mkrfrac 76
MRKVEC e 76
mkvec2 76
mkvec2copyo 75
mRVEC2So 75
mkvec3 76
mkvec3s 75
mkvecd 76
mkveccopy 75
mkvecn 18, 76
MKVECS v i i e e 75
mkvecsmall 75
mkvecsmall2 75
mkvecsmall3 75
mod2 22

mod4d 22
mod64 22
mpadd 9
mpaff 49
mpbern 87
mpceillz] 51
MPCMP . .« o o o v e e e e e e 52
MPCOPY + « v v v v e e e 50
mpeuler 87
mpfloor([z] 51
mpodd 22
mppi 87
mpround[z] 51
mpshift[z] 51
mptrunc(z] 51
msgtimer 31
msgTIMER 32
muliu 54
mulll 48
mului 54
muluu L 54
N
name_varo . oe. e 27
nbits2nlong 41
nbits2prec 41
nchar2nlong 41
ndec2nlong 40
ndec2prec 40
new_chunk 44
NEXT_PRIME_VIADIFF 88
NEXT_PRIME_VIADIFF_CHECK(p, ptr) 88
normalize 74
normalizepol 24, 74
O
outbeaut 30
outbrute 29
outfile 30
outmat 29
output 29
output 29, 31
P
p-adic number 23
pariErro 30
pariflush 36
pariQut 30

95

pariputco 36
pariputs 36
pari_add_function 40
pari_add_module 40
pari_close 39
pari_close_opts 39
pari_err 30, 31
pari_init 7,8, 39, 87
pari_init_opts 39
pari_rand31 56
pari_sig_init 39
pari_sp 10
pari_timer 32
pari_warn 31
parser code 34, 36
poldivrem 79
polmod 24
polvaluation 7
polvaluation_inexact 7
polvar 26
polx_Flx 72
Polx_zX 72
polynomial 24
pol_1 7, 26
pol_x 7, 26
POWET Series 25
powgio 80
powiu 58
POWUU o8
prec2ndec 40
precision 42
Precp 23, 41
preferences file 36
primerlo 88
primitive root 48
primitive_part 79
primpart 79
printfo 30
Q
QM_inv 60
quadpoly 24
quadratic number 24
quadtoc 73
QXQ_invo 69
R
randomi 56

random_bits L. 56
rational function 25
rational number 23
TCOPY -« v v v e e e e e e 50
rdiviio oo 58
rdiviso 58
rdivsi Lo 58
rdivsso oL 58
read 29
real numbero 0oL 22
real2no 49
real 0 49
real O_bit 49
real_1 49
real_ml 49
RgC_to_FpC 60
RgM_to_RgXV 74
RgM_to_RgXX 74
RgM_zc_mul 71
RgM_zm_mul 72
RgV_to FpV 60
RgV_to_ RgX 74
RgV_zc_mul 72
RgV_zm_mul 72
RgXQC_red 70
RgXQV_red 70
REXQX_div 70
RgXQX_divrem 70
RgXQX_mul 70
RgXQX_red 70
RgXQX_rem 70
RgXQX_RgXQ_mul 70
RgXQX_sqr 70
RgXQ_mul 70
RgXQ_norm 70
RgXQ_powers 70
RgXQ_sqr 70
RgXV_to_RgM 74
RgXV_unscale 70
RgXX_to_RgM 74
RgXY_swap 74
RgX_add 69
RgX_div 69
RgX_divrem 69
RgX_div_by_X_x 70
RgX_extged 70
RgX_mul 69
RgX_mulspec 69
RgX_mulXn 70

96

RgX_neg 69
RgX_rem 70
RgX_rescale 70
RgX_Rg_div 70
RgX_ Rg_mul 70
RgX_shift 70
RgX_shift_shallow 70
RgX_sqr 69
RgX_sqrspec 69
RgX_sub 69
RgX_to_FpX 60
RgX_to_FpXQX 63
RgX_to_FgX 63
RgX_to_RgV 74
RgX_unscale 70
Rg_to F1 66
Rg_to Fp 60
Rg_to FpXQ 63
roundr o1
row vector 25
TOW v v v v e e e e e 81
rowpermute 81
rowslice 81
rowslicepermute 81
row_i 81
rtodbl 20, 72
TEOT 50
S
scalarpol 75
scalarser 75
sdivsi 56
sdivsi_rem 56
sdivss_rem 55
setexpo 23, 25, 43
setisclone 20
setlg 20, 43
setlgefint 21, 43
setlgeflist 25
setprecp 23, 43
setsigne 21, 24, 25, 43
settyp 20, 43
setvalp 23, 25, 43
setvarn 18, 24, 25, 43, 76
shallowconcat 80, 81
shallowcopy 19, 80
shallowtrans 80
shifti o1

shiftr 51
signe 21, 24, 25, 41
sizedigit 42
smodis 54
smodsi 54
SMmodSS e 54
= s 29
SQri 54
=T v 56
sqrtremi 56
stack 7,10
stack oL 87
stackdummyo 46
stackmalloc 44
stack_lim 16
stderr 30
stdout 30
stol 20, 50
storo 50
string context oL L. 34
stroi 49
stror 49
subll 47
subllx 47
subres 79
switchin 30
switchout 30
T
taille, 47
talker 30
texe Lo 30
texprinto 30
timer L. 31
TIMER 32
timer2 31
TIMERstart 32
traverseheap 47
truecoeff 43
truedivii 54
truedivis L. 54
truedvmdii 56
truncr Lo 51
tYP . . o 20, 41
type number 20
TYPe . . . o 8
type_name 80
t_COL 25

97

t_COMPLEX 23
t_FRAC 23
t_INT 21
t_INTMOD 23
t_LIST 0. 25
t_MAT 25
t_PADIC 23
t_POL 24
t_POLMOD, 24
CQFT o o e 25
t_ QFRo 25
t_QUADo 24
t_ REAL 22
t_ RFRAC 25
t_SER 25
t_STR 26
t_VEC 25
t_VECSMALL 25
U
u2toi 18, 50
uisprime 52
uissquarerem 52
ulong 39
umodiuo 54
umodui 54
universal object 87
unsetisclone 21
UPOWUU . .« v v v v v v e e e e o8
utoi 50
utoineg 50
utoipos 50
utor 50
u_lval 52
u_lvalrem o1
u_pvalrem o1
\%
vali o1
valpo 23, 25, 41
vals o1
Varargs . . .o ..o 17
varentries 26
variable (priority) 26
variable (temporary) 27
variable (user) 27
variable number 24, 26, 34
variable 7

Varno e e 24, 25, 26, 41
VATNCMP . . . v v v v oo e 26
veconcat 80
vecpermute 81
vecslice 81
vecslicepermute 81
vecsmall_append 82
vecsmall_coincidence 82
vecsmall_concat 82
vecsmall_copy 82
vecsmall_indexsort 82
vecsmall_lengthen 82
vecsmall_lexcmp 82
vecsmall_pack 82
vecsmall_prefixcmp 82
vecsmall_prepend 82
vecsmall_shorten 82
vecsmall_sort 82
vecsmall_to_col 82
vecsmall_to_vec 82
vecsmall_uniq 82
vecvecsmall_indexsort 83
vecvecsmall_search 83
vecvecsmall_sort 83
vec_el 75
vec_isltol 82
vec_isconst 82
vec_lengthen 82
vec_shorten 82
vec_to_vecsmall 82
voir 30
W
WATNer v v e e e e e 31
warnfile 31
WaATnmMem v v v v v e 31
WaATNPTeC v v v v v e 31
Z
zc_to_ZCo 71
zerocol 75
zeromat 75
zeromatcopy 75
zeropadic L. 75
zeropol 75
ZEYOSEY i e e e 75
ZETOVEC . . . v v v e e e e e e e 75
zero_F1x, 72

98

ZETO_ZX o v v e e e e e e e e e e e 72
ZM_invo 60
ZM_to_Flm 71
ZM_to_zm 71
zm_to_ZM 71
zm_to_zxV 72
ZM_zc_mul 72
ZM_zm_mul 72
ZV_add 59
ZV_sub 59
ZV_to_Flv 71
ZV_to_nv 71
ZV_to_zZvVo 71
zv_to _ZV 71
ZV_to_ZXo 72
ZXV_to_F1xV 71
ZXXV_to_F1xXV 71
ZXX_to_F1xX 71
ZX_addo 59
ZX_caract 60
ZX_disc 60
ZX_is_squarefree 60
ZX_mul 60
ZX_neg 59
ZX_QX_resultant 60
ZX_renormalize 59
ZX_resultant 60
ZX_SQT . . oo e e 60
ZX_sub s 59
ZX_to Flx 71
ZX_to_2ZVo 72
zx_to ZX o 71
ZX_valuation 7l
ZX_Z_add 59
ZX_Z_mul 60
ZY_ZXY_resultant 60
ZY_ZXY_rnfequation 60
Z_factor 52
Z_issquare 52
Z_issquarefree 52
Z_issquarerem 52
Z_1lval 51
Z_lvalrem 51
Z_pval 51
Z_pvalrem 51
Z_to_Flx, 72

_evalexpo

_evallg

_evalvalp

99

	4 Programming PARI in Library Mode
	4.1 Introduction: initializations, universal objects
	4.2 Important technical notes
	4.3 Garbage collection
	4.4 Creation of PARI objects, assignments, conversions
	4.5 Implementation of the PARI types
	4.6 PARI variables
	4.7 Input and output
	4.8 A complete program
	4.9 Adding functions to PARI
	5 Technical Reference Guide for Low-Level Functions
	5.1 Initializing the library
	5.2 Handling {�am 	tfam 	entt GEN}s
	5.3 Handling the PARI stack
	5.4 Level 0 kernel (operations on ulongs)
	5.5 Level 1 kernel (operations on longs, integers and reals)
	5.6 Level 2 kernel (modular arithmetic)
	5.7 Operations on general PARI objects
	5.8 Further type specific functions
	A A Sample program and Makefile
	B Summary of Available Constants
	Index

