User's Guide

to

the PARI library

(version 2.3.5)
C. Batut, K. Belabas, D. Bernardi, H. Cohen, M. Olivier

Laboratoire A2X, U.M.R. 9936 du C.N.R.S.
Université Bordeaux I, 351 Cours de la Libération
33405 TALENCE Cedex, FRANCE
e-mail: pari@math.u-bordeaux.fr

Home Page:
http://pari.math.u-bordeaux.fr/

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions, or translations, of this manual under the conditions for verbatim copying, provided also that the entire resulting derived work is distributed under the terms of a permission notice identical to this one.

PARI/GP is Copyright © 2000-2006 The PARI Group
PARI/GP is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation. It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY WHATSOEVER.

Table of Contents

Chapter 4: Programming PARI in Library Mode 7
4.1 Introduction: initializations, universal objects 7
4.2 Important technical notes 8
4.2.1 Types 8
4.2.2 Type recursivity 8
4.2.3 Variations on basic functions 9
4.2.4 Portability: 32-bit / 64-bit architectures 9
4.3 Garbage collection 10
4.3.1 Why and how 10
4.3.2 Examples 13
4.3.3 Comments 16
4.4 Creation of PARI objects, assignments, conversions 16
4.4.1 Creation of PARI objects 16
4.4.2 Assignments 18
4.4.3 Copy 19
4.4.4 Clones 20
4.4.5 Conversions 20
4.5 Implementation of the PARI types 20
4.5.1 Type t_INT (integer) 21
4.5.2 Type t _REAL (real number) 23
4.5.3 Type t_INTMOD 23
4.5.4 Type t_FRAC (rational number) 23
4.5.5 Type t_COMPLEX (complex number) 23
4.5.6 Type t_PADIC (p-adic numbers) 23
4.5.7 Type t_QUAD (quadratic number) 24
4.5.8 Type t_POLMOD (polmod) 24
4.5.9 Type t_POL (polynomial) 24
4.5.10 Type t_SER (power series) 25
4.5.11 Type t_RFRAC (rational function) 25
4.5.12 Type t _QFR (indefinite binary quadratic form) 25
4.5.13 Type t _QFI (definite binary quadratic form) 25
4.5.14 Type t_VEC and t_COL (vector) 25
4.5.15 Type t_MAT (matrix) 25
4.5.16 Type t _VECSMALL (vector of small integers) 25
4.5.17 Type t_LIST (list) 26
4.5.18 Type t_STR (character string) 26
4.6 PARI variables 26
4.6.1 Multivariate objects 26
4.6.2 Creating variables 27
4.7 Input and output 28
4.7.1 Input 28
4.7.2 Output 29
4.7.3 Errors 30
4.7.4 Debugging output 31
4.7.5 Timers and timing output 32
4.8 A complete program 32
4.9 Adding functions to PARI 34
4.9.1 Nota Bene 34
4.9.2 The calling interface from gp, parser codes 34
4.9.3 Coding guidelines 36
4.9.4 Integration with gp as a shared module 36
4.9.5 Integration the hard way 37
4.9.6 Example 37
Chapter 5: Technical Reference Guide for Low-Level Functions 39
5.1 Initializing the library 39
5.1.1 General purpose 39
5.1.2 Technical functions 39
5.1.3 Notions specific to the GP interpreter 40
5.2 Handling GENs 41
5.2.1 Length conversions 41
5.2.2 Read type-dependent information 41
5.2.3 Eval type-dependent information 42
5.2.4 Set type-dependent information 43
5.2.5 Type groups 43
5.2.6 Accessors and components 44
5.3 Handling the PARI stack 44
5.3.1 Allocating memory on the stack 44
5.3.2 Garbage collection 45
5.3.3 Copies and clones 47
5.4 Level 0 kernel (operations on ulongs) 47
5.4.1 Micro-kernel 47
5.4.2 Modular kernel 48
5.5 Level 1 kernel (operations on longs, integers and reals) 49
5.5.1 Creation 49
5.5.2 Assignment 50
5.5.3 Copy 50
5.5.4 Conversions 50
5.5.5 Integer parts 51
5.5.6 Valuation and shift 51
5.5.7 Factorization 52
5.5.8 Generic unary operators 52
5.5.9 Comparison operators 53
5.5.10 Generic binary operators 53
5.5.11 Modulo to longs 55
5.5.12 Exact division and divisibility 55
5.5.13 Division with remainder 55
5.5.14 Square root and remainder 56
5.5.15 Pseudo-random integers 56
5.5.16 Modular operations 57
5.5.17 Miscellaneous functions 57
5.6 Level 2 kernel (modular arithmetic) 58
5.6.1 Naming scheme 58
5.6.2 ZX, ZV, ZM 59
5.6.3 FpX 60
5.6.4 FpXQ, Fq 63
5.6.5 FpXX 64
5.6.6 FpXQX, FqX 64
5.6.7 FpV, FpM, FqM 65
5.6.8 Flx 67
5.6.9 Flxq 68
5.6.10 FlxX 68
5.6.11 FlxqX 69
5.6.12 Flv, Flm 69
5.6.13 FlxqV, FlxqM 69
5.6.14 QX 69
5.6.15 RgX 69
5.6.16 Conversions involving single precision objects 71
5.7 Operations on general PARI objects 73
5.7.1 Assignment 73
5.7.2 Conversions 73
5.7.3 Clean Constructors 75
5.7.4 Unclean Constructors 76
5.7.5 Integer parts 77
5.7.6 Valuation and shift 77
5.7.7 Comparison operators 77
5.7.8 Generic unary operators 78
5.7.9 Divisibility, Euclidean division 78
5.7.10 GCD, content and primitive part 79
5.7.11 Generic binary operators 80
5.7.12 Miscellaneous functions 80
5.8 Further type specific functions 80
5.8.1 Vectors and Matrices 80
5.8.2 Low-level vectors and columns functions 81
5.8.3 Function to handle t_VECSMALL 82
5.8.4 Functions to handle bits-vectors 83
5.8.5 Functions to handle vectors of t_VECSMALL 83
Appendix A: A Sample program and Makefile 85
Appendix B: Summary of Available Constants 87
Index 89

Chapter 4:
 Programming PARI in Library Mode

The User's Guide to Pari/GP gives in three chapters a general presentation of the system, of the gp calculator, and detailed explanation of high level PARI routines available through the calculator. The present manual assumes general familiarity with the contents of these chapters and the basics of ANSI C programming, and focuses on the usage of the PARI library. In this chapter, we introduce the general concepts of PARI programming and describe useful general purpose functions. Chapter 5 describes all available public low-level functions.

4.1 Introduction: initializations, universal objects.

To use PARI in library mode, you must write a C program and link it to the PARI library. See the installation guide or the Appendix to the User's Guide to Pari/GP on how to create and install the library and include files. A sample Makefile is presented in Appendix A, and a more elaborate one in examples/Makefile. The best way to understand how programming is done is to work through a complete example. We will write such a program in Section 4.8. Before doing this, a few explanations are in order.

First, one must explain to the outside world what kind of objects and routines we are going to use. This is done with the directive

```
#include <pari.h>
```

In particular, this header defines the fundamental type for all PARI objects: the type GEN, which is simply a pointer to long.

Before any PARI routine is called, one must initialize the system, and in particular the PARI stack which is both a scratchboard and a repository for computed objects. This is done with a call to the function

```
void pari_init(size_t size, ulong maxprime)
```

The first argument is the number of bytes given to PARI to work with, and the second is the upper limit on a precomputed prime number table; size should not reasonably be taken below 500000 but you may set maxprime $=0$, although the system still needs to precompute all primes up to about 2^{16}.

We have now at our disposal:

- a PARI stack containing nothing. It is a big connected chunk of size bytes of memory. All your computations take place here. In large computations, unwanted intermediate results quickly clutter up memory so some kind of garbage collecting is needed. Most large systems do garbage collecting when the memory is getting scarce, and this slows down the performance. PARI takes a different approach: you must do your own cleaning up when the intermediate results are not needed anymore. Special purpose routines have been written to do this; we will see later how (and when) you should use them.
- the following universal objects (by definition, objects which do not belong to the stack): the integers $0,1,-1$ and 2 (respectively called gen_0, gen_1, gen_m1 and gen_2), the fraction $\frac{1}{2}$ (ghalf), the complex number i (gi). All of these are of type GEN.

In addition, space is reserved for the polynomials x_{v} ($\mathrm{pol} l_{-} \mathrm{x}[v]$), and the polynomials 1_{v} (pol_1[v]). Here, x_{v} is the name of variable number v, where $0 \leq v \leq$ MAXVARN. Both pol_1 and pol_x are arrays of GENs, the index being the polynomial variable number.

However, except for the ones corresponding to variables 0 and MAXVARN, these polynomials are not created upon initialization. It is the programmer's responsibility to fill them before use. We will see how this is done in Section 4.6.2 (never through direct assignment).

- a heap which is just a linked list of permanent universal objects. For now, it contains exactly the ones listed above. You will probably very rarely use the heap yourself; and if so, only as a collection of copies of objects taken from the stack (called clones in the sequel). Thus you need not bother with its internal structure, which may change as PARI evolves. Some complex PARI functions create clones for special garbage collecting purposes, usually destroying them when returning.
- a table of primes (in fact of differences between consecutive primes), called diffptr, of type byteptr (pointer to unsigned char). Its use is described in appendix B.
- access to all the built-in functions of the PARI library. These are declared to the outside world when you include pari.h, but need the above things to function properly. So if you forget the call to pari_init, you will get a fatal error when running your program.

4.2 Important technical notes.

4.2.1 Types.

Although PARI objects all have the C type GEN, we will freely use the word type to refer to PARI dynamic subtypes: t_INT, t_REAL, etc. The declaration

GEN x ;
declares a C variable of type GEN, but its "value" will be said to have type t_INT, t_REAL, etc. The meaning should always be clear from the context.

4.2.2 Type recursivity.

Conceptually, most PARI types are recursive. But the GEN type is a pointer to long, not to GEN. So special macros must be used to access GEN's components. The simplest one is gel (V, i), where el stands for element, to access component number i of the GEN V. This is a valid lvalue (may be put on the left side of an assignment), and the following two constructions are exceedingly frequent

```
gel(V, i) = x;
x = gel(V, i);
```

where x and V are GENs. This macro accesses and modifies directly the components of V and do not create a copy of the coefficient, contrary to all the library functions.

More generally, to retrieve the values of elements of lists of ... of lists of vectors we have the gmael macros (for multidimensional array element). The syntax is gmael $n\left(V, a_{1}, \ldots, a_{n}\right)$, where V is a GEN, the a_{i} are indexes, and n is an integer between 1 and 5 . This stands for $x\left[a_{1}\right]\left[a_{2}\right] \ldots\left[a_{n}\right]$, and returns a GEN. The macros gel (resp. gmael) are synonyms for gmael1 (resp. gmael2).

Finally, the macro $\operatorname{gcoeff}(M, i, j)$ has exactly the meaning of $M[i, j]$ in GP when M is a matrix. Note that due to the implementation of t_MATs as horizontal lists of vertical vectors, $\operatorname{gcoeff}(x, y)$ is actually equivalent to gmael (y, x). One should use gcoeff in matrix context, and gmael otherwise.
4.2.3 Variations on basic functions. In the library syntax descriptions in Chapter 3, we have only given the basic names of the functions. For example gadd (x, y) assumes that x and y are GENs, and creates the result $x+y$ on the PARI stack. For most of the basic operators and functions, many other variants are available. We give some examples for gadd, but the same is true for all the basic operators, as well as for some simple common functions (a complete list is given in Chapter 5):

GEN gaddgs (GEN x , long y)
GEN gaddsg(long x , GEN y)
In the following three, z is a preexisting GEN and the result of the corresponding operation is put into z. The size of the PARI stack does not change:
void gaddz(GEN x , GEN y , GEN z)
void gaddgsz (GEN x , long y , GEN z)
void gaddsgz(GEN x , GEN y, GEN z)
There are also low level functions which are special cases of the above:
GEN addii (GEN x , GEN y): here x and y are GENs of type t_INT (this is not checked).
GEN addrr (GEN x, GEN y): here x and y are GENs of type t_REAL (this is not checked).
There also exist functions addir, addri, mpadd (whose two arguments can be of type t_INT or t_REAL), addis (to add a t_INT and a long) and so on.

All these specialized functions are of course more efficient than the general purpose ones, but note the hidden danger here: the types of the objects involved, if they are themselves results of a previous computation, are not completely predetermined. For instance the multiplication of a t_REAL by a t_INT usually gives a t_REAL result, except when the integer is 0 , in which case according to the PARI philosophy the result is the exact integer 0 . Hence if afterwards you call a function which specifically needs a t_REAL argument, you are in trouble.

The names are self-explanatory once you know that \mathbf{i} stands for a t_INT, \mathbf{r} for a t_REAL, mp for i or r, s for a signed C long integer, \mathbf{u} for an unsigned C long integer; finally the suffix \mathbf{z} means that the result is not created on the PARI stack but assigned to a preexisting GEN object passed as an extra argument. For completeness, Chapter 5 gives a description of these low-level functions.

4.2.4 Portability: 32-bit / 64-bit architectures.

PARI supports both 32 -bit and 64 -bit based machines, but not simultaneously! The library will have been compiled assuming a given architecture, and some of the header files you include (through pari.h) will have been modified to match the library.

Portable macros are defined to bypass most machine dependencies. If you want your programs to run identically on 32 -bit and 64 -bit machines, you have to use these, and not the corresponding numeric values, whenever the precise size of your long integers might matter. Here are the most important ones:

	64 -bit	32 -bit	
BITS_IN_LONG	64	32	
LONG_IS_64BIT	defined	undefined	
DEFAULTPREC	3	4	$(\approx 19$ decimal digits, see formula below)
MEDDEFAULTPREC	4	6	$(\approx 38$ decimal digits $)$
BIGDEFAULTPREC	5	8	$(\approx 57$ decimal digits $)$

For instance, suppose you call a transcendental function, such as
GEN gexp(GEN x , long prec).
The last argument prec is only used if x is an exact object, otherwise the relative precision is determined by the precision of x. But since prec sets the size of the inexact result counted in (long) words (including codewords), the same value of prec will yield different results on 32-bit and 64 -bit machines. Real numbers have two codewords (see Section 4.5.1), so the formula for computing the bit accuracy is

$$
\text { bit_accuracy }(\text { prec })=(\text { prec }-2) * \text { BITS_IN_LONG }
$$

(this is actually the definition of a macro). The corresponding accuracy expressed in decimal digits would be

```
bit_accuracy(prec)*\operatorname{log}(2)/ log(10).
```

For example if the value of prec is 5 , the corresponding accuracy for 32 -bit machines is $(5-2) *$ $\log \left(2^{32}\right) / \log (10) \approx 28$ decimal digits, while for 64 -bit machines it is $(5-2) * \log \left(2^{64}\right) / \log (10) \approx 57$ decimal digits.

Thus, you must take care to change the prec parameter you are supplying according to the bit size, either using the default precisions given by the various DEFAULTPRECs, or by using conditional constructs of the form:

```
#ifndef LONG_IS_64BIT
    prec = 4;
#else
    prec = 6;
#endif
```

which is in this case equivalent to the statement prec = MEDDEFAULTPREC; .
Note that for parity reasons, half the accuracies available on 32-bit architectures (the odd ones) have no precise equivalents on 64-bit machines.

4.3 Garbage collection.

4.3.1 Why and how.

As we have seen, the pari_init routine allocates a big range of addresses, the stack, that are going to be used throughout. Recall that all PARI objects are pointers. Except for a few universal objects, they all point at some part of the stack.

The stack starts at the address bot and ends just before top. This means that the quantity
(top - bot) / sizeof(long)
is (roughly) equal to the size argument of pari_init. The PARI stack also has a "current stack pointer" called avma, which stands for available memory address. These three variables are global (declared by pari.h). They are of type pari_sp, which means pari stack pointer.

The stack is oriented upside-down: the more recent an object, the closer to bot. Accordingly, initially avma $=$ top, and avma gets decremented as new objects are created. As its name indicates,
avma always points just after the first free address on the stack, and (GEN) avma is always (a pointer to) the latest created object. When avma reaches bot, the stack overflows, aborting all computations, and an error message is issued. To avoid this you need to clean up the stack from time to time, when intermediate objects are not needed anymore. This is called "garbage collecting."

We are now going to describe briefly how this is done. We will see many concrete examples in the next subsection.

- First, PARI routines do their own garbage collecting, which means that whenever a documented function from the library returns, only its result(s) have been added to the stack (non-documented ones may not do this). In particular, a PARI function that does not return a GEN does not clutter the stack. Thus, if your computation is small enough (e.g. you call few PARI routines, or most of them return long integers), then you do not need to do any garbage collecting. This is probably the case in many of your subroutines. Of course the objects that were on the stack before the function call are left alone. Except for the ones listed below, PARI functions only collect their own garbage.
- It may happen that all objects that were created after a certain point can be deleted - for instance, if the final result you need is not a GEN, or if some search proved futile. Then, it is enough to record the value of avma just before the first garbage is created, and restore it upon exit:

```
pari_sp av = avma; /* record initial avma */
garbage ...
avma = av; /* restore it */
```

All objects created in the garbage zone will eventually be overwritten: they should not be accessed anymore once avma has been restored.

- If you want to destroy (i.e. give back the memory occupied by) the latest PARI object on the stack (e.g. the latest one obtained from a function call), you can use the function

```
void cgiv(GEN z)
```

where \mathbf{z} is the object you want to give back. This is equivalent to the above where the initial av is computed from \mathbf{z}.

- Unfortunately life is not so simple, and sometimes you will want to give back accumulated garbage during a computation without losing recent data. For this you need the gerepile function (or one of its simpler variants described hereafter):

```
GEN gerepile(pari_sp ltop, pari_sp lbot, GEN q)
```

This function cleans up the stack between ltop and lbot, where lbot <1 top, and returns the updated object q. This means:

1) we translate (copy) all the objects in the interval [avma, lbot[, so that its right extremity abuts the address ltop. Graphically

becomes:

where ++ denote significant objects, -- the unused part of the stack, and -/- the garbage we remove.
2) The function then inspects all the PARI objects between avma and lbot (i.e. the ones that we want to keep and that have been translated) and looks at every component of such an object which is not a codeword. Each such component is a pointer to an object whose address is either

- between avma and lbot, in which case it is suitably updated,
- larger than or equal to ltop, in which case it does not change, or
- between lbot and ltop in which case gerepile raises an error ("significant pointers lost in gerepile").

3) avma is updated (we add ltop - lbot to the old value).
4) We return the (possibly updated) object q: if q initially pointed between avma and lbot, we return the updated address, as in 2). If not, the original address is still valid, and is returned!

As stated above, no component of the remaining objects (in particular q) should belong to the erased segment [lbot, ltop[, and this is checked within gerepile. But beware as well that the addresses of the objects in the translated zone change after a call to gerepile, so you must not access any pointer which previously pointed into the zone below ltop. If you need to recover more than one object, use one of the gerepilemany functions below.

As a consequence of the preceding explanation, if a PARI object is to be relocated by gerepile then, apart from universal objects, the chunks of memory used by its components should be in consecutive memory locations. All GENs created by documented PARI functions are guaranteed to satisfy this. This is because the gerepile function knows only about two connected zones: the garbage that is erased (between lbot and ltop) and the significant pointers that are copied and updated. If there is garbage interspersed with your objects, disaster occurs when we try to update them and consider the corresponding "pointers". In most cases of course the said garbage is in fact a bunch of other GENs, in which case we simply waste time copying and updating them for nothing. But be wary when you allow objects to become disconnected.

In practice this is achieved by the following programming idiom:

```
ltop = avma; garbage(); lbot = avma; q = anything();
return gerepile(ltop, lbot, q) ; /* returns the updated q */
```

Beware that

```
ltop = avma; garbage();
return gerepile(ltop, avma, anything())
```

might work, but should be frowned upon. We cannot predict whether avma is evaluated after or before the call to anything(): it depends on the compiler. If we are out of luck, it is after the call, so the result belongs to the garbage zone and the gerepile statement becomes equivalent to avma $=1$ top. Thus we return a pointer to random garbage .

- A simple variant is

GEN gerepileupto(pari_sp ltop, GEN q)
which cleans the stack between ltop and the connected object q and returns qupdated. For this to work, q must have been created before all its components, otherwise they would belong to the garbage zone! Unless mentioned otherwise, documented PARI functions guarantee this.

- Another variant (a special case of gerepileall below, where $n=1$) is

GEN gerepilecopy (pari_sp ltop, GEN x))
which is functionally equivalent to gerepileupto(ltop, gcopy(x)) but more efficient. In this case, the GEN parameter x need not satisfy any property before the garbage collection (it may be disconnected, components created before the root and so on). Of course, this is less efficient than either gerepileupto or gerepile, because x has to be copied to a clean stack zone first.

- To cope with complicated cases where many objects have to be preserved, you can use

```
void gerepileall(pari_sp ltop, int n, ...)
```

where the routine expects n further arguments, which are the addresses of the GENs you want to preserve. It cleans up the most recent part of the stack (between ltop and avma), updating all the GENs added to the argument list. A copy is done just before the cleaning to preserve them, so they do not need to be connected before the call. With gerepilecopy, this is the most robust of the gerepile functions (the less prone to user error), hence the slowest.

An alternative syntax, obsolete but kept for backward compatibility, is given by

```
void gerepilemany(pari_sp ltop, GEN *gptr[], int n)
```

which works exactly as above, except that the preserved GENs are the elements of the array gptr (of length n): gptr [0], gptr [1], $\ldots, \operatorname{gptr}[n-1]$.

- More efficient, but tricky to use is

```
void gerepilemanysp(pari_sp ltop, pari_sp lbot, GEN *gptr[], int n)
```

which cleans the stack between lbot and ltop and updates the GENs pointed at by the elements of gptr without doing any copying. This is subject to the same restrictions as gerepile, the only difference being that more than one address gets updated.

4.3.2 Examples.

4.3.2.1 gerepile

Let x and y be two preexisting PARI objects and suppose that we want to compute $\mathrm{x}^{2}+\mathrm{y}^{2}$. This is done using the following program:

```
GEN p1 = gsqr(x);
GEN p2 = gsqr(y), z = gadd(p1,p2);
```

The GEN z indeed points at the desired quantity. However, consider the stack: it contains as unnecessary garbage p 1 and p 2 . More precisely it contains (in this order) z, p2, p1. (Recall that, since the stack grows downward from the top, the most recent object comes first.)

It is not possible to get rid of $\mathrm{p} 1, \mathrm{p} 2$ before z is computed, since they are used in the final operation. We cannot record avma before p 1 is computed and restore it later, since this would destroy z as well. It is not possible either to use the function cgiv since p 1 and p2 are not at the bottom of the stack and we do not want to give back \mathbf{z}.

But using gerepile, we can give back the memory locations corresponding to p1, p2, and move the object z upwards so that no space is lost. Specifically:
pari_sp ltop = avma; /* remember the current address of the top of the stack */

```
GEN p2 = gsqr(y);
pari_sp lbot = avma; /* keep the address of the bottom of the garbage pile */
GEN z = gadd(p1, p2); /* z is now the last object on the stack */
z = gerepile(ltop, lbot, z);
```

Of course, the last two instructions could also have been written more simply:

```
z = gerepile(ltop, lbot, gadd(p1,p2));
```

In fact gerepileupto is even simpler to use, because the result of gadd is the last object on the stack and gadd is guaranteed to return an object suitable for gerepileupto:

```
ltop = avma;
z = gerepileupto(ltop, gadd(gsqr(x), gsqr(y)));
```

Make sure you understand exactly what has happened before you go on (use the figure from the preceding section).

Remark on assignments and gerepile: When the tree structure and the size of the PARI objects which will appear in a computation are under control, one may allocate sufficiently large objects at the beginning, use assignment statements, then simply restore avma. Coming back to the above example, note that if we know that x and y are of type real fitting into DEFAULTPREC words, we can program without using gerepile at all:

```
z = cgetr(DEFAULTPREC); ltop = avma;
gaffect(gadd(gsqr(x), gsqr(y)), z);
avma = ltop;
```

This is often slower than a craftily used gerepile though, and certainly more cumbersome to use. As a rule, assignment statements should generally be avoided.

Variations on a theme: it is often necessary to do several gerepiles during a computation. However, the fewer the better. The only condition for gerepile to work is that the garbage be connected. If the computation can be arranged so that there is a minimal number of connected pieces of garbage, then it should be done that way.

For example suppose we want to write a function of two GEN variables x and y which creates the vector $\left[\mathrm{x}^{2}+\mathrm{y}, \mathrm{y}^{2}+\mathrm{x}\right]$. Without garbage collecting, one would write:

```
p1 = gsqr(x); p2 = gadd(p1, y);
p3 = gsqr(y); p4 = gadd(p3, x); z = cgetg(3, t_VEC);
gel(z, 1) = p2;
gel(z, 2) = p4;
```

This leaves a dirty stack containing (in this order) $z, p 4, p 3, p 2, p 1$. The garbage here consists of p 1 and p 3 , which are separated by p 2 . But if we compute p 3 before p 2 then the garbage becomes connected, and we get the following program with garbage collecting:

```
ltop = avma; p1 = gsqr(x); p3 = gsqr(y);
lbot = avma; z = cgetg(3, t_VEC);
gel(z, 1) = gadd(p1,y);
gel(z, 2) = gadd(p3,x); z = gerepile(ltop,lbot,z);
```

Finishing by $z=$ gerepileupto(ltop, z) would be ok as well. Beware that

```
ltop = avma; p1 = gadd(gsqr(x), y); p3 = gadd(gsqr(y), x);
```

```
z = cgetg(3, t_VEC);
gel(z, 1) = p1;
gel(z, 2) = p3; z = gerepileupto(ltop,z); /* WRONG */
```

is a disaster since p1 and p3 are created before z, so the call to gerepileupto overwrites them, leaving gel ($z, 1$) and gel ($z, 2$) pointing at random data! On the other hand

```
ltop = avma; z = cgetg(3, t_VEC);
gel(z, 1) = gadd(gsqr(x), y);
gel(z, 2) = gadd(gsqr(y), x); z = gerepileupto(ltop,z); /* INEFFICIENT */
```

leaves the results of $\operatorname{gsqr}(x)$ and $\operatorname{gsqr}(y)$ on the stack (and lets gerepileupto update them for naught). Finally, the most elegant and efficient version (with respect to time and memory use) is as follows

```
z = cgetg(3, t_VEC);
ltop = avma; gel(z, 1) = gerepileupto(ltop, gadd(gsqr(x), y));
ltop = avma; gel(z, 2) = gerepileupto(ltop, gadd(gsqr(y), x));
```

which avoids updating the container z and cleans up its components individually, as soon as they are computed.

One last example. Let us compute the product of two complex numbers x and y, using the $3 M$ method which requires 3 multiplications instead of the obvious 4 . Let $z=x * y$, and set $x=x_{r}+i * x_{i}$ and similarly for y and z. We compute $p_{1}=x_{r} * y_{r}, p_{2}=x_{i} * y_{i}, p_{3}=\left(x_{r}+x_{i}\right) *\left(y_{r}+y_{i}\right)$, and then we have $z_{r}=p_{1}-p_{2}, z_{i}=p_{3}-\left(p_{1}+p_{2}\right)$. The program is as follows:

```
ltop = avma;
p1 = gmul(gel (x,1), gel (y,1));
p2 = gmul(gel (x,2), gel (y,2));
p3 = gmul(gadd(gel(x,1), gel(x,2)), gadd(gel (y,1), gel(y,2)));
p4 = gadd(p1,p2);
lbot = avma; z = cgetg(3, t_COMPLEX);
gel(z, 1) = gsub(p1,p2);
gel(z, 2) = gsub(p3,p4); z = gerepile(ltop,lbot,z);
```

Exercise. Write a function which multiplies a matrix by a column vector. Hint: start with a cgetg of the result, and use gerepile whenever a coefficient of the result vector is computed. You can look at the answer in src/basemath/gen1.c:MC_mul().

4.3.2.2 gerepileall

Let us now see why we may need the gerepileall variants. Although it is not an infrequent occurrence, we do not give a specific example but a general one: suppose that we want to do a computation (usually inside a larger function) producing more than one PARI object as a result, say two for instance. Then even if we set up the work properly, before cleaning up we have a stack which has the desired results $\mathbf{z 1}, \mathrm{z2}$ (say), and then connected garbage from lbot to ltop. If we write

```
z1 = gerepile(ltop, lbot, z1);
```

then the stack is cleaned, the pointers fixed up, but we have lost the address of $z 2$. This is where we need the gerepileall function:

```
gerepileall(ltop, 2, &z1, &z2)
```

copies $z 1$ and $z 2$ to new locations, cleans the stack from ltop to the old avma, and updates the pointers $z 1$ and $z 2$. Here we do not assume anything about the stack: the garbage can be disconnected and $z 1, z 2$ need not be at the bottom of the stack. If all of these assumptions are in fact satisfied, then we can call gerepilemanysp instead, which is usually faster since we do not need the initial copy (on the other hand, it is less cache friendly).

A most important usage is "random" garbage collection during loops whose size requirements we cannot (or do not bother to) control in advance:

```
pari_sp ltop = avma, limit = stack_lim(avma, 1);
GEN x, y;
while (...)
{
    garbage(); x = anything();
    garbage(); y = anything(); garbage();
    if (avma < limit) /* memory is running low (half spent since entry) */
        gerepileall(ltop, 2, &x, &y);
}
```

Here we assume that only x and y are needed from one iteration to the next. As it would be costly to call gerepile once for each iteration, we only do it when it seems to have become necessary. The macro stack_lim (avma, n) denotes an address where $2^{n-1} /\left(2^{n-1}+1\right)$ of the remaining stack space is exhausted ($1 / 2$ for $n=1,2 / 3$ for $n=2$).

4.3.3 Comments.

First, gerepile has turned out to be a flexible and fast garbage collector for number-theoretic computations, which compares favorably with more sophisticated methods used in other systems. Our benchmarks indicate that the price paid for using gerepile and gerepile-related copies, when properly used, is usually less than 1 percent of the total running time, which is quite acceptable!

Second, it is of course harder on the programmer, and quite error-prone if you do not stick to a consistent PARI programming style. If all seems lost, just use gerepilecopy (or gerepileall) to fix up the stack for you. You can always optimize later when you have sorted out exactly which routines are crucial and what objects need to be preserved and their usual sizes.

If you followed us this far, congratulations, and rejoice: the rest is much easier.

4.4 Creation of PARI objects, assignments, conversions.

4.4.1 Creation of PARI objects. The basic function which creates a PARI object is the function cgetg whose prototype is:

```
GEN cgetg(long length, long type).
```

Here length specifies the number of longwords to be allocated to the object, and type is the type number of the object, preferably in symbolic form (see Section 4.5.1 for the list of these). The precise effect of this function is as follows: it first creates on the PARI stack a chunk of memory of size length longwords, and saves the address of the chunk which it will in the end return. If the stack has been used up, a message to the effect that "the PARI stack overflows" is printed, and an error raised. Otherwise, it sets the type and length of the PARI object. In effect, it fills its first codeword ($\mathrm{z}[0]$ or zz). Many PARI objects also have a second codeword (types t_INT, t_REAL,
t_PADIC, t_POL, and t_SER). In case you want to produce one of those from scratch, which should be exceedingly rare, it is your responsibility to fill this second codeword, either explicitly (using the macros described in Section 4.5.1), or implicitly using an assignment statement (using gaffect).

Note that the argument length is predetermined for a number of types: 3 for types t_INTMOD, t_FRAC, t_COMPLEX, t_POLMOD, t_RFRAC, 4 for type t_QUAD and t_QFI, and 5 for type t_PADIC and $t _Q F R$. However for the sake of efficiency, no checking is done in the function cgetg, so disasters will occur if you give an incorrect length.

Notes: 1) The main use of this function is create efficiently a constant object, or to prepare for later assignments (see Section 4.3.2). Most of the time you will use GEN objects as they are created and returned by PARI functions. In this case you do not need to use cgetg to create space to hold them.
2) For the creation of leaves, i.e. t_{-}INT or $t_{_}$REAL,

GEN cgeti(long length)
GEN cgetr (long length)
should be used instead of cgetg(length, t_INT) and cgetg(length, t_REAL) respectively. Finally

GEN cgetc(long prec)
creates a t_COMPLEX whose real and imaginary part are t_REALs allocated by cgetr (prec).
Examples: 1) Both $z=\operatorname{cgeti}(D E F A U L T P R E C)$ and $\operatorname{cgetg}\left(D E F A U L T P R E C, t_{-} I N T\right)$ create a t_INT whose "precision" is bit_accuracy (DEFAULTPREC) $=64$. This means z can hold rational integers of absolute value less than 2^{64}. Note that in both cases, the second codeword is not filled. Of course we could use numerical values, e.g. cgeti (4), but this would have different meanings on different machines as bit_accuracy (4) equals 64 on 32-bit machines, but 128 on 64 -bit machines.
2) The following creates a complex number whose real and imaginary parts can hold real numbers of precision bit_accuracy $($ MEDDEFAULTPREC $)=96$ bits:

```
z = cgetg(3, t_COMPLEX);
gel(z, 1) = cgetr(MEDDEFAULTPREC);
gel(z, 2) = cgetr(MEDDEFAULTPREC);
```

or simply z = cgetc(MEDDEFAULTPREC).
3) To create a matrix object for 4×3 matrices:

```
z = cgetg(4, t_MAT);
for(i=1; i<4; i++) gel(z, i) = cgetg(5, t_COL);
```

If one wishes to create space for the matrix elements themselves, one has to follow this with a double loop to fill each column vector.

These last two examples illustrate the fact that since PARI types are recursive, all the branches of the tree must be created. The function cgetg creates only the "root", and other calls to cgetg must be made to produce the whole tree. For matrices, a common mistake is to think that $\mathbf{z}=$ $\operatorname{cgetg}(4, \quad$ t_MAT) (for example) creates the root of the matrix: one needs also to create the column vectors of the matrix (obviously, since we specified only one dimension in the first cgetg!). This is because a matrix is really just a row vector of column vectors (hence a priori not a basic type), but it has been given a special type number so that operations with matrices become possible.

Finally, to facilitate input of constant objects when speed is not paramount, there are four varargs functions:

GEN mkintn(long n, \ldots) returns the non-negative t_INT whose development in base 2^{32} is given by the following n words (unsigned long). It is assumed that all such arguments are less than 2^{32} (the actual sizeof (long) is irrelevant, the behaviour is also as above on 64 -bit machines).

```
mkintn(3, a2, a1, a0);
```

returns $a_{2} 2^{64}+a_{1} 2^{32}+a_{0}$.
GEN mkpoln(long n, ...) Returns the t_POL whose n coefficients (GEN) follow, in order of decreasing degree.

```
mkpoln(3, gen_1, gen_2, gen_0);
```

returns the polynomial $X^{2}+2 X$ (in variable 0 , use setvarn if you want other variable numbers). Beware that n is the number of coefficients, hence one more than the degree.

GEN mkvecn(long n, ...) returns the t_VEC whose n coefficients (GEN) follow.
GEN mkcoln(long n, \ldots) returns the t_{-}COL whose n coefficients (GEN) follow.
Warning: Contrary to the policy of general PARI functions, the latter three functions do not copy their arguments, nor do they produce an object a priori suitable for gerepileupto. For instance

```
/* gerepile-safe: components are universal objects */
z = mkvecn(3, gen_1, gen_0, gen_2);
/* not OK for gerepileupto: stoi(3) creates component before root */
z = mkvecn(3, stoi(3), gen_0, gen_2);
/* NO! First vector component x is destroyed */
x = gclone(gen_1);
z = mkvecn(3, x, gen_0, gen_2);
gunclone(x);
```

The following function is also available as a special case of mkintn:

```
GEN u2toi(ulong a, ulong b)
```

Returns the GEN equal to $2^{32} a+b$, assuming that $a, b<2^{32}$. This does not depend on sizeof (long): the behaviour is as above on both 32 and 64 -bit machines.
4.4.2 Assignments. Firstly, if x and y are both declared as GEN (i.e. pointers to something), the ordinary C assignment $\mathrm{y}=\mathrm{x}$ makes perfect sense: we are just moving a pointer around. However, physically modifying either x or y (for instance, $\mathrm{x}[1]=0$) also changes the other one, which is usually not desirable.

Very important note: Using the functions described in this paragraph is inefficient and often awkward: one of the gerepile functions (see Section 4.4.1) should be preferred. See the paragraph end for one exception to this rule.

The general PARI assignment function is the function gaffect with the following syntax:
void gaffect (GEN x, GEN y)
Its effect is to assign the PARI object x into the preexisting object y . This copies the whole structure of x into y so many conditions must be met for the assignment to be possible. For instance it is allowed to assign a t_INT into a t_REAL, but the converse is forbidden. For that, you must use the truncation or rounding function of your choice (see section 3.2). It can also happen that y is not large enough or does not have the proper tree structure to receive the object x. For instance, let y the zero integer with length equal to 2 ; then y is too small to accommodate any non-zero t_InT. In general common sense tells you what is possible, keeping in mind the PARI philosophy which says that if it makes sense it is valid. For instance, the assignment of an imprecise object into a precise one does not make sense. However, a change in precision of imprecise objects is allowed.

All functions ending in " z " such as gaddz (see Section 4.2.2) implicitly use this function. In fact what they exactly do is record avma (see Section 4.4.1), perform the required operation, gaffect the result to the last operand, then restore the initial avma.

You can assign ordinary C long integers into a PARI object (not necessarily of type t_INT). Use the function gaffsg with the following syntax:

```
void gaffsg(long s, GEN y)
```

Note: due to the requirements mentioned above, it is usually a bad idea to use gaffect statements. There is one exception: for simple objects (e.g. leaves) whose size is controlled, they can be easier to use than gerepile, and about as efficient.

Coercion. It is often useful to coerce an inexact object to a given precision. For instance at the beginning of a routine where precision can be kept to a minimum; otherwise the precision of the input is used in all subsequent computations, which is inefficient if the latter is known to thousands of digits. One may use the gaffect function for this, but it is easier and more efficient to call
GEN gtofp(GEN x, long prec) converts the complex number x (t_INT, t_REAL, t_FRAC, t_QUAD or t_COMPLEX) to either a t_REAL or t_COMPLEX whose components are t_REAL of length prec.
4.4.3 Copy. It is also very useful to copy a PARI object, not just by moving around a pointer as in the $\mathrm{y}=\mathrm{x}$ example, but by creating a copy of the whole tree structure, without pre-allocating a possibly complicated y to use with gaffect. The function which does this is called gcopy. Its syntax is:

```
GEN gcopy(GEN x)
```

and the effect is to create a new copy of x on the PARI stack.
Sometimes, on the contrary, a quick copy of the skeleton of x is enough, leaving pointers to the original data in x for the sake of speed instead of making a full recursive copy. Use GEN shallowcopy (GEN x) for this. Note that the result is not suitable for gerepileupto!

Make sure at this point that you understand the difference between $\mathrm{y}=\mathrm{x}, \mathrm{y}=\mathrm{gcopy}(\mathrm{x})$, y $=$ shallowcopy (x) and gaffect (x, y).
4.4.4 Clones. Sometimes, it is more efficient to create a persistent copy of a PARI object. This is not created on the stack but on the heap, hence unaffected by gerepile and friends. The function which does this is called gclone. Its syntax is:

GEN gclone(GEN x)

A clone can be removed from the heap (thus destroyed) using

```
void gunclone(GEN x)
```

No PARI object should keep references to a clone which has been destroyed!
4.4.5 Conversions. The following functions convert C objects to PARI objects (creating them on the stack as usual):

GEN stoi (long s): C long integer ("small") to t_INT.
GEN dbltor(double s): C double to t_REAL. The accuracy of the result is 19 decimal digits, i.e. a type t_REAL of length DEFAULTPREC, although on 32-bit machines only 16 of them are significant.

We also have the converse functions:
long itos (GEN x): x must be of type t_INT,
double rtodbl(GEN x): x must be of type t_REAL,
as well as the more general ones:
long gtolong (GEN x),
double gtodouble(GEN x).

4.5 Implementation of the PARI types.

We now go through each type and explain its implementation. Let z be a GEN, pointing at a PARI object. In the following paragraphs, we will constantly mix two points of view: on the one hand, z is treated as the C pointer it is, on the other, as PARI's handle on some mathematical entity, so we will shamelessly write $\mathbf{z} \neq 0$ to indicate that the value thus represented is nonzero (in which case the pointer \mathbf{z} is certainly non-NULL). We offer no apologies for this style. In fact, you had better feel comfortable juggling both views simultaneously in your mind if you want to write correct PARI programs.

Common to all the types is the first codeword z [0], which we do not have to worry about since this is taken care of by cgetg. Its precise structure depends on the machine you are using, but it always contain the following data: the internal type number associated to the symbolic type name, the length of the root in longwords, and a technical bit which indicates whether the object is a clone or not (see Section 4.4.4). This last one is used by gp for internal garbage collecting, you will not have to worry about it.

These data can be handled through the following macros:
long $\operatorname{typ}(G E N z)$ returns the type number of z.
void settyp (GEN z, long n) sets the type number of z to n (you should not have to use this function if you use cgetg).
long $\lg ($ GEN $z)$ returns the length (in longwords) of the root of \mathbf{z}.
long setlg (GEN z, long l) sets the length of z to l (you should not have to use this function if you use cgetg; however, see an advanced example in Section 4.8).
long isclone (GEN z) is z a clone?
void setisclone (GEN z) sets the clone bit.
void unsetisclone (GEN z) unsets the clone bit.
Remark. The clone bit is there so that gunclone can check it is deleting an object which was allocated by gclone. Miscellaneous vector entries are often cloned by gp so that a GP statement like $\mathrm{v}[1]=\mathrm{x}$ does not involve copying the whole of v : the component $\mathrm{v}[1]$ is deleted if its clone bit is set, and is replaced by a clone of x . Don't set/unset yourself the clone bit unless you know what you are doing: in particular never set the clone bit of a vector component when the said vector is scheduled to be uncloned. Hackish code may abuse the clone bit to tag objects for reasons unrelated to the above instead of using proper data structures. Don't do that.

These macros are written in such a way that you do not need to worry about type casts when using them: i.e. if z is a $\operatorname{GEN}, \operatorname{typ}(z[2])$ is accepted by your compiler, as well as the more proper $\operatorname{typ}(\operatorname{gel}(z, 2))$. Note that for the sake of efficiency, none of the codeword-handling macros check the types of their arguments even when there are stringent restrictions on their use.

Some types have a second codeword, used differently by each type, and we will describe it as we now consider each of them in turn.
4.5.1 Type t_INT (integer): this type has a second codeword $z[1]$ which contains the following information:
the sign of \mathbf{z} : coded as 1,0 or -1 if $\mathbf{z}>0, \mathbf{z}=0, \mathrm{z}<0$ respectively.
the effective length of \mathbf{z}, i.e. the total number of significant longwords. This means the following: apart from the integer 0 , every integer is "normalized", meaning that the most significant mantissa longword is non-zero. However, the integer may have been created with a longer length. Hence the "length" which is in $\mathbf{z}[0]$ can be larger than the "effective length" which is in $\mathbf{z}[1]$.

This information is handled using the following macros:
long signe(GEN z) returns the sign of z.
void setsigne (GEN z, long s) sets the sign of z to s.
long lgefint (GEN z) returns the effective length of z.
void setlgefint (GEN z, long l) sets the effective length of z to 1 .
The integer 0 can be recognized either by its sign being 0 , or by its effective length being equal to 2 . Now assume that $\mathbf{z} \neq 0$, and let

$$
|z|=\sum_{i=0}^{n} z_{i} B^{i}, \quad \text { where } z_{n} \neq 0 \text { and } B=2^{\text {BITs_-IN_Long }} .
$$

With these notations, n is lgefint $(z)-3$, and the mantissa of z may be manipulated via the following interface:

GEN int_MSW (GEN z) returns a pointer to the most significant word of \mathbf{z}, z_{n}.
GEN int_LSW (GEN z) returns a pointer to the least significant word of z, z_{0}.

GEN int_W (GEN z, long i) returns the i-th significant word of z, z_{i}. Accessing the i-th significant word for $i>n$ yields unpredictable results.

GEN int_precW (GEN z) returns the previous (less significant) word of \mathbf{z}, z_{i-1} assuming \mathbf{z} points to z_{i}.

GEN int_next \mathbf{W} (GEN z) returns the next (more significant) word of \mathbf{z}, z_{i+1} assuming \mathbf{z} points to z_{i}.

Unnormalized integers, such that z_{n} is possibly 0 , are explicitly forbidden. To enforce this, one may write an arbitrary mantissa then call
void int_normalize(GEN z, long known0)
normalizes in place a non-negative integer (such that z_{n} is possibly 0), assuming at least the first known0 words are zero.

For instance a binary and could be implemented in the following way:

```
GEN AND(GEN x, GEN y) {
    long i, lx, ly, lout;
    long *xp, *yp, *outp; /* mantissa pointers */
    GEN out;
    if (!signe(x) || !signe(y)) return gen_0;
    lx = lgefint(x); xp = int_LSW(x);
    ly = lgefint(y); yp = int_LSW(y); lout = min(lx,ly); /* > 2 */
    out = cgeti(lout); out[1] = evalsigne(1) | evallgefint(lout);
    outp = int_LSW(out);
    for (i=2; i < lout; i++)
    {
        *outp = (*xp) & (*yp);
        outp = int_nextW(outp);
        xp = int_nextW(xp);
        yp = int_nextW(yp);
    }
    if ( !*int_MSW(out) ) out = int_normalize(out, 1);
    return out;
}
```

This low-level interface is mandatory in order to write portable code since PARI can be compiled using various multiprecision kernels, for instance the native one or GNU MP, with incompatible internal structures (for one thing, the mantissa is oriented in different directions).

The following further macros are available:
long mpodd (GEN x) which is 1 if x is odd, and 0 otherwise.
long $\bmod 2(G E N X), \bmod 4(x)$, and so on up to $\bmod 64(x)$, which give the residue class of x modulo the corresponding power of 2 , for positive \mathbf{x}. By definition, $\bmod n(x):=\bmod n(|x|)$ for $x<0$ (the macros disregard the sign), and the result is undefined if $x=0$.

These macros directly access the binary data and are thus much faster than the generic modulo functions. Besides, they return long integers instead of GENs, so they do not clutter up the stack.
4.5.2 Type t_REAL (real number): this type has a second codeword $z[1]$ which also encodes its sign, obtained or set using the same functions as for a $t_{_}$INT, and a binary exponent. This exponent is handled using the following macros:
long expo (GEN z) returns the exponent of z. This is defined even when z is equal to zero, see Section 1.3.1.
void setexpo(GEN z, long e) sets the exponent of z to e.
Note the functions:
long gexpo (GEN z) which tries to return an exponent for z, even if z is not a real number.
long gsigne (GEN z) which returns a sign for z, even when z is neither real nor integer (a rational number for instance).

The real zero is characterized by having its sign equal to 0 . If z is not equal to 0 , then is is represented as $2^{e} M$, where e is the exponent, and $M \in[1,2[$ is the mantissa of z, whose digits are stored in $z[2], \ldots, z[\lg (z)-1]$.

More precisely, let m be the integer $(z[2], \ldots, z[\ln (z)-1])$ in base 2^{\wedge} BITS_IN_LONG; here, $z[2]$ is the most significant longword and is normalized, i.e. its most significant bit is 1 . Then we have $M:=m \cdot 2^{1 \text {-bit_accuracy }(\lg (z))}$.

Thus, the real number 3.5 to accuracy bit_accuracy $(\lg (z))$ is represented as $z[0]$ (encoding type $=\mathrm{t}$ REAL, $\lg (z)$), $z[1]$ (encoding sign $=1$, expo $=1$), $z[2]=0 x e 000000, z[3]=\ldots=$ $z[\lg (z)-1]=0 x 0$.
4.5.3 Type t_INTMOD: $z[1]$ points to the modulus, and $z[2]$ at the number representing the class z. Both are separate GEN objects, and both must be t_INTs, satisfying the inequality $0 \leq \mathbf{z}[2]<\mathbf{z}[1]$.

It is good practice to keep the modulus object on the heap, so that new t_INTMODs resulting from operations can point at this common object, instead of carrying along their own copies of it on the stack. The library functions implement this practice almost by default.
4.5.4 Type t_FRAC (rational number): $z[1]$ points to the numerator n, and $z[2]$ to the denominator d. Both must be of type t_INT such that $d \neq 0, n>0$ and ($n, d)=1$ (see gred_frac2).
4.5.5 Type t_COMPLEX (complex number): $z[1]$ points to the real part, and $z[2]$ to the imaginary part. A priori z [1] and $z[2]$ can be of any type, but only certain types are useful and make sense (mostly t_INT, t_REAL and t_FRAC).
4.5.6 Type t_PADIC (p-adic numbers): this type has a second codeword $\mathbf{z}[1]$ which contains the following information: the p-adic precision (the exponent of p modulo which the p-adic unit corresponding to \mathbf{z} is defined if \mathbf{z} is not 0), i.e. one less than the number of significant p-adic digits, and the exponent of \mathbf{z}. This information can be handled using the following functions:
long precp (GEN z) returns the p-adic precision of z.
void set precp (GEN z, long l) sets the p-adic precision of z to l.
long valp (GEN z) returns the p-adic valuation of \mathbf{z} (i.e. the exponent). This is defined even if \mathbf{z} is equal to 0 , see Section 1.3.1.
void setvalp (GEN z, long e) sets the p-adic valuation of \mathbf{z} to e.

In addition to this codeword, $\mathbf{z}[2]$ points to the prime $p, \mathbf{z}[3]$ points to $p^{\operatorname{precp}(z)}$, and $\mathbf{z}[4]$ points to at_INT representing the p-adic unit associated to \mathbf{z} modulo z [3] (and to zero if z is zero). To summarize, if $z \neq 0$, we have the equality:

$$
\mathrm{z}=p^{\operatorname{valp}(\mathrm{z})} *(\mathrm{z}[4]+O(\mathrm{z}[3])), \quad \text { where } \quad \mathrm{z}[3]=O\left(p^{\operatorname{precp}(\mathrm{z})}\right) .
$$

4.5.7 Type t_QUAD (quadratic number): $\mathrm{z}[1]$ points to the canonical polynomial P defining the quadratic field (as output by quadpoly), $z[2]$ to the "real part" and $z[3]$ to the "imaginary part". The latter are of type t_INT, t_FRAC, t_INTMOD, or t_PADIC and are to be taken as the coefficients of \mathbf{z} with respect to the canonical basis $(1, X)$ or $\mathbf{Q}[X] /(P(X))$, see Section 1.2.6.3. Exact complex numbers may be implemented as quadratics, but t_COMPLEX is in general more versatile (t_REAL components are allowed) and more efficient.

Operations involving a t_QUAD and t_COMPLEX are implemented by converting the t_QUAD to a t_REAL (or t_COMPLEX with t_REAL components) to the accuracy of the t_COMPLEX. As a consequence, operations between t _QUAD and exact t _COMPLEXs are not allowed.
4.5.8 Type t_POLMOD (polmod): as for t_INTMODs, $z[1]$ points to the modulus, and $z[2]$ to a polynomial representing the class of \mathbf{z}. Both must be of type t_POL in the same variable, satisfying the inequality $\operatorname{deg} z[2]<\operatorname{deg} z[1]$. However, $z[2]$ is allowed to be a simplification of such a polynomial, e.g a scalar. This is tricky considering the hierarchical structure of the variables; in particular, a polynomial in variable of lesser priority (see Section ??) than the modulus variable is valid, since it is considered as the constant term of a polynomial of degree 0 in the correct variable. On the other hand a variable of greater priority is not acceptable; see Section ?? for the problems which may arise.
4.5.9 Type t_POL (polynomial): this type has a second codeword. It contains a "sign": 0 if the polynomial is equal to 0 , and 1 if not (see however the important remark below) and a variable number (e.g. 0 for $x, 1$ for y, etc...).
These data can be handled with the following macros: signe and setsigne as for t_INT and t_REAL, long varn (GEN z) returns the variable number of the object z, void setvarn (GEN z, long v) sets the variable number of z to v.

The variable numbers encode the relative priorities of variables as discussed in Section ??. We will give more details in Section 4.6.2. Note also the function long gvar (GEN z) which tries to return a variable number for z, even if z is not a polynomial or power series. The variable number of a scalar type is set by definition equal to BIGINT, which has lower priority than any other variable number.

The components $z[2], z[3], \ldots z[\lg (z)-1]$ point to the coefficients of the polynomial in ascending order, with $\mathbf{z}[2]$ being the constant term and so on.

For an object of type t_POL, leading_term, constant_term, degpol return a pointer to the leading term (with respect to the main variable of course), constant term, and degree of the polynomial (with the convention $\operatorname{deg}(0)=-1$). Applied to any other type, the result is unspecified. Note that no copy is made on the pari stack so the returned value is not safe for a basic gerepile call. Note that $\operatorname{degpol}(z)=\lg (z)-3$.

The leading term is not allowed to be an exact 0 (unnormalized polynomial). To prevent this, one may use

GEN normalizepol (GEN x) applied to an unnormalized t_POL x (with all coefficients correctly set except that leading_term (x) might be zero), normalizes x correctly in place and returns x . For internal use.
long degree (GEN x) returns the degree of x with respect to its main variable even when x is not a polynomial (a rational function for instance). By convention, the degree of 0 is -1 .

Important remark. A zero polynomial can be characterized by the fact that its sign is 0 . However, its length may be greater than 2, meaning that all the coefficients of the polynomial are equal to zero, but the leading term $z[1 g(z)-1]$ is an inexact zero. More precisely, $g c m p 0(x)$ is true for all coefficients x of the polynomial, an isexactzero (x) is false for the leading coefficient. The same remark applies to t_SERs.
4.5.10 Type t_SER (power series): This type also has a second codeword, which encodes a "sign", i.e. 0 if the power series is 0 , and 1 if not, a variable number as for polynomials, and an exponent. This information can be handled with the following functions: signe, setsigne, varn, setvarn as for polynomials, and valp, setvalp for the exponent as for p-adic numbers. Beware: do not use expo and setexpo on power series.

The coefficients $z[2], z[3], \ldots z[\lg (z)-1]$ point to the coefficients of z in ascending order. As for polynomials (see remark there), the sign of a t_SER is 0 if and only if the leading coefficient of the series is an inexact 0 . (It cannot be an exact 0 .)

Note that the exponent of a power series can be negative, i.e. we are then dealing with a Laurent series (with a finite number of negative terms).
4.5.11 Type t_RFRAC (rational function): $z[1]$ points to the numerator n, and $z[2]$ on the denominator d. The denominator must be of type t_POL, with variable of higher priority than the numerator. The numerator n is not an exact 0 and ($n, d)=1$ (see gred_rfac2).
4.5.12 Type $t _Q F R$ (indefinite binary quadratic form): $z[1], z[2], z[3]$ point to the three coefficients of the form and are of type t_INT. z[4] is Shanks's distance function, and must be of type t_REAL.
4.5.13 Type t_QFI (definite binary quadratic form): $z[1], z[2], z[3]$ point to the three coefficients of the form. All three are of type t_INT.
4.5.14 Type t_{-}VEC and $t_{-} C O L$ (vector): $z[1], z[2], \ldots z[1 g(z)-1]$ point to the components of the vector.
4.5.15 Type t_MAT (matrix): $z[1], z[2], \ldots z[\lg (z)-1]$ point to the column vectors of z, i.e. they must be of type t_{-}COL and of the same length.
4.5.16 Type t _VECSMALL (vector of small integers): $z[1], z[2], \ldots z[1 g(z)-1]$ are ordinary signed long integers. This type is used instead of a t _VEC of $t _I N T s$ for efficiency reasons, for instance to implement efficiently permutations, polynomial arithmetic and linear algebra over small finite fields, etc.

The next two types were introduced for specific gp use, and you are better off using the standard malloc'ed C constructs when programming in library mode. We quote them for completeness, advising you not to use them:
4.5.17 Type t_LIST (list): This one has a second codeword which contains an effective length (handled through lgeflist / setlgeflist). $\mathrm{z}[2], \ldots, \mathrm{z}$ [lgeflist(z)-1] contain the components of the list.

4.5.18 Type t_STR (character string):

char * GSTR (z$)(=(\mathrm{z}+1))$ points to the first character of the (NULL-terminated) string.
Implementation note: for the types including an exponent (or a valuation), we actually store a biased non-negative exponent (bit-ORing the biased exponent to the codeword), obtained by adding a constant to the true exponent: either HIGHEXPOBIT (for t_REAL) or HIGHVALPBIT (for t_{-}PADIC and $\mathrm{t}_{-} \mathrm{SER}$). Of course, this is encapsulated by the exponent/valuation-handling macros and needs not concern the library user.

4.6 PARI variables.

4.6.1 Multivariate objects

We now consider variables and formal computations, and give the technical details corresponding to the general discussion in Section ??. As we have seen in Section 4.5.1, the codewords for types t_POL and t_SER encode a "variable number". This is an integer, ranging from 0 to MAXVARN. Relative priorities may be ascertained using

```
int varncmp(long v, long w)
```

which is $>0,=0,<0$ whenever v has lower, resp. same, resp. higher priority than w.
The way an object is considered in formal computations depends entirely on its "principal variable number" which is given by the function

```
long gvar(GEN z)
```

which returns a variable number for \mathbf{z}, even if \mathbf{z} is not a polynomial or power series. The variable number of a scalar type is set by definition equal to BIGINT which has lower priority than any valid variable number. The variable number of a recursive type which is not a polynomial or power series is the variable number with highest priority among its components. But for polynomials and power series only the "outermost" number counts (we directly access varn (x) in the codewords): the representation is not symmetrical at all.

Under gp, one needs not worry too much since the interpreter defines the variables as it sees them* and do the right thing with the polynomials produced (however, have a look at the remark in Section 2.3.12).

But in library mode, they are tricky objects if you intend to build polynomials yourself (and not just let PARI functions produce them, which is less efficient). For instance, it does not make sense to have a variable number occur in the components of a polynomial whose main variable has a lower priority, even though PARI cannot prevent you from doing it; see Section ?? for a discussion of possible problems in a similar situation.

[^0]4.6.2 Creating variables A basic difficulty is to "create" a variable. As we have seen in Section 4.1, a number of objects is associated to variable number v. Here is the complete list: pol_1[v] and pol_x $[v]$, which you can use in library mode and which represent, respectively, the monic monomials of degrees 0 and 1 in v; varentries $[v]$, and polvar $[v]$. The latter two are only meaningful to gp, but they have to be set nevertheless. All of them must be properly defined before you can use a given integer as a variable number.

Initially, this is done for 0 (the variable x under gp), and MAXVARN, which is there to address the need for a "temporary" new variable in library mode and cannot be input under gp. No documented library function can create from scratch an object involving MAXVARN (of course, if the operands originally involve MAXVARN, the function abides). We call the latter type a "temporary variable". The regular variables meant to be used in regular objects, are called "user variables".
4.6.2.1 User variables: When the program starts, x is the only user variable (number 0). To define new ones, use

long fetch_user_var (char $* s$)

which inspects the user variable named s (creating it if needed), and returns its variable number.

```
long v = fetch_user_var("y");
GEN gy = pol_x[v];
```

This function raises an error if s is already registered as a function name.
Caveat: you can use gp_read_str (see Section 4.7.1) to execute a GP command and create GP variables on the fly as needed:

```
GEN gy = gp_read_str("'y"); /* returns pol_x[v], for some v */
long v = varn(gy);
```

But please note the quote 'y in the above. Using gp_read_str("y") might work, but is dangerous, especially when programming functions to be used under gp. The latter reads the value of y , as currently known by the gp interpreter, possibly creating it in the process. But if y has been modified by previous gp commands (e.g y = 1), then the value of gy is not what you expected it to be and corresponds instead to the current value of the gp variable (e.g gen_1).

Technical remark If you are rewriting the gp interpreter, you may use the lower level

```
entree * fetch_named_var(char *s)
```

which returns an entree* suitable for inclusion in the interpreter hashlists of symbols.
4.6.2.2 Temporary variables: MAXVARN is available, but is better left to pari internal functions (some of which do not check that MAXVARN is free for them to use, which can be considered a bug). You can create more temporary variables using

long fetch_var()

This returns a variable number which is guaranteed to be unused by the library at the time you get it and as long as you do not delete it (we will see how to do that shortly). This has higher priority than any temporary variable produced so far (MAXVARN is assumed to be the first such). This call updates all the aforementioned internal arrays. In particular, after the statement $\mathrm{v}=$ fetch_var(), you can use pol_1[v] and pol_x[v]. The variables created in this way have no identifier assigned to them though, and they is printed as \#<number>, except for MAXVARN which
is printed as \#. You can assign a name to a temporary variable, after creating it, by calling the function

```
void name_var(long n, char *s)
```

after which the output machinery will use the name s to represent the variable number n. The GP parser will not recognize it by that name, however, and calling this on a variable known to gp raises an error. Temporary variables are meant to be used as free variables, and you should never assign values or functions to them as you would do with variables under gp. For that, you need a user variable.

All objects created by fetch_var are on the heap and not on the stack, thus they are not subject to standard garbage collecting (they are not destroyed by a gerepile or avma = ltop statement). When you do not need a variable number anymore, you can delete it using

long delete_var()

which deletes the latest temporary variable created and returns the variable number of the previous one (or simply returns 0 if you try, in vain, to delete MAXVARN). Of course you should make sure that the deleted variable does not appear anywhere in the objects you use later on. Here is an example:

```
long first = fetch_var();
long n1 = fetch_var();
long n2 = fetch_var(); /* prepare three variables for internal use */
/* delete all variables before leaving */
do { num = delete_var(); } while (num && num <= first);
```

The (dangerous) statement

```
while (delete_var()) /* empty */;
```

removes all temporary variables in use, except MAXVARN which cannot be deleted.

4.7 Input and output.

Two important aspects have not yet been explained which are specific to library mode: input and output of PARI objects.

4.7.1 Input.

For input, PARI provides you with one powerful high level function which enables you to input your objects as if you were under gp. In fact, it is essentially the GP syntactical parser, hence you can use it not only for input but for (most) computations that you can do under gp. It has the following syntax:

```
GEN gp_read_str(char *s)
```

In fact this function starts by filtering out all spaces and comments in the input string. They it calls the underlying basic function, the GP parser proper: GEN gp_read_str(char *s), which is slightly faster but which you probably do not need.

To read a GEN from a file, you can use the simpler interface
which reads a character string of arbitrary length from the stream file (up to the first complete expression sequence), applies gp_read_str to it, and returns the resulting GEN. This way, you do not have to worry about allocating buffers to hold the string. To interactively input an expression, use gp_read_stream(stdin).

Finally, you can read in a whole file, as in GP's read statement

GEN gp_read_file(char *name)

As usual, the return value is that of the last non-empty expression evaluated. Note that gp's metacommands are not recognized.

Once in a while, it may be necessary to evaluate a GP expression sequence involving a call to a function you have defined in C. This is easy using install which allows you to manipulate quite an arbitrary function (GP knows about pointers!). The syntax is
void install(void *f, char *name, char *code)
where f is the (address of) the function (cast to the C type void*), name is the name by which you want to access your function from within your GP expressions, and code is a character string describing the function call prototype (see Section 4.9.2 for the precise description of prototype strings). In case the function returns a GEN, it must satisfy gerepileupto assumptions (see Section 4.4.1).

4.7.2 Output.

For output, there exist essentially three different functions (with variants), corresponding to the three main gp output formats (as described in Section 2.1.18), plus three extra ones, respectively devoted to $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ output, string output, and debugging.

- "raw" format, obtained by using the function brute with the following syntax:
void brute(GEN obj, char x, long n)
This prints the PARI object obj in format $\mathrm{x} 0 . \mathrm{n}$, using the notations from Section 2.1.12. Recall that here x is either 'e', 'f' or 'g' corresponding to the three numerical output formats, and n is the number of printed significant digits, and should be set to -1 if all of them are wanted (these arguments only affect the printing of real numbers). Usually one does not need that much flexibility, and gets by with the function
void outbrute(GEN obj), which is equivalent to brute(x, 'g', -1),
or even better, with
void output (GEN obj) which is equivalent to outbrute (obj) followed by a newline and a buffer flush. This is especially nice during debugging. For instance using $d b x$ or $g d b$, if obj is a GEN, typing print output (obj) enables you to see the content of obj (provided the optimizer has not put it into a register, but it is rarely a good idea to debug optimized code).
- "prettymatrix" format: this format is identical to the preceding one except for matrices. The relevant functions are:
void matbrute(GEN obj, char x, long n)
void outmat (GEN obj), which is followed by a newline and a buffer flush.
- "prettyprint" format: the basic function has an additional parameter m , corresponding to the (minimum) field width used for printing integers:
void sor (GEN obj, char x, long n, long m)
The simplified version is
void outbeaut (GEN obj) which is equivalent to sor (obj, 'g', $-1,0$) followed by a newline and a buffer flush.
- The first extra format corresponds to the texprint GP function, and gives a $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ output of the result. It is obtained by using:
void texe(GEN obj, char x, long n)
- The second one is the function GENtostr which converts a PARI GEN to an ASCII string. The syntax is
char* GENtostr (GEN obj), wich returns a malloc'ed character string (which you should free after use).
- The third and final one outputs the hexadecimal tree corresponding to the gp metacommand $\backslash \mathrm{x}$ using the function
void voir(GEN obj, long nb), which only outputs the first nb words corresponding to leaves (very handy when you have a look at big recursive structures). If you set this parameter to -1 all significant words are printed. This last type of output is only used for debugging purposes.

Remark. Apart from GENtostr, all PARI output is done on the stream outfile, which by default is initialized to stdout. If you want that your output be directed to another file, you should use the function void switchout (char *name) where name is a character string giving the name of the file you are going to use. The output is appended at the end of the file. In order to close the file, simply call switchout (NULL).

Similarly, errors are sent to the stream errfile (stderr by default), and input is done on the stream infile, which you can change using the function switchin which is analogous to switchout.
(Advanced) Remark. All output is done according to the values of the pariOut / pariErr global variables which are pointers to structs of pointer to functions. If you really intend to use these, this probably means you are rewriting gp. In that case, have a look at the code in language/es.c (init80() or GENtostr() for instance).

4.7.3 Errors.

If you want your functions to issue error messages, you can use the general error handling routine pari_err. The basic syntax is

```
pari_err(talker, "error message");
```

This prints the corresponding error message and exit the program (in library mode; go back to the gp prompt otherwise). You can also use it in the more versatile guise

```
pari_err(talker, format, ...);
```

where format describes the format to use to write the remaining operands, as in the printf function (however, see the next section). The simple syntax above is just a special case with a constant format and no remaining arguments.

The general syntax is

```
void pari_err(numerr,...)
```

where numerr is a codeword which indicates what to do with the remaining arguments and what message to print. The list of valid keywords is in language/errmessages.c together with the basic corresponding message. For instance, pari_err (typeer, "extgcd") prints the message:

```
*** incorrect type in extgcd.
```

To issue a warning, use
void pari_warn(warnerr, ...) In that case, of course, we do not abort the computation, just print the requested message and go on. The basic example is

```
pari_warn(warner, "Strategy 1 failed. Trying strategy 2")
```

which is the exact equivalent of pari_err (talker, ...) except that you certainly do not want to stop the program at this point, just inform the user that something important has occurred (in particular, this output would be suitably highlighted under gp, whereas a simple printf would not).

The valid warning keywords are warner (general), warnprec (increasing precision), warnmem (garbage collecting) and warnfile (error in file operation), used as follows:

```
pari_warn(warnprec, "bnfinit", newprec);
pari_warn(warnmem, "bnfinit");
pari_warn(warnfile, "close", "log"); /* error when closing "log" */
```


4.7.4 Debugging output.

The global variables DEBUGLEVEL and DEBUGMEM (corresponding to the default debug and debugmem, see Section 2.1) are used throughout the PARI code to govern the amount of diagnostic and debugging output, depending on their values. You can use them to debug your own functions, especially after having made them accessible under gp through the command install (see Section 3.11.2.14).

For debugging output, you can use printf and the standard output functions (brute or output mainly), but also some special purpose functions which embody both concepts, the main one being

```
void fprintferr(char *pariformat, ...)
```

Now let us define what a PARI format is. It is a character string, similar to the one printf uses, where \% characters have a special meaning. It describes the format to use when printing the remaining operands. But, in addition to the standard format types, you can use $\% \mathrm{Z}$ to denote a GEN object (we would have liked to pick $\%$ g but it was already in use!). For instance you could write:

```
pari_err(talker, "x[%d] = %Z is not invertible!", i, x[i])
```

since the pari_err function accepts PARI formats. Here i is an int, x a GEN which is not a leaf and this would insert in raw format the value of the GEN x [i].

4.7.5 Timers and timing output.

To profile your functions, you can use the PARI timer. The functions long timer () and long timer2() return the elapsed time since the last call of the same function (in milliseconds). Two different functions (identical except for their independent time-of-last-call memories!) are provided so you can have both global timing and fine tuned profiling.

You can also use void msgtimer (char *format, ...), which prints prints Time, then the remaining arguments as specified by format (which is a PARI format), then the output of timer2.

This mechanism is simple to use but not foolproof. If some other function uses these timers, and many PARI functions do use timer2 when DEBUGLEVEL is high enough, the timings will be meaningless. To handle timing in a reentrant way, PARI defines a dedicated data type, pari_timer. The functions

```
void TIMERstart(pari_timer *T)
long TIMER(pari_timer *T)
long msgTIMER(pari_timer *T, char *format,...)
```

provide an equivalent to timer and msgtimer, except they use a unique timer T containing all the information needed, so that no other function can mess with your timings. They are used as follows:

```
pari_timer T;
TIMERstart(&T); /* initialize timer */
printf("Total time: %ld\n", TIMER(&T));
```

or

```
pari_timer T;
TIMERstart(&T);
for (i = 1; i < 10; i++) {
    msgTIMER(&T, "for i = %ld (L[i] = %Z)", i, L[i]);
}
```


4.8 A complete program.

Now that the preliminaries are out of the way, the best way to learn how to use the library mode is to study a detailed example. We want to write a program which computes the gcd of two integers, together with the Bezout coefficients. We shall use the standard quadratic algorithm which is not optimal but is not too far from the one used in the PARI function bezout.

Let x, y two integers and initially $\left(\begin{array}{ll}s_{x} & s_{y} \\ t_{x} & t_{y}\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, so that

$$
\left(\begin{array}{ll}
s_{x} & s_{y} \\
t_{x} & t_{y}
\end{array}\right)\binom{x}{y}=\binom{x}{y}
$$

To apply the ordinary Euclidean algorithm to the right hand side, multiply the system from the left by $\left(\begin{array}{cc}0 & 1 \\ 1 & -q\end{array}\right)$, with $q=$ floor (x / y). Iterate until $y=0$ in the right hand side, then the first line of the system reads

$$
s_{x} x+s_{y} y=\operatorname{gcd}(x, y)
$$

In practice, there is no need to update s_{y} and t_{y} since $\operatorname{gcd}(x, y)$ and s_{x} are enough to recover s_{y}. The following program is now straightforward. A couple of new functions appear in there, whose description can be found in the technical reference manual in Chapter 5.

```
#include <pari/pari.h>
/*
GP;install("extgcd", "GG&&", "gcdex", "./libextgcd.so");
*/
/* return d = gcd(a,b), sets u, v such that au + bv = gcd(a,b) */
GEN
extgcd(GEN A, GEN B, GEN *U, GEN *V)
{
    pari_sp av = avma;
    GEN ux = gen_1, vx = gen_0, a = A, b = B;
    if (typ(a) != t_INT || typ(b) != t_INT) pari_err(typeer, "extgcd");
    if (signe(a) < 0) { a = negi(a); ux = negi(ux); }
    while (!gcmp0(b))
    {
        GEN r, q = dvmdii(a, b, &r), v = vx;
        vx = subii(ux, mulii(q, vx));
        ux = v;
        a = b; b = r;
    }
    *U = ux;
    *V = diviiexact( subii(a, mulii(A,ux)), B );
    gerepileall(av, 3, &a, U, V); return a;
}
int
main()
{
    GEN x, y, d, u, v;
    pari_init(1000000,2);
    printf("x = "); x = gp_read_stream(stdin);
    printf("y = "); y = gp_read_stream(stdin);
    d = extgcd(x, y, &u, &v);
    pariprintf("gcd = %Z\nu = %Z\nv = %Z\n", d,u,v);
    return 0;
}
```

Note that, for simplicity, the inner loop does not include any garbage collection, hence memory use is quadratic in the size of the inputs instead of linear.

4.9 Adding functions to PARI.

4.9.1 Nota Bene. As mentioned in the COPYING file, modified versions of the PARI package can be distributed under the conditions of the GNU General Public License. If you do modify PARI, however, it is certainly for a good reason, hence we would like to know about it, so that everyone can benefit from it. There is then a good chance that your improvements are incorporated into the next release.

We classify changes to PARI into four rough classes, where changes of the first three types are almost certain to be accepted. The first type includes all improvements to the documentation, in a broad sense. This includes correcting typos or inacurracies of course, but also items which are not really covered in this document, e.g. if you happen to write a tutorial, or pieces of code exemplifying fine points unduly omitted in the present manual.

The second type is to expand or modify the configuration routines and skeleton files (the Configure script and anything in the config/ subdirectory) so that compilation is possible (or easier, or more efficient) on an operating system previously not catered for. This includes discovering and removing idiosyncrasies in the code that would hinder its portability.

The third type is to modify existing (mathematical) code, either to correct bugs, to add new functionalities to existing functions, or to improve their efficiency.

Finally the last type is to add new functions to PARI. We explain here how to do this, so that in particular the new function can be called from gp.
4.9.2 The calling interface from gp, parser codes. A parser code is a character string describing all the GP parser needs to know about the function prototype. It contains a sequence of the following atoms:

- Syntax requirements, used by functions like for, sum, etc.:
$=\quad$ separator $=$ required at this point (between two arguments)
- Mandatory arguments, appearing in the same order as the input arguments they describe:

G GEN
\& *GEN
L long (we implicitly identify int with long)
S symbol (i.e. GP identifier name). Function expects a *entree
V variable (as S , but rejects symbols associated to functions)
n variable, expects a variable number (a long, not an *entree)
I string containing a sequence of GP statements (a seq), to be processed by gp_read_str (useful for control statements)
E string containing a single GP statement (an expr), to be processed by readexpr
$r \quad$ raw input (treated as a string without quotes). Quoted args are copied as strings
Stops at first unquoted ')' or ', '. Special chars can be quoted using ' \backslash '
Example: $a \mathrm{a}$ " $\mathrm{b} \backslash \mathrm{n}$)" c yields the string " $\mathrm{aab} \backslash \mathrm{n}$) c "
s expanded string. Example: Pi"x"2 yields "3.142x2"
Unquoted components can be of any PARI type (converted following current output format)

- Optional arguments:
s* any number of strings, possibly 0 (see s)
D $x x x$ argument has a default value

The s* code is technical and you probably do not need it, but we give its description for completeness. It reads all remaining arguments in string context (see Section 2.6.5), and sends a (NULL-terminated) list of GEN* pointing to these. The automatic concatenation rules in string context are implemented so that adjacent strings are read as different arguments, as if they had been comma-separated. For instance, if the remaining argument sequence is: "xx" 1, "yy", the s* atom sends a GEN $* g=\{\& a, \& b, \& c, N U L L\}$, where a, b, c are GENs of type t_{-}STR (content "xx"), t_INT (equal to 1) and t_STR (content "yy").

The format to indicate a default value (atom starts with a D) is "Dvalue, type,", where type is the code for any mandatory atom (previous group), value is any valid GP expression which is converted according to type, and the ending comma is mandatory. For instance DO, L, stands for "this optional argument is converted to a long, and is 0 by default". So if the user-given argument reads $1+3$ at this point, 4L is sent to the function; and OL if the argument is omitted. The following special syntaxes are available:

DG optional GEN, send NULL if argument omitted.
D\& optional *GEN, send NULL if argument omitted.
DV optional *entree, send NULL if argument omitted.
DI optional *char, send NULL if argument omitted.
Dn optional variable number, -1 if omitted.

- Automatic arguments:
f Fake *long. C function requires a pointer but we do not use the resulting long
p real precision (default realprecision)
P series precision (default seriesprecision, global variable precdl for the library)
- Return type: GEN by default, otherwise the following can appear at the start of the code string:

i	return int
l	return long
v	return void

No more than 8 arguments can be given (syntax requirements and return types are not considered as arguments). This is currently hardcoded but can trivially be changed by modifying the definition of argvec in anal.c:identifier(). This limitation should disappear in future versions.

When the function is called under gp, the prototype is scanned and each time an atom corresponding to a mandatory argument is met, a user-given argument is read (gp outputs an error message it the argument was missing). Each time an optional atom is met, a default value is inserted if the user omits the argument. The "automatic" atoms fill in the argument list transparently, supplying the current value of the corresponding variable (or a dummy pointer).

For instance, here is how you would code the following prototypes, which do not involve default values:

```
GEN name(GEN x, GEN y, long prec) ----> "GGp"
void name(GEN x, GEN y, long prec) ----> "vGGp"
void name(GEN x, long y, long prec) ----> "vGLp"
long name(GEN x) ----> "lG"
int name(long x) ----> "iL"
```

If you want more examples, gp gives you easy access to the parser codes associated to all GP functions: just type $\backslash \mathrm{h}$ function. You can then compare with the C prototypes as they stand in the paridecl.h

Remark: If you need to implement complicated control statements (probably for some improved summation functions), you need to know about the entree type, which is not documented. Check the comment at the end of language/init.c and the source code in language/sumiter.c.
4.9.3 Coding guidelines. Code your function in a file of its own, using as a guide other functions in the PARI sources. One important thing to remember is to clean the stack before exiting your main function, since otherwise successive calls to the function clutters the stack with unnecessary garbage, and stack overflow occurs sooner. Also, if it returns a GEN and you want it to be accessible to gp , you have to make sure this GEN is suitable for gerepileupto (see Section 4.4.1).

If error messages or warnings are to be generated in your function, use pari_err and pari_warn respectively. Recall that pari_err does not return but ends with a longjmp statement. As well, instead of explicit printf / fprintf statements, use the following encapsulated variants:
void pariflush(): flush output stream.
void pariputc (char c): write character c to the output stream.
void pariputs(char $*$ s): write s to the output stream.
void fprintferr (char *s): write s to the error stream (this function is in fact much more versatile, see Section 4.8).

Declare all public functions in an appropriate header file, if you want to access them from C. For example, if dynamic loading is not available, you may need to modify PARI to access these functions, so put them in paridecl.h. The other functions should be declared static in your file.

Your function is now ready to be used in library mode after compilation and creation of the library. If possible, compile it as a shared library (see the Makefile coming with the extgcd example in the distribution). It is however still inaccessible from gp.

4.9.4 Integration with gp as a shared module

To tell gp about your function, you must do the following. First, find a name for it. It does not have to match the one used in library mode, but consistency is nice. It has to be a valid GP identifier, i.e. use only alphabetic characters, digits and the underscore character (_), the first character being alphabetic.

Then figure out the correct parser code corresponding to the function prototype, as explained above (Section 4.9.2).

Now, assuming your Operating System is supported by install, write a GP script like the following:

```
install(libname, code, gpname, library)
addhelp(gpname, "some help text")
```

(see Section 3.11.2.3 and 3.11.2.14). The addhelp part is not mandatory, but very useful if you want others to use your module. libname is how the function is named in the library, usually the same name as one visible from C.

Read that file from your gp session (from your preferences file for instance, see Section 2.8), and that's it. You can now use the new function gpname under gp, and we would very much like to hear about it!

4.9.5 Integration the hard way

If install is not available, things are more complicated: you have to hardcode your function in the gp binary (or install Linux). Here is what needs to be done:

You need to choose a section and add a file functions/section/gpname containing the following, keeping the notation above:

```
Function: gpname
Section: section
C-Name: libname
Prototype: code
Help: some help text
```

(If the help text does not fit on a single line, continuation lines must start by a whitespace character.) A GP2C-related Description field is also available to improve the code GP2C generates when compiling scripts involving your function. See the GP2C documentation for details.

At this point you can recompile gp, which will first rebuild the functions database.
4.9.6 Example. A complete description could look like this:

```
{
    install(bnfinit0, "GDO,L,DGp", ClassGroupInit, "libpari.so");
    addhelp(ClassGroupInit, "ClassGroupInit(P,{flag=0},{data=[]}):
        compute the necessary data for ...");
}
```

which means we have a function ClassGroupInit under gp, which calls the library function bnfinit0. The function has one mandatory argument, and possibly two more (two 'D' in the code), plus the current real precision. More precisely, the first argument is a GEN, the second one is converted to a long using itos (0 is passed if it is omitted), and the third one is also a GEN, but we pass NULL if no argument was supplied by the user. This matches the C prototype (from paridecl.h):

```
GEN bnfinitO(GEN P, long flag, GEN data, long prec)
```

This function is in fact coded in basemath/buch2.c, and is in this case completely identical to the GP function bnfinit but gp does not need to know about this, only that it can be found somewhere in the shared library libpari.so.

Important note: You see in this example that it is the function's responsibility to correctly interpret its operands: data $=$ NULL is interpreted by the function as an empty vector. Note that since NULL is never a valid GEN pointer, this trick always enables you to distinguish between a default value and actual input: the user could explicitly supply an empty vector!

Note: If install is not available, we have to add a file

```
functions/number_fields/ClassGroupInit
```

containing the following:

```
Function: ClassGroupInit
Section: number_fields
C-Name: bnfinit0
Prototype: GDO,L,DGp
Help: ClassGroupInit(P,{flag=0},{tech=[]}): this routine does ...
```


Chapter 5:
 Technical Reference Guide for Low-Level Functions

In this chapter, we describe all public low-level functions of the PARI library. These essentially include functions for handling all the PARI types. Higher level functions, such as arithmetic or transcendental functions, are described in Chapter 3 of the GP user's manual. A general introduction to the major concepts of PARI programming can be found in Chapter 4.

Many other undocumented functions can be found throughout the source code. These private functions are more efficient than the library wrappers, but sloppier on argument checking and damage control. Use them at your own risk!

Important advice: generic routines eventually call lower level functions. Optimize your algorithms first, not overhead and conversion costs between PARI routines. For generic operations, use generic routines first, don't waste time looking for the most specialized one available unless you identify a genuine bottleneck. The PARI source code is part of the documentation; look for inspiration there.

We let BIL abbreviate BITS_IN_LONG. The type long denotes a BIL-bit signed long integer. The type ulong is defined as unsigned long. The word stack always refer to the PARI stack, allocated through an initial pari_init call. Refer to Chapters 1-2 and 4 for general background.

5.1 Initializing the library.

The following functions enable you to start using the PARI functions in a program, and cleanup without exiting the whole program.

5.1.1 General purpose

void pari_init(size_t size, ulong maxprime) initialize the library, with a stack of size bytes and a prime table up to the maximum of maxprime and 2^{16}. Unless otherwise mentionned, no PARI function will function properly before such an initialization.
void pari_close(void) stop using the library (assuming it was initialized with pari_init) and frees all allocated objects.

5.1.2 Technical functions

void pari_init_opts(size_t size, ulong maxprime, ulong opts) as pari_init, more flexible. opts is a mask of flags among the following:

INIT_JMPm: install pari error handler. When an exception is raised, the program is terminated with exit(1).

INIT_SIGm: install pari signal handler.
INIT_DFTm: initialize the GP_DATA environment structure. This one must be enabled once. If you close pari, then restart it, you need not reinitialize GP_DATA; if you do not, then old values are restored.
void pari_close_opts(ulong init_opts) as pari_close, for a library initialized with a mask of options using pari_init_opts. opts is a mask of flags among

INIT_SIGm: restore SIG_DFL default action for signals tampered with by pari signal handler.
INIT_DFTm: frees the GP_DATA environment structure.
void pari_sig_init(void (*f) (int)) install the signal handler f (see signal(2)): the signals SIGBUS, SIGFPE, SIGINT, SIGBREAK, SIGPIPE and SIGSEGV are concerned.

5.1.3 Notions specific to the GP interpreter

An entree is the generic object associated to an identifier (a name) in GP's interpreter, be it a built-in or user function, or a variable. For a function, it has at least the following fields:
char *name : the name under which the interpreter knows us.
ulong valence : obsolete, set it to 1.
void *value : a pointer to the C function to call.
long menu : an integer from 1 to 11 (to which group of function help do we belong).
char *code : the prototype code.
char *help : the help text for the function.
A routine in GP is described to the analyzer by an entree structure. Built-in pari routines are grouped in modules, which are arrays of entree structs, the last of which satisfy name = NULL (sentinel).

There are currently six modules in GP: general functions (functions_basic), gp-specific functions (functions_fp), gp-specific highlevel functions (functions_highlevel), member functions, and two modules of obsolete functions. The function pari_init initializes the interpreter and declares all symbols in functions_basic. You may declare further functions on a case by case basis or as a whole module using
void pari_add_function (entree *ep) adds a single routine to the table of symbols in the interpreter. It assumes pari_init has been called.
void pari_add_module (entree *mod) adds all the routines in module mod to the table of symbols in the interpreter. It assumes pari_init has been called.

For instance, gp implements a number of private routines, which it adds to the default set via the call

```
pari_add_module(functions_gp);
pari_add_module(functions_highlevel);
```


5.2 Handling gens.

Almost all these functions are either macros or inlined. Unless mentioned otherwise, they do not evaluate their arguments twice. Most of them are specific to a set of types, although no consistency checks are made: e.g. one may access the sign of a t_PADIC, but the result is meaningless.

5.2.1 Length conversions

long ndec2nlong (long x) converts a number of decimal digits to a number of words. Returns $1+$ floor $\left(x \times\right.$ BIL $\left.\log _{2} 10\right)$.
long ndec2prec (long x) converts a number of decimal digits to a number of codewords. This is equal to $2+$ ndec $2 \mathrm{nlong}(\mathrm{x})$.
long prec2ndec (long x) converts a number of of codewords to a number of decimal digits.
long nbits2nlong (long x) converts a number of bits to a number of words. Returns the smallest word count containing x bits, i.e ceil($x /$ BIL).
long nbits2prec (long x) converts a number of bits to a number of codewords. This is equal to $2+$ nbits2nlong(x).
long nchar2nlong (long x) converts a number of bytes to number of words. Returns the smallest word count containing x bytes, i.e ceil($x /$ sizeof(long)).
long bit_accuracy (long x) converts a t_REAL length into a number of significant bits. Returns $(x-2)$ BIL. The macro bit_accuracy_mul (x, y) computes the same thing multiplied by y.

5.2.2 Read type-dependent information

long $\operatorname{typ}(G E N x$) returns the type number of x. The header files included through pari.h define symbolic constants for the GEN types: t_INT etc. Never use their actual numerical values. E.g to determine whether x is a t_INT, simply check

```
if (typ(x) == t_INT) { }
```

The types are internally ordered and this simplifies the implementation of commutative binary operations (e.g addition, gcd). Avoid using the ordering directly, as it may change in the future; use type grouping macros instead (Section 5.2.5).
long \lg (GEN x) returns the length of x in BIL-bit words.
long lgefint (GEN x) returns the effective length of the t_INT x in BIL-bit words.
long signe (GEN x) returns the sign ($-1,0$ or 1) of x . Can be used for t_{-}INT, t _REAL, t_{-}POL and t_SER (for the last two types, only 0 or 1 are possible).
long gsigne(GEN x) same as signe, but also valid for t_FRAC (and marginally less efficient for the other types). Raise a type error if $\operatorname{typ}(\mathrm{x})$ is not among those three.
long expi (GEN x) returns the binary exponent of the real number equal to the t_INT x . This is a special case of gexpo.
long expo(GEN x) returns the binary exponent of the t_REAL x .
long gexpo(GEN x) same as expo, but also valid when x is not a t_REAL (returns the largest exponent found among the components of x). When x is an exact 0 , this returns -HIGHEXPOBIT, which is lower than any valid exponent.
long valp (GEN x) returns the p-adic valuation (for a t_PADIC) or X-adic valuation (for a t_SER, taken with respect to the main variable) of x.
long $\operatorname{precp}(G E N x)$ returns the precision of the t_PADIC x .
long $\operatorname{varn}(G E N \mathrm{x})$ returns the variable number of the $t_{-} P O L$ or $t_{\text {_S }}$ SER x (between 0 and MAXVARN).
long gvar (GEN x) returns the main variable number when any variable at all occurs in the composite object x (the smallest variable number which occurs), and BIGINT otherwise.
long degpol(GEN x) returns the degree of t_POL x , assuming its leading coefficient is non-zero (an exact 0 is impossible, but an inexact 0 is allowed). By convention the degree of an exact 0 polynomial is -1 . If the leading coefficient of x is 0 , the result is undefined.
int precision (GEN x) If x is of type $t _R E A L$, returns the precision of x (the length of x in BIL-bit words if x is not zero, and a reasonable quantity obtained from the exponent of x if x is numerically equal to zero). If x is of type $t _C O M P L E X$, returns the minimum of the precisions of the real and imaginary part. Otherwise, returns 0 (which stands in fact for infinite precision).
int gprecision (GEN x) as precision for scalars; returns the lowest precision encountered among the components otherwise.
long sizedigit (GEN x) returns 0 if x is exactly 0 . Otherwise, returns gexpo(x) multiplied by $\log _{10}(2)$. This gives a crude estimate for the maximal number of decimal digits of the components of x.
5.2.3 Eval type-dependent information. These routines convert type-dependant information to bitmask to fill the codewords of GEN objects (see Section 4.5.1). E.g for a t_REAL z:

$$
z[1]=\text { evalsigne(-1) | evalexpo(2) }
$$

Compatible components of a codeword for a given type can be OR-ed as above.
ulong evaltyp (long x) convert type x to bitmask (first codeword of all GENs)
long evallg (long x) convert length x to bitmask (first codeword of all GENs). Raise overflow error if x is so large that the corresponding length cannot be represented
long _evallg (long x) as evallg without the overflow check.
ulong evalvarn(long x) convert variable number x to bitmask (second codeword of $t_{\text {_ POL }}$ and t_SER)
long evalsigne(long x) convert sign x (in $-1,0,1$) to bitmask (second codeword of t _INT, t_REAL, t_POL, t_SER)
long evalprecp (long x) convert p-adic (X-adic) precision x to bitmask (second codeword of t_PADIC, t_SER)
long evalvalp (long x) convert p-adic (X-adic) valuation x to bitmask (second codeword of t_PADIC, t_SER). Raise overflow error if x is so large that the corresponding valuation cannot be represented
long _evalvalp (long x) same as evalvalp without the overflow check.
long evalexpo (long x) convert exponent x to bitmask (second codeword of $t _R E A L$). Raise overflow error if x is so large that the corresponding exponent cannot be represented
long _evalexpo(long x) same as evalexpo without the overflow check.
long evallgefint (long x) convert effective length x to bitmask (second codeword t _INT). This should be less or equal than the length of the $t_{\text {_INT, }}$ INence there is no overflow check for the effective length.
long evallgeflist (long x) convert effective length x to bitmask (second codeword t _LIST). This should be less or equal than the length of the t_LIST, hence there is no overflow check for the effective length.
5.2.4 Set type-dependent information. Use these macros with extreme care since usually the corresponding information is set otherwise, and the components and further codeword fields (which are left unchanged) may not be compatible with the new information.
void settyp (GEN x , long s) sets the type number of x to s .
void setlg (GEN x, long s) sets the length of x to s. This is an efficient way of truncating vectors, matrices or polynomials.
void setlgefint (GEN x, long s) sets the effective length of the t_{-}INT x to s. The number s must be less than or equal to the length of x .
void setsigne (GEN x, long s) sets the sign of x to s. If x is a t_{-}INT or t_{-}REAL, s must be equal to $-1,0$ or 1 , and if x is a $t_{-} \mathrm{POL}$ or $t_{_}$SER, s must be equal to 0 or 1 .
void setexpo (GEN x, long s) sets the binary exponent of the t_REAL x to s. The value s must be a 24 -bit signed number.
void setvalp (GEN x , long s) sets the p-adic or X-adic valuation of x to s , if x is a t_PADIC or a t_SER, respectively.
void setprecp (GEN x , long s) sets the p-adic precision of the t_PADIC x to s .
void setvarn (GEN x, long s) sets the variable number of the $t_{-} P O L$ or $t_{-} S E R x$ to s (where $0 \leq \mathrm{s} \leq$ MAXVARN $).$
5.2.5 Type groups. In the following macros, t denotes the type of a GEN. Some of these macros may evaluate their argument twice. Always use them as in

```
long tx = typ(x);
if (is_intreal_t(tx)) { }
```

int is_recursive_t (long t) true iff t is a recursive type (the recursive types are t_INT, t_REAL, t_STR or t_VECSMALL).
int is_intreal_t (long t) true iff t is t_INT or t_REAL.
int is_rational_t (long t) true iff t is t_INT or t_FRAC.
int is_vec_t (long t) true iff t is $t _V E C$ or $t _C O L$.
int is_matvec_t (long t) true iff t is t_MAT, t_{-}VEC or $t _C O L$.
int is_scalar_t (long t) true iff t is a scalar, i.e a t_INT, $t _R E A L, t_{_} I N T M O D, t_{_} F R A C, t_{_} C O M P L E X$, t_PADIC, t_{-}QUAD, or t_POLMOD.
int is_extscalar_t (long t) true iff t is a scalar (see is_scalar_t) or tis t_POL.
int is_const_t (long t) true iff t is a scalar which is not t_POLMOD.
5.2.6 Accessors and components. The first two functions return GEN components as copies on the stack:

GEN compo (GEN x, long n) creates a copy of the n-th true component (i.e. not counting the codewords) of the object x.

GEN truecoeff (GEN x , long n) creates a copy of the coefficient of degree n of x if x is a scalar, $t_{\text {_POL }}$ or t_{-}SER, and otherwise of the n-th component of x .

On the contrary, the following routines return the address of a GEN component. No copy is made on the stack:

GEN constant_term (GEN x) returns the address the constant term of t_POL x. By convention, a 0 polynomial (whose sign is 0) has gen_0 constant term.

GEN leading_term (GEN x) returns the address the leading term of t_{-}POL x . This may be an inexact 0 .

GEN gel(GEN x , long i) returns the address of the $\mathrm{x}[\mathrm{i}]$ entry of x . (el stands for element.)
GEN gcoeff (GEN x, long i, long j) returns the address of the $x[i, j]$ entry of $t _M A T x$, i.e. the coefficient at row i and column j.

GEN gmael(GEN x, long i, long j) returns the address of the $x[i][j$] entry of x. (mael stands for multidimensional array element.)

GEN gmael2 (GEN A, long x1, long x2) is an alias for gmael. Similar macros gmael3, gmael4, gmael5 are available.

5.3 Handling the PARI stack.

5.3.1 Allocating memory on the stack

GEN cgetg (long n, long t) allocates memory on the stack for an object of length n and type t, and initializes its first codeword.

GEN cgeti (long n) allocates memory on the stack for a t_INT of length n, and initializes its first codeword. Identical to cgetg (n, t _INT).

GEN cgetr (long n) allocates memory on the stack for a t_REAL of length n, and initializes its first codeword. Identical to $\operatorname{cgetg}\left(n, t _R E A L\right)$.

GEN cgetc (long n) allocates memory on the stack for a t_COMPLEX, whose real and imaginary parts are t_REALs of length n .

GEN cgetp (GEN x) creates space sufficient to hold the t_PADIC x , and sets the prime p and the p-adic precision to those of x , but does not copy (the p-adic unit or zero representative and the modulus of) x .

GEN new_chunk(size_t n) allocates a GEN with n components, without filling the required code words. This is the low-level constructor underlying cgetg, which calls new_chunk then sets the first code word. It works by simply returning the address ((GEN) avma) - n, after checking that it is larger than (GEN) bot.
char* stackmalloc (size_t n) allocates memory on the stack for n chars ($n o t n$ GENs). This is faster than using malloc, and easier to use in most situations when temporary storage is needed.

In particular there is no need to free individually all variables thus allocated: a simple avma $=$ oldavma might be enough. On the other hand, beware that this is not permanent independant storage, but part of the stack.

Objects allocated through these last two functions cannot be gerepile'd. They are not valid GENs since they have no PARI type.
5.3.2 Garbage collection. See Section 4.4.1 for a detailed explanation and many examples. void cgiv(GEN x) frees object x if it is the last created on the stack (otherwise nothing happens). GEN gerepile(pari_sp p, pari_sp q, GEN x) general garbage collector for the stack. void gerepileall(pari_sp av, int n, \ldots) cleans up the stack from av on (i.e from avma to av), preserving the n objects which follow in the argument list (of type GEN*). E.g: gerepileall(av, 2 , \&x, \&y) preserves x and y.
void gerepileallsp(pari_sp av, pari_sp ltop, int n, \ldots) cleans up the stack between av and ltop, updating the n elements which follow n in the argument list (of type GEN*). Check that the elements of g have no component between av and ltop, and assumes that no garbage is present between avma and ltop. Analogous to (but faster than) gerepileall otherwise.
GEN gerepilecopy (pari_sp av, GEN x) cleans up the stack from av on, preserving the object x . Special case of gerepileall (case $n=1$), except that the routine returns the preserved GEN instead of updating its adress through a pointer.
void gerepilemany (pari_sp av, GEN* g[] , int n) alternative interface to gerepileall
void gerepilemanysp(pari_sp av, pari_sp ltop, GEN* g[], int n) alternative interface to gerepileallsp.
void gerepilecoeffs(pari_sp av, GEN x, int n) cleans up the stack from av on, preserving $\mathrm{x}[0], \ldots, \mathrm{x}[\mathrm{n}-1]$ (which are GENs).
void gerepilecoeffssp(pari_sp av, pari_sp ltop, GEN x, int n) cleans up the stack from av to ltop, preserving $\mathrm{x}[0], \ldots, \mathrm{x}[\mathrm{n}-1]$ (which are GENs). Same assumptions as in gerepilemanysp, of which this is a variant. For instance

```
z = cgetg(3, t_COMPLEX);
av = avma; garbage(); ltop = avma;
z[1] = fun1();
z[2] = fun2();
gerepilecoeffssp(av, ltop, z + 1, 2);
return z;
```

cleans up the garbage between av and ltop, and connects z and its two components. This is marginally more efficient than the standard

```
av = avma; garbage(); ltop = avma;
z = cgetg(3, t_COMPLEX);
z[1] = fun1();
z[2] = fun2(); return gerepile(av, ltop, z);
```

GEN gerepileupto(pari_sp av, GEN q) analogous to (but faster than) gerepilecopy. Assumes that q is connected and that its root was created before any component.

GEN gerepileuptoint (pari_sp av, GEN q) analogous to (but faster than) gerepileupto. Assumes further that q is a $t_{_} I N T$. The length and effective length of the resulting t_INT are equal.

GEN gerepileuptoleaf (pari_sp av, GEN q) analogous to (but faster than) gerepileupto. Assumes further that q is a leaf, i.e a non-recursive type (is_recursive_t (typ(q)) is non-zero). Contrary to gerepileuptoint, gerepileuptoleaf leaves length and effective length of a t_INT unchanged.
void stackdummy (pari_sp av, pari_sp ltop) inhibits the memory area between av included and ltop excluded with respect to gerepile, in order to avoid a call to gerepile (av, ltop, . .). The stack space is not reclaimed though.

More precisely, this routine assumes that av is recorded earlier than ltop, then marks the specified stack segment as a non-recursive type of the correct length. Thus gerepile will not inspect the zone, at most copy it. To be used in the following situation:

```
av0 = avma; z = cgetg(t_VEC, 3);
gel(z,1) = HUGE(); av = avma; garbage(); ltop = avma;
gel(z,2) = HUGE(); stackdummy(av, ltop);
```

Compared to the orthodox

```
gel(z,2) = gerepile(av, ltop, gel(z,2));
```

or even more wasteful

```
z = gerepilecopy(av0, z);
```

we temporarily lose (av-ltop) words but save a costly gerepile. In principle, a garbage collection higher up the call chain should reclaim this later anyway.

Without the stackdummy, if the [av,ltop] zone is arbitrary (not even valid GENs as could happen after direct truncation via setlg), we would leave dangerous data in the middle of \mathbf{z}, which would be a problem for a later

```
gerepile(..., ... , z);
```

And even if it were made of valid GENs, inhibiting the area makes sure gerepile will not inspect their components, saving time.

Another natural use in low-level routines is to "shorten" an existing GEN z to its first $1-1$ components:

```
setlg(z, l);
stackdummy((pari_sp)(z + lg(z)), (pari_sp)(z + l));
```

or to its last 1 components:

```
long L = lg(z) - l;
stackdummy((pari_sp)(z + L), (pari_sp)z);
z += L; setlg(z, L);
```


5.3.3 Copies and clones

GEN gclone (GEN x) creates a new permanent copy of the object x on the heap. The clone bit of the result is set.
void gunclone (GEN x) delete the clone x (created by gclone). Fatal error if x not a clone.
GEN gcopy (GEN x) creates a new copy of the object x on the stack.
int isonstack (GEN x) true iff x belongs to the stack. This is a macro whose argument is evaluated several times.
void copyifstack (GEN x , GEN y) sets $\mathrm{y}=\mathrm{gcopy}(\mathrm{x})$ if x belongs to the stack, and $\mathrm{y}=\mathrm{x}$ otherwise. This macro evaluates its arguments once, contrary to

$$
\mathrm{y}=\text { isonstack }(\mathrm{x}) ? \mathrm{gcopy}(\mathrm{x}): \mathrm{x} \text {; }
$$

void icopyifstack(GEN x, GEN y) as copyifstack assuming x is a t_INT.
long taille (GEN x) returns the total number of BIL-bit words occupied by the tree representing x . void traverseheap (void $(* f)$ (GEN, void $*$), void $*$ data) this applies $\mathrm{f}(x$, data) to each object x on the PARI heap, most recent first. Mostly for debugging purposes.

GEN getheap() a simple wrapper around traverseheap. Returns a two-component row vector giving the number of objects on the heap and the amount of memory they occupy in long words.

5.4 Level 0 kernel (operations on ulongs).

5.4.1 Micro-kernel. Level 0 operations simulate basic operations of the 68020 processor on which PARI was originally implemented. They need "global" ulong variables overflow (which will contain only 0 or 1) and hiremainder to function properly. However, for certain architectures these are replaced with local variables for efficiency; and the 'functions' mentioned below are really chunks of inlined assembler code. So, a routine using one of these lowest-level functions where the description mentions either hiremainder or overflow must declare the corresponding

```
LOCAL_HIREMAINDER;
LOCAL_OVERFLOW;
```

in a declaration block. Variables hiremainder and overflow then become available in the enclosing block. For instance a loop over the powers of an ulong p protected from overflows could read

```
while (pk < lim)
{
    LOCAL_HIREMAINDER;
    pk = mulll(pk, p); if (hiremainder) break;
}
```

ulong addll(ulong x, ulong y) adds x and y, returns the lower BIL bits and puts the carry bit into overflow.
ulong addllx (ulong x, ulong y) adds overflow to the sum of the x and y , returns the lower BIL bits and puts the carry bit into overflow.
ulong subll(ulong x, ulong y) subtracts x and y, returns the lower BIL bits and put the carry (borrow) bit into overflow.
ulong subllx (ulong x, ulong y) subtracts overflow from the difference of x and y, returns the lower BIL bits and puts the carry (borrow) bit into overflow.
int bfffo(ulong x) returns the number of leading zero bits in x. That is, the number of bit positions by which it would have to be shifted left until its leftmost bit first becomes equal to 1 , which can be between 0 and BIL -1 for nonzero x . When x is 0 , the result is undefined.
ulong mulll(ulong x, ulong y) multiplies x by y , returns the lower BIL bits and stores the high-order BIL bits into hiremainder.
ulong addmul(ulong x , ulong y) adds hiremainder to the product of x and y , returns the lower BIL bits and stores the high-order BIL bits into hiremainder.
ulong divll(ulong x, ulong y) returns the Euclidean quotient of (hiremainder << BIL) + x by y and stores the remainder into hiremainder. An error occurs if the quotient cannot be represented by an ulong, i.e. if initially hiremainder $\geq \mathrm{y}$.
5.4.2 Modular kernel. The following routines are not part of the level 0 kernel per se, but implement modular operations on words in terms of the above. They are written so that no overflow may occur. Let $m \geq 1$ be the modulus; all operands representing classes modulo m are assumed to belong to $[0, m-1[$. The result may be wrong for a number of reasons otherwise: it may not be reduced, overflow can occur, etc.
ulong Fl_add (ulong x, ulong y, ulong m) returns the smallest positive representative of $x+y$ modulo m.
ulong Fl_neg (ulong x , ulong m) returns the smallest positive representative of $-x$ modulo m. ulong Fl_sub (ulong x , ulong y , ulong m) returns the smallest positive representative of $x-y$ modulo m.
long Fl_center (ulong x, ulong m, ulong mo2) returns the representative in] $-m / 2, m / 2$] of x modulo m. Assume $0 \leq x<m$ and mo2 $=m \gg 1$.
ulong Fl_mul(ulong x, ulong y, ulong m) returns the smallest positive representative of $x y$ modulo m.
ulong Fl_inv (ulong x, ulong m) returns the smallest positive representative of x^{-1} modulo m. If x is not invertible $\bmod m$, raise an exception.
ulong Fl_div (ulong x, ulong y, ulong m) returns the smallest positive representative of $x y^{-1}$ modulo m. If y is not invertible $\bmod m$, raise an exception.
ulong Fl_pow (ulong x, ulong n, ulong m) returns the smallest positive representative of x^{n} modulo m.
ulong Fl_sqrt(ulong x, ulong p) returns the square root of x modulo p (smallest positive representative). Assumes p to be prime, and x to be a square modulo p .
ulong gener_Fl(ulong p) returns a primitive root modulo p , assuming p is prime.
ulong gener_Fl_local(ulong p, GEN L), see gener_Fp_local, L is an Flv.
long krouu(ulong x , ulong y) returns the Kronecker symbol $(x \mid y)$, i.e. $-1,0$ or 1 . Assumes y is non-zero. If y is an odd prime, this is the Legendre symbol.

5.5 Level 1 kernel (operations on longs, integers and reals).

Note: Many functions consist of an elementary operation, immediately followed by an assignment statement. They will be introduced as in the following example:

GEN $\operatorname{gadd}[z](G E N x, \operatorname{GEN} y[, G E N z])$ followed by the explicit description of the function
GEN gadd(GEN x , GEN y)
which creates its result on the stack, returning a GEN pointer to it, and the parts in brackets indicate that there exists also a function

```
void gaddz(GEN x, GEN y, GEN z)
```

which assigns its result to the pre-existing object \mathbf{z}, leaving the stack unchanged. All such functions are obtained using macros (see the file paricom.h), hence you can easily extend the list. These assignment variants are inefficient; don't use them.

5.5.1 Creation

GEN cgeti(long n) allocates memory on the PARI stack for a t_INT of length n, and initializes its first codeword. Identical to cgetg(n,t_INT).

GEN cgetr (long n) allocates memory on the PARI stack for a t_REAL of length n, and initializes its first codeword. Identical to cgetg (n, t _REAL).

GEN cgetc (long n) allocates memory on the PARI stack for a t_COMPLEX, whose real and imaginary parts are t_REALS of length n .

GEN real_1 (long prec) create a t_REAL equal to 1 to prec words of accuracy.
GEN real_m1 (long prec) create a t_REAL equal to -1 to prec words of accuracy.
GEN real_0_bit(long bit) create a t_REAL equal to 0 with exponent -bit.
GEN real_0(long prec) is a shorthand for

```
real_0_bit( -bit_accuracy(prec) )
```

GEN int2n(long n) creates at_INT equal to $1 \ll \mathrm{n}$ (i.e 2^{n} if $n \geq 0$, and 0 otherwise).
GEN int2u(ulong n) creates a t_INT equal to 2^{n}.
GEN real2n(long n, long prec) create a t_REAL equal to 2^{n} to prec words of accuracy.
GEN stroi (char $* s$) convert the character string s to a t_INT.
GEN stror (char *s, long prec) convert the character string s to a t_REAL of precision prec.
5.5.2 Assignment. In this section, the z argument in the z-functions must be of type $t_{\text {_ }}$ INT or t_REAL.
void mpaff (GEN x, GEN z) assigns x into z (where x and z are t_INT or t_REAL). Assumes that $\lg (z)>2$.
void affii (GEN x, GEN z) assigns the t_INT x into the $t_{\text {_INT }} z$.
void affir (GEN $x, G E N z$) assigns the $t_{_}$INT x into the $t _R E A L z$. Assumes that $\lg (z)>2$. void affiz (GEN x, GEN z) assigns t_INT x into t_INT or t_REAL z. Assumes that $\lg (z)>2$. void affsi(long s, GEN z) assigns the long s into the t_INT z. Assumes that $\lg (z)>2$. void affsr (long s, GEN z) assigns the long s into the t_REAL z. Assumes that $\lg (z)>2$. void $\operatorname{affsz}(\operatorname{long} s, G E N z)$ assigns the long s into the t_INT or t_REAL z. Assumes that lg(z) > 2.
void affui(ulong u, GEN z) assigns the ulong u into the t_INT z. Assumes that $\lg (z)>2$.
void affur (ulong $u, G E N z$) assigns the ulong u into the $t _R E A L z$. Assumes that $l g(z)>2$.
void $\operatorname{affrr}(G E N x, G E N z)$ assigns the t_REAL x into the t_REAL z.
The function affrs and affri do not exist. So don't use them.

5.5.3 Сору

GEN icopy (GEN x) copy relevant words of the t_INT x on the stack: the length and effective length of the copy are equal.

GEN rcopy (GEN x) copy the $t _R E A L x$ on the stack.
GEN mpcopy (GEN x) copy the t_INT or t_REAL x on the stack. Contrary to icopy, mpcopy preserves the original length of a t_INT.

5.5.4 Conversions

GEN itor (GEN x, long prec) converts the t_INT x to a t_REAL of length prec and return the latter. Assumes that prec >2.
long itos (GEN x) converts the t_INT x to a long if possible, otherwise raise an exception.
long itos_or_0 (GEN x) converts the t_INT x to a long if possible, otherwise return 0.
ulong itou (GEN x) converts the t_INT $|x|$ to an ulong if possible, otherwise raise an exception.
long itou_or_0 (GEN x) converts the t_INT $|x|$ to an ulong if possible, otherwise return 0.
GEN stoi (long s) creates the t_INT corresponding to the long s.
GEN stor (long s, long prec) converts the long s into a t_REAL of length prec and return the latter. Assumes that prec >2.

GEN utoi (ulong s) converts the ulong s into a t_INT and return the latter.
GEN utoipos(ulong s) converts the non-zero ulong s into a t_INT and return the latter.
GEN utoineg (ulong s) converts the non-zero ulong s into a t_INT and return the latter.

GEN utor (ulong s, long prec) converts the ulong s into a t_REAL of length prec and return the latter. Assumes that prec >2.

GEN rtor (GEN x, long prec) converts the t_REAL x to a t_REAL of length prec and return the latter. If prec $<\lg (x)$, round properly. If prec $>\lg (x)$, padd with zeroes. Assumes that prec >2.

The following function is also available as a special case of mkintn:
GEN u2toi(ulong a, ulong b)
Returns the GEN equal to $2^{32} a+b$, assuming that $a, b<2^{32}$. This does not depend on sizeof (long): the behaviour is as above on both 32 and 64 -bit machines.

5.5.5 Integer parts

GEN ceilr (GEN x) smallest integer larger or equal to the t_REAL x (i.e. the ceil function).
GEN floorr (GEN x) largest integer smaller or equal to the t_REAL x (i.e. the floor function).
GEN roundr (GEN x) rounds the t_REAL x to the nearest integer (towards $+\infty$).
GEN truncr (GEN x) truncates the t_REAL x (not the same as floorr if x is and negative).
GEN mpceil[z](GEN $x[, G E N z]$) as ceilr except that x may be a t_INT.
GEN ceil_safe(GEN x), x being a real number (not necessarily a t_REAL) returns an integer which is larger than any possible incarnation of x. (Recall that a t_REAL represents an interval of possible values.)

GEN mpfloor [z](GEN $x[, G E N z]$) as floorr except that x may be a t_INT.
GEN mpround[z](GEN $x[, G E N z]$) as roundr except that x may be a t_INT.
GEN mptrunc[z](GEN $x[$, GEN z]) as truncr except that x may be a t_INT.
GEN diviiround (GEN x , GEN y) if x and y are t _INTs, returns the quotient x / y of x and y , rounded to the nearest integer. If x / y falls exactly halfway between two consecutive integers, then it is rounded towards $+\infty$ (as for roundr).

5.5.6 Valuation and shift

long vals(long s) 2-adic valuation of the long s. Returns -1 if s is equal to 0 .
long vali(GEN x) 2-adic valuation of the t_INT x. Returns -1 if x is equal to 0 .
GEN mpshift[z](GEN x, long $n[, G E N z]$) shifts the t_{-}INT or $t _R E A L x$ by n. If n is positive, this is a left shift, i.e. multiplication by 2^{n}. If n is negative, it is a right shift by -n , which amounts to the truncation of the quotient of x by 2^{-n}.

GEN shifti(GEN x, long n) shifts the t_INT x by n.
GEN shiftr (GEN x, long n) shifts the $t _R E A L x$ by n.
long Z_pvalrem (GEN x, GEN p, GEN $* r$) applied to $t_{_}$INTs $x \neq 0$ and $p,|p|>1$, returns the highest exponent e such that p^{e} divides x . The quotient $\mathrm{x} / \mathrm{p}^{e}$ is returned in $* \mathrm{r}$. In particular, if p is a prime, this returns the valuation at p of x, and $* r$ is the prime-to-p part of x.
long Z_pval(GEN x, GEN p) as Z_pvalrem but only returns the "valuation".
long Z_lvalrem(GEN x, ulong $p, G E N * r$) as Z_pvalrem, except that p is an $u l o n g(p>1)$.
long Z_lval(GEN x, ulong p) as Z_pval, except that p is an $u l o n g(p>1)$.
long u_lvalrem(ulong x, ulong p, ulong *r) as Z_pvalrem, except the inputs/outputs are now ulongs.
long u_pvalrem(ulong x, GEN p, ulong *r) as Z_pvalrem, except x and r are now ulongs.
long u_lval(ulong x, ulong p) as Z_pval, except the inputs/outputs are now ulongs.

5.5.7 Factorization

GEN Z_factor (GEN n) factors the t_INT n. The "primes" in the factorization are actually strong pseudoprimes.
long $Z_{\text {_issquaref }}$ (GEN x) returns 1 if the $\mathrm{t}_{\text {_ }}$ INT n is square-free, and 0 otherwise.
long Z_issquare (GEN n) returns 1 if t_INT n is a square, and 0 otherwise. This is tested first modulo small prime powers, then sqrtremi is called.
long Z_issquarerem(GEN n, GEN *sqrtn) as Z_issquare. If n is indeed a square, set sqrtn to its integer square root.
int isprime $(G E N \mathrm{n})$, returns 1 if the $\mathrm{t}_{\text {_ }}$ INT n is a (fully proven) prime number and 0 otherwise.
int uisprime (ulong p), returns 1 if p is a prime number and 0 otherwise.
long Z_issquarerem(GEN n, GEN *sqrtn) as Z_issquare. If n is indeed a square, set sqrtn to its integer square root.
long uissquarerem(ulong n, ulong *sqrtn) as Z_issquarerem, for an ulong operand n.
5.5.8 Generic unary operators. Let " $o p$ " be a unary operation among $o p=$ neg: negation $(-\mathrm{x})$. $o p=\mathbf{a b s}:$ absolute value $(|\mathrm{x}|)$.

The names and prototypes of the low-level functions corresponding to op are as follows. The result is of the same type as x .

GEN mpop (GEN x) creates the result of op applied to the t_INT or t_REAL x.
GEN $o p \mathbf{i}(G E N \quad x)$ creates the result of $o p$ applied to the t_INT x.
GEN opr (GEN x) creates the result of op applied to the t_REAL x.
GEN $\operatorname{mpopz}(G E N \mathbf{x}, \operatorname{GEN} \mathbf{z})$ assigns the result of applying op to the $\mathrm{t} _$INT or t _REAL x into the t_INT or t_REAL z.

Remark: it has not been considered useful to include functions void opsz(long, GEN), void opiz(GEN, GEN) and void oprz(GEN, GEN).

5.5.9 Comparison operators

int mpcmp (GEN x, GEN y) compares the $t_{_}$INT or $t_{_}$REAL x to the $t_{-} I N T$ or $t _R E A L y$. The result is the sign of $x-y$.
int cmpii(GEN x, GEN y) compares the t_INT x to the t_INT y.
int cmpir (GEN x, GEN y) compares the t_INT x to the t_REAL y.
int cmpis (GEN x, long s) compares the $t_{\text {_ }}$ INT x to the long s.
int cmpsi(long s, GEN x) compares the long s to the t_INT x.
int cmpsr (long s, GEN x) compares the long s to the t_REAL x.
int cmpri (GEN x, GEN y) compares the t_REAL x to the t_INT y.
int cmprr (GEN x, GEN y) compares the t_REAL x to the t_REAL y.
int cmprs (GEN x, long s) compares the t_{-}REAL x to the long s.
int equalii (GEN x, GEN y) compares the $t _I N T s x$ and y. The result is 1 if $x=y, 0$ otherwise.
int equalsi(long $s, G E N x$)
int equalis (GEN x, long s) compare the $t_{\text {_INT }} \mathrm{x}$ and the long s . The result is 1 if $\mathrm{x}=\mathrm{y}, 0$ otherwise.
int equalui (ulong s, GEN x)
int equaliu(GEN x, ulong s) compare the $t_{_}$INT x and the ulong s. The result is 1 if $|x|=y$, 0 otherwise.
int absi_cmp (GEN x, GEN y) compares the $t_{_}$INTs x and y. The result is the sign of $|x|-|y|$.
int absi_equal(GEN $x, G E N y$) compares the $t_{_}$INTs x and y. The result is 1 if $|x|=|y|, 0$ otherwise.
int absr_cmp (GEN x, GEN y) compares the t_{-}REALs x and y. The result is the sign of $|x|-|y|$.
5.5.10 Generic binary operators. Let "op" be a binary operation among
$o p=\mathbf{a d d}:$ addition $(\mathrm{x}+\mathrm{y})$. The result is a t_REAL unless both x and y are t _INTs (or longs).
$o p=$ sub: subtraction $(\mathrm{x}-\mathrm{y})$. The result is a t_REAL unless both x and y are t _INT (or longs).
$o p=$ mul: multiplication $(\mathrm{x} * \mathrm{y})$. The result is a t_REAL unless both x and y are t _INTs (or longs), or if x or y is an exact 0 .
$o p=\operatorname{div}$: division (x / y). In the case where x and y are both $\mathrm{t} _$INTs or longs, the result is the Euclidean quotient, where the remainder has the same sign as the dividend x . It is the ordinary division otherwise. If one of x or y is a $t_{_}$REAL, the result is a $t _R E A L$ unless x is an exact 0 . A division-by-0 error occurs if y is equal to 0 .
$o p=$ rem: remainder ("x \% y"). This operation is defined only when x and y are longs or t_INT. The result is the Euclidean remainder corresponding to div, i.e. its sign is that of the dividend x . The result is always a t_{I} INT.
$o p=$ mod: true remainder ($\mathrm{x} \% \mathrm{y}$). This operation is defined only when x and y are longs or t_InTs. The result is the true Euclidean remainder, i.e. non-negative and less than the absolute value of y.

The names and prototypes of the low-level functions corresponding to op are as follows. In this section, the \mathbf{z} argument in the \mathbf{z}-functions must be of type t_INT or t_REAL. t_INT is only allowed when no ' r ' appears in the argument code (no t_REAL operand is involved).

GEN mpop[z](GEN x , GEN $\mathrm{y}[$, GEN z$]$) applies $o p$ to the t_INT or t_REAL x and y . GEN $o p \mathbf{s i}[\mathbf{z}]$ (long s, GEN $\mathrm{x}[$, GEN z$]$) applies $o p$ to the long s and the t_INT x .

GEN $o p s r[z]$ (long s, GEN $\mathrm{x}[, \mathrm{GEN} \mathrm{z}]$) applies $o p$ to the long s and the t_REAL x .
GEN $o p s s[z]$ (long s, long $t[, G E N z]$) applies $o p$ to the longs s and t.
GEN $o p \mathbf{i i}[\mathbf{z}]$ (GEN x , GEN y $[$, GEN z$]$) applies $o p$ to the t_INTs x and y .
GEN $o p \operatorname{ir}[\mathbf{z}]$ (GEN x , GEN y[, GEN z]) applies $o p$ to the t_INT x and the t_REAL y. GEN $o p \mathbf{i s}[\mathbf{z}]$ (GEN x , long $\mathrm{s}[$, GEN $z]$) applies $o p$ to the t_INT x and the long s . GEN $o p r i[z]$ (GEN x , GEN $\mathrm{y}[$, GEN z$]$) applies $o p$ to the t_REAL x and the t _INT y . GEN $o p \operatorname{rr}[\mathbf{z}]$ (GEN x, GEN $\mathrm{y}[$, GEN z$]$) applies $o p$ to the t _REALs x and y . GEN $o p r s[z]$ (GEN x, long $s[$, GEN $z]$) applies $o p$ to the t_REAL x and the long s. Some miscellaneous routines whose meaning should be clear from their names:

GEN muluu(ulong x , ulong y)
GEN mului(ulong x , GEN y)
GEN muliu(GEN x , ulong y)
GEN sqri(GEN x) squares the t_INT x
GEN truedivii (GEN x, GEN y) returns the true Euclidean quotient (with non-negative remainder less than $|y|)$.

GEN truedivis(GEN x, long y) returns the true Euclidean quotient (with non-negative remainder less than $|y|)$.

GEN centermodii(GEN x , GEN y , GEN y 2), given t _INTs x , y , returns z congruent to x modulo y , such that $-\mathrm{y} / 2 \leq z<\mathrm{y} / 2$. Assumes that $\mathrm{y} 2=\operatorname{shifti}(\mathrm{y},-1)$. the representative of ssquares the t_INT x
5.5.11 Modulo to longs. The following variants of modii do not clutter the stack:
long smodis (GEN x, long y) computes the true Euclidean remainder of the t_{-}INT x by the long y. This is the non-negative remainder, not the one whose sign is the sign of x as in the div functions.
long smodsi(long $x, G E N y$) computes the true Euclidean remainder of the long x by at_INT y.
long smodss (long x, long y) computes the true Euclidean remainder of the long x by a t_long y.
ulong umodiu(GEN x, ulong y) computes the true Euclidean remainder of the $t _I N T$ x by the ulong y.
ulong umodui (ulong x, GEN y) computes the true Euclidean remainder of the ulong x by the t_INT |y|.

The routine smodsi does not exist, since it would not always be defined: for a negative x , its result $x+|y|$ would in general not fit into a long. Use either umodui or modsi.

5.5.12 Exact division and divisibility

void diviiexact (GEN x , GEN y) returns the Euclidean quotient x / y, assuming y divides x . Uses Jebelean algorithm (Jebelean-Krandick bidirectional exact division is not implemented).
void diviuexact (GEN x, ulong y) returns the Euclidean quotient $|x| / y$ (note the absolue value!), assuming y divides x and y is non-zero.
int dvdii (GEN x, GEN y) if the t_INT y divides the t_INT x, returns 1 (true), otherwise returns 0 (false).
int dvdiiz (GEN x, GEN y, GEN z) if the $t_{_}$INT y divides the t_INT x, assigns the quotient to the t_INT z and returns 1 (true), otherwise returns 0 (false).
int dvdisz (GEN x, long y, GEN z) if the $t_{\text {_long }} y$ divides the $t_{\text {_ }}$ INT x, assigns the quotient to the t_INT z and returns 1 (true), otherwise returns 0 (false).
int dvdiuz (GEN x, ulong y, GEN z) if the t_ulong y divides the t_INT x, assigns the quotient $|x| / y$ to the $t _I N T z$ and returns 1 (true), otherwise returns 0 (false).
5.5.13 Division with remainder. The following functions return two objects, unless specifically asked for only one of them - a quotient and a remainder. The quotient is returned and the remainder is returned through the variable whose address is passed as the r argument. The term true Euclidean remainder refers to the non-negative one (mod), and Euclidean remainder by itself to the one with the same sign as the dividend (rem). All GENs, whether returned directly or through a pointer, are created on the stack.

GEN dvmdii (GEN x, GEN y, GEN *r) returns the Euclidean quotient of the t_INT x by a t_INT y and puts the remainder into $* r$. If r is equal to NULL, the remainder is not created, and if r is equal to ONLY_REM, only the remainder is created and returned. In the generic case, the remainder is created after the quotient and can be disposed of individually with a cgiv(r). The remainder is always of the sign of the dividend x. If the remainder is 0 set $r=$ gen_0.
void dvmdiiz (GEN x, GEN y, GEN z, GEN t) assigns the Euclidean quotient of the t_INTs x and y into the t_INT or t_REAL z, and the Euclidean remainder into the t_INT or t_REAL t.

Analogous routines dvmdis [z], dvmdsi [z], dvmdss [z] are available, where s denotes a long argument. But the following routines are in general more flexible:
long sdivss_rem(long s, long t, long $* r$) computes the Euclidean quotient and remainder of the longs s and t. Puts the remainder into $* r$, and returns the quotient. The remainder is of the sign of the dividend s, and has strictly smaller absolute value than t.
long sdivsi_rem(long $s, G E N x$, long $* r$) computes the Euclidean quotient and remainder of the long s by the t_INT x. As sdivss_rem otherwise.
long sdivsi(long s, GEN x) as sdivsi_rem, without remainder.
GEN divis_rem (GEN x, long s, long $* r$) computes the Euclidean quotient and remainder of the t_INT x by the long s. As sdivss_rem otherwise.

GEN diviu rem (GEN x, ulong s, long $* r$) computes the Euclidean quotient and remainder of the t_INT x by the ulong s. As sdivss_rem otherwise.

GEN divsi_rem(long s, GEN y, long *r) computes the Euclidean quotient and remainder of the t_long s by the GEN y. As sdivss_rem otherwise.

GEN divss_rem (long x , long y , long $* \mathrm{r}$) computes the Euclidean quotient and remainder of the t_long x by the long y. As sdivss_rem otherwise.

GEN truedvmdii(GEN x, GEN y, GEN $* r$), as dvmdii but with a non-negative remainder.

5.5.14 Square root and remainder

GEN sqrtremi(GEN N, GEN $* r$), returns the integer square root S of the non-negative t_INT N (rounded towards 0) and puts the remainder R into *r. Precisely, $N=S^{2}+R$ with $0 \leq R \leq 2 S$. If r is equal to NULL, the remainder is not created. In the generic case, the remainder is created after the quotient and can be disposed of individually with $\operatorname{cgiv}(\mathrm{R})$. If the remainder is 0 set $\mathrm{R}=$ gen_0.

Uses a divide and conquer algorithm (discrete variant of Newton iteration) due to Paul Zimmermann ("Karatsuba Square Root", INRIA Research Report 3805 (1999)).

GEN sqrti(GEN N), returns the integer square root S of the non-negative t_INT N (rounded towards $0)$. This is identical to sqrtremi ($\mathrm{N}, \mathrm{NULL}$).

5.5.15 Pseudo-random integers

long random_bits(long k) returns a random $0 \leq x<2^{k}$. Assumes that $0 \leq k<31$.
long pari_rand31(long k) as random_bits with $k=31$.
GEN randomi (GEN n) returns a random t_INT between 0 and $n-1$. The result is pasted from successive calls to pari_rand31.
5.5.16 Modular operations. In this subsection, all GENs are t_INT.
ulong Fp_powu (GEN x , ulong n , GEN m) raises x to the n -th power modulo p (smallest nonnegative residue).

GEN Fp_pow (GEN x, GEN n, GEN m) returns x^{n} modulo p (smallest non-negative residue).
GEN Fp_inv (GEN a, GEN m) returns an inverse of a modulo m (smallest non-negative residue). Raise an error if a is not invertible.

GEN Fp_invsafe(GEN a, GEN m) as Fp_inv, but return NULL if a is not invertible.
int invmod (GEN a, GEN m, GEN $* g$), return 1 if a modulo m is invertible, else return 0 and set $\mathrm{g}=\operatorname{gcd}(\mathrm{a}, \mathrm{m})$.

GEN Fp_sqrt (GEN x, GEN p) returns a square root of x modulo p (the smallest non-negative residue), where x, p are t _INTs, and p is assumed to be prime. Return NULL if x is not a quadratic residue modulo p .

GEN Fp_sqrtn(GEN x, GEN n, GEN p, GEN *zn) returns an n -th root of x modulo p (smallest non-negative residue), where $\mathrm{x}, \mathrm{n}, \mathrm{p}$ are t_{z} INTs, and p is assumed to be prime. Return NULL if x is not an n -th power residue. Otherwise, if zn is non-NULL set it to a primitive n -th root of 1 .
long kross (long x , long y) returns the Kronecker symbol $(x \mid y)$, i.e. $-1,0$ or 1 . If y is an odd prime, this is the Legendre symbol. (Contrary to krouu, kross also supports y $=0$)
long krois (GEN x , long y) returns the Kronecker symbol $(x \mid y)$ of t _INT x and long y . As kross otherwise.
long krosi (long x , GEN y) returns the Kronecker symbol $(x \mid y)$ of long x and t _INT y . As kross otherwise.
long kronecker (GEN x , GEN y) returns the Kronecker symbol ($x \mid y$) of t_INTs x and y . As kross otherwise.

GEN gener_Fp(GEN p) returns a primitive root modulo p , assuming p is prime.
GEN gener_Fp_local(GEN p, GEN L), L being a vector of primes dividing $p-1$, returns an integer x which is a generator of the ℓ-Sylow of \mathbf{F}_{p}^{*} for every ℓ in L . In other words, $x^{(p-1) / \ell} \neq 1$ for all such ℓ. In particular, returns Fp_gener (p) if L contains all primes dividing $p-1$.

5.5.17 Miscellaneous functions

void addumului (ulong a , ulong b , GEN x) return $a+b|X|$.
long $\operatorname{cgcd}($ long x, long $y)$, returns the GCD of the t_{-}longs x and y.
long cbezout (long a , long b , long $* \mathrm{u}$, long $* \mathrm{v}$), returns the $\mathrm{GCD} d$ of a and b and sets u, v to the Bezout coefficients such that $\mathrm{au}+\mathrm{bv}=d$.

GEN bezout (GEN a, GEN b, GEN *u, GEN *v), returns the GCD d of $\mathrm{t}_{\text {_ }}$ INTs a and b and sets u, v to the Bezout coefficients such that $\mathrm{au}+\mathrm{bv}=d$.

GEN factoru(ulong n), returns the factorization of n. The result is a 2-component vector $[P, E]$, where P and E are t _VECSMALL containing the prime divisors of n, and the $v_{p}(n)$.

GEN factoru_pow (ulong n), returns the factorization of n. The result is a 3-component vector $[P, E, C]$, where P, E and C are t_VECSMALL containing the prime divisors of n, the $v_{p}(n)$ and the $p^{v_{p}(n)}$.

GEN gcdii (GEN x , GEN y), returns the GCD of the t_INTs x and y .
GEN lcmii (GEN x, GEN y), returns the LCM of the t_INTs x and y.
long maxss (long x , long y), return the largest of x and y .
long minss (long x , long y), return the smallest of x and y .
GEN powuu(ulong n, ulong k), returns n^{k}.
GEN powiu(GEN n, ulong k), assumes n is a t_INT and returns n^{k}.
ulong upowuu(ulong n, ulong k), returns n^{k} modulo $2^{\text {BIL }}$. This is meant to be used for tiny k, where in fact n^{k} fits into an ulong.
void rdivii(GEN x, GEN y, long prec), assuming x and y are both of type t_INT, return the quotient x / y as a t_REAL of precision prec.
void rdivis(GEN x, long y, long prec), assuming x is of type t_{-}INT, return the quotient x / y as a t_REAL of precision prec.
void rdivsi(long x, GEN y, long prec), assuming y is of type t_INT, return the quotient x / y as a t_REAL of precision prec.
void rdivss (long x, long y, long prec), return the quotient x / y as a t_REAL of precision prec.

5.6 Level 2 kernel (modular arithmetic).

These routines implement univariate polynomial arithmetic and linear algebra over finite fields, in fact over finite rings of the form $(\mathbf{Z} / p \mathbf{Z})[X] /(T)$, where p is not necessarily prime and $T \in(\mathbf{Z} / p \mathbf{Z})[X]$ is possibly reducible; and finite extensions thereof. All this can be emulated with t_INTMOD and t_POLMOD coefficients and using generic routines, at a considerable loss of efficiency. Also, some specialized routines are available that have no obvious generic equivalent.
5.6.1 Naming scheme. A function name is built in the following way: $A_{1-\ldots} \ldots A_{n}$ fun for an operation fun with n arguments of class A_{1}, \ldots, A_{n}. A class name is given by a base ring followed by a number of code letters. Base rings are among

Fl: $\mathbf{Z} / l \mathbf{Z}$ where $l<2^{\text {BIL }}$ is not necessarily prime. Implemented using ulongs
$\mathrm{Fp}: \mathbf{Z} / p \mathbf{Z}$ where p is a t_INT, not necessarily prime. Implemented as t_INTs z, preferably satisfying $0 \leq z<p$. More precisely, any t_INT can be used as an Fp, but reduced inputs are treated more efficiently. Outputs from Fpxxx routines are reduced.

Fq: $\mathbf{Z}[X] /(p, T(X)), p$ a t_INT, T a t_POL with Fp coefficients or NULL (in which case no reduction modulo T is performed). Implemented as t_POLs z with Fp coefficients, $\operatorname{deg}(z)<\operatorname{deg} \mathrm{T}$.

Z: the integers Z, implemented as t_INTs.
z: the integers \mathbf{Z}, implemented using (signed) longs.
Q: the rational numbers \mathbf{Q}, implemented as t_INTs and t_FRACs.
Rg : a commutative ring, whose elements can be gadd-ed, gmul-ed, etc.
Possible letters are:

X: polynomial in X (t_{-}POL in a fixed variable), e.g. FpX means $\mathbf{Z} / p \mathbf{Z}[X]$
Y: polynomial in $Y \neq X$. E.g. FpXY means $((\mathbf{Z} / p \mathbf{Z})[Y])[X]$
V: vector (t _VEC or $\mathrm{t}_{-} \mathrm{COL}$), treated as a line vector (independantly of the actual type). E.g. ZV means \mathbf{Z}^{k} for some k.

C: vector ($\mathrm{t} _\mathrm{VEC}$ or $\mathrm{t} _$COL), treated as a column vector (independantly of the actual type). The difference with V is purely semantic.

M: matrix (t_MAT). E.g. QM means a matrix with rational entries
Q: representative (t_POL) of a class in a polynomial quotient ring. E.g. an FpXQ belongs to $(\mathbf{Z} / p \mathbf{Z})[X] /(T(X))$, FpXQV means a vector of such elements, etc.
$\mathrm{x}, \mathrm{m}, \mathrm{v}, \mathrm{c}, \mathrm{q}:$ as their uppercase counterpart, but coefficient arrays are implemented using t_VECSMALLs, which coefficient understood as ulongs.
x (and q) are implemented by a t_VECSMALL whose first coefficient is used as a code-word and the following are the coefficients, similarly to a t_POL. This is known as a 'POLSMALL'.
m are implemented by a t_MAT whose components (columns) are t_VECSMALLs. This is know as a 'MATSMALL'.
v and c are regular t_VECSMALLs. Difference between the two is purely semantic.
Omitting the letter means the argument is a scalar in the base ring. Standard functions fun are
add: add
sub: subtract
mul: multiply
sqr: square
div: divide (Euclidean quotient)
rem: Euclidean remainder
divrem: return Euclidean quotient, store remainder in a pointer argument.
gcd: GCD
extgcd: return GCD, store Bezout coefficients in pointer arguments
pow: exponentiate
compo: composition
5.6.2 ZX, ZV, ZM. A ZV (resp. a ZM, resp. a ZX) is a t_VEC or $\mathrm{t}_{-} \mathrm{COL}$ (resp. t_MAT, resp. t _POL) with t_INT coefficients.

5.6.2.1 ZV

GEN $Z V_{-} \operatorname{add}(G E N \quad x$, GEN $y)$ adds x and y .
GEN ZV_sub (GEN x , GEN y) subtracts x and y .

5.6.2.2 ZX

GEN ZX_renormalize(GEN x, long l), as normalizepol, where $l=\lg (\mathrm{x})$, in place.
GEN ZX_add (GEN x, GEN y) adds x and y .
GEN ZX_sub (GEN x, GEN y) subtracts x and y .
GEN ZX_neg (GEN x, GEN p) returns -x .
GEN ZX_Z_add (GEN x, GEN y) adds the integer y to the polynomial x .
GEN ZX_Z_mul(GEN x,GEN y) multiplies the polynomial x by the integer y.
GEN ZX_mul(GEN x,GEN y) multiplies x and y.
GEN ZX_sqr (GEN $x, G E N p$) returns x^{2}.
GEN ZX_caract (GEN T, GEN A, long v) returns the characteristic polynomial of Mod(A, T), where T is a $Z X, A$ is a $Z X$. More generally, A is allowed to be a QX, hence possibly has rational coefficients, assuming the result is a ZX , i.e. the algebraic number $\operatorname{Mod}(\mathrm{A}, \mathrm{T})$ is integral over Z .

GEN ZX_disc (GEN T) returns the discriminant of the ZX T.
int ZX_is_squarefree (GEN T) returns 1 if the $\mathrm{ZX} T$ is squarefree, 0 otherwise.
GEN ZX_resultant (GEN A, GEN B) returns the resultant of the ZX A and B.
GEN ZX_QX_resultant (GEN A, GEN B) returns the resultant of the ZX A and the QX B, assuming the result is an integer.

GEN ZY_ZXY_resultant (GEN A, GEN B) under the assumption that A in $\mathbf{Z}[Y]$, B in $\mathbf{Q}[Y][X]$, and $R=\operatorname{Res}_{Y}(A, B) \in \mathbf{Z}[X]$, returns the resultant R.

GEN ZY_ZXY_rnfequation(GEN A, GEN B, long *lambda), assume A in $\mathbf{Z}[Y]$, B in $\mathbf{Q}[Y][X]$, and $R=\operatorname{Res}_{Y}(A, B) \in \mathbf{Z}[X]$. If lambda $=$ NULL, returns R as in ZY_ZXY_resultant. Otherwise, lambda must point to some integer, e.g. 0 which is used as a seed. The function then finds a small $\lambda \in \mathbf{Z}$ (starting from $*$ lambda) such that $R_{\lambda}(X):=\operatorname{Res}_{Y}(A, B(X+\lambda Y))$ is squarefree, resets *lambda to the chosen value and returns R_{λ}.

GEN ZM_inv (GEN M, GEN d) if M is a $Z M$ and d is a $t_{_}$INT such that $M^{\prime}:=\mathrm{dM}^{-1}$ is integral, return M^{\prime}. It is allowed to set $\mathrm{d}=\mathrm{NULL}$, in which case, the determinant of M is computed and used instead.

GEN QM_inv (GEN M, GEN d) as above, with M a QM. We still assume that M^{\prime} has integer coefficients.
5.6.3 FpX . Let p an understood $\mathrm{t}_{\text {_ }}$ INT, to be given in the function arguments; in practice p is not assumed to be prime, but be wary. An Fp object is a t_INT belonging to [0, p-1], an FpX is a t_POL in a fixed variable whose coefficients are Fp objects. Unless mentionned otherwise, all outputs in this section are FpXs. All operations are understood to take place in $(\mathbf{Z} / \mathrm{p} \mathbf{Z})[X]$.
5.6.3.1 Basic operations. In what follows p is always a t_{-}INT, not necessarily prime.

GEN Rg_to_Fp(GEN z, GEN p), z a scalar which can be mapped to $\mathbf{Z} / p \mathbf{Z}$: a t_INT, a t_INTMOD whose modulus is divisible by p, a t_FRAC whose denominator is coprime to p, or a t_PADIC with underlying prime p. Returns lift $(z * \operatorname{Mod}(1, \mathrm{p}))$, normalized.

GEN RgX_to_FpX (GEN z, GEN p), z a t_POL, returns the FpX obtained by applying Rg_to_Fp coefficientwise.

GEN RgV_to_FpV (GEN z, GEN p), z a t_VEC or t_COL, returns the FpV (as a t_VEC) obtained by applying Rg_to_Fp coefficientwise.

GEN RgC_to_FpC(GEN z, GEN p), z a t_VEC or t_COL, returns the FpC (as a t_COL) obtained by applying Rg_to_Fp coefficientwise.
 turned value has t_INTMOD coefficients.

GEN FpX_red (GEN z, GEN p), z a ZX, returns lift(z * Mod(1,p)), normalized.
GEN FpXV_red (GEN z, GEN p), z a t_VEC of ZX. Applies FpX_red componentwise and returns the result (and we obtain a vector of FpXs).

Now, except for p , the operands and outputs are all FpX objects. Results are undefined on other inputs.

GEN FpX_add (GEN x, GEN y , GEN p) adds x and y .
GEN FpX_neg (GEN x, GEN p) returns - x.
GEN FpX_renormalize(GEN x, long 1), as normalizepol, where $1=1 \mathrm{~g}(\mathrm{x})$, in place.
GEN FpX_sub (GEN $x, G E N$ y, GEN p) subtracts y from x.
GEN FpX_mul(GEN x,GEN y,GEN p) multiplies x and y.
GEN $\mathbf{F p X}$ _sqr (GEN x, GEN p) returns x^{2}.
GEN FpX_divrem(GEN x, GEN y, GEN p, GEN *pr) returns the quotient of x by y , and sets pr to the remainder.

GEN $\mathbf{F p X}$ _div (GEN x, GEN y, GEN p) returns the quotient of x by y.
GEN FpX_div_by_X_x (GEN A, GEN a, GEN p, GEN *r) returns the quotient of the FpX A by ($X-\mathrm{a}$), and sets r to the remainder $\mathrm{A}(\mathrm{a})$.

GEN FpX_rem (GEN x, GEN y, GEN p) returns the remainder x mod y
GEN FpX_gcd (GEN x, GEN y, GEN p) returns a (not necessarily monic) greatest common divisor of x and y.

GEN FpX_extgcd(GEN x, GEN y, GEN p, GEN $* u$, GEN *v) returns $d=\operatorname{GCD}(\mathrm{x}, \mathrm{y})$, and sets $* \mathrm{u}, * \mathrm{v}$ to the Bezout coefficients such that $* \mathrm{ux}+* \mathrm{vy}=d$.

GEN FpX_center (GEN z, GEN p) returns the polynomial whose coefficient belong to the symmetric residue system (clean version of centermod, which assumes the coefficients already belong to $[0, p-1])$.

5.6.3.2 Miscellaneous operations

GEN $\mathbf{F p X}$ _normalize (GEN z, GEN p) divides the $\mathrm{FpX} \mathbf{z}$ by its leading coefficient. If the latter is 1 , z itself is returned, not a copy. If not, the inverse remains uncollected on the stack.

GEN FpX_Fp_add(GEN y, GEN x, GEN p) add the Fp x to the FpX y, possibly modifying the argument y (thus the operation uses constant time instead of linear linear). This function is not suitable for gerepileupto nor for gerepile.

GEN FpX _Fp_mul(GEN y, GEN x, GEN p) multiplies the FpX y by the Fp x .
GEN $\mathbf{F p X}$ rescale (GEN P, GEN h , GEN p) returns $h^{\operatorname{deg}(P)} P(x / h)$. P is an FpX and h is a non-zero Fp (the routine would work with any non-zero t_INT but is not efficient in this case).

GEN FpX eval(GEN x, GEN y, GEN p) evaluates the FpX x at the Fp y . The result is an Fp.
GEN FpXV_FpC_mul(GEN V, GEN W, GEN p) multiplies a line vector offpX by a column vector of Fp (scalar product). The result is an FpX .
GEN FpXV_prod (GEN V, GEN p), V being a vector of FpX , returns their product.
GEN FpV_roots_to_pol(GEN V, GEN p, long v), V being a vector of INTs, returns the monic $\mathrm{FpX} \prod_{i}(\mathrm{pol} \mathrm{l} \mathrm{x}[\mathrm{v}]-\mathrm{V}[\mathrm{i}])$.
GEN FpX _chinese_coprime (GEN x, GEN y, GEN Tx, GEN Ty, GEN Tz, GEN p) returns an FpX, congruent to $\mathrm{x} \bmod \mathrm{Tx}$ and to $\mathrm{y} \bmod \mathrm{Ty}$. Assumes Tx and Ty are coprime, and $\mathrm{Tz}=\mathrm{Tx} * \mathrm{Ty}$ or NULL (in which case it is computed within).
GEN FpV_polint (GEN x, GEN y, GEN p) returns the FpX interpolation polynomial with value y [i] at $\mathrm{x}[\mathrm{i}]$. Assumes lengths are the same, components are t _INTs, and the $\mathrm{x}[\mathrm{i}]$ are distinct modulo p .
long $\mathbf{F p X}$ is_squarefree (GEN f, GEN p) returns 1 if the $\operatorname{FpX} \mathrm{f}$ is squarefree, 0 otherwise.
long FpX_is_irred (GEN f, GEN p) returns 1 if the FpX f is irreducible, 0 otherwise. Assumes that p is prime. If f has few factors, FpX _nbfact $(f, p)==1$ is much faster.
long FpX_is_totally_split (GEN f, GEN p) returns 1 if the FpX f splits into a product of distinct linear factors, 0 otherwise. Assumes that p is prime.
GEN $\mathbf{F p X}$ factor (GEN f, GEN p), factors the FpX f. Assumes that p is prime. The returned value v has two components: $\mathrm{v}[1]$ is a vector of distinct irreducible (FpX) factors, and $\mathrm{v}[2]$ is a t_VECSMALL of corresponding exponents. The order of the factors is deterministic (the computation is not).
long FpX_nbfact (GEN f, GEN p), assuming the $\operatorname{FpX} \mathrm{f}$ is squarefree, returns the number of its irreducible factors. Assumes that p is prime.
long FpX_degfact (GEN f, GEN p), as FpX_factor, but the degrees of the irreducible factors are returned instead of the factors themselves (as a t_VECSMALL). Assumes that p is prime.
long FpX_nbroots (GEN f, GEN p) returns the number of distinct roots in $\mathbf{Z} / \mathrm{p} \mathbf{Z}$ of the $\mathrm{FpX} f$. Assumes that p is prime.

GEN FpX_roots(GEN f, GEN p) returns the roots in \mathbf{Z} / pZ of the $\mathrm{FpX} f$ (without multiplicity, as a vector of Fps). Assumes that p is prime.

GEN FpX_rand(long d, long v, GEN p) returns a random FpX in variable v, of degree less than d .

GEN FpX_resultant (GEN x, GEN y, GEN p) returns the resultant of x and y , both FpX . The result is a t_INT belonging to $[0, p-1]$.

GEN FpY_FpXY_resultant (GEN a, GEN b, GEN p), a a t_POL of t_INTs (say in variable Y), b a t_POL (say in variable X) whose coefficients are either t_POLs in $\mathbf{Z}[Y]$ or t_INTs. Returns $\operatorname{Res}_{Y}(a, b)$, which is an FpX. The function assumes that Y has lower priority than X.
5.6.4 FpXQ , Fq. Let p a t_INT and T an FpX for p , both to be given in the function arguments; an FpXQ object is an FpX whose degree is strictly less than the degree of T . An Fq is either an FpXQ or an Fp. Both represent a class in $(\mathbf{Z} / \mathrm{p} \mathbf{Z})[X] /(T)$, in which all operations below take place. In addition, Fq routines also allow $\mathrm{T}=\mathrm{NULL}$, in which case no reduction mod T is performed on the result.

For efficiency, the routines in this section may leave small unused objects behind on the stack (their output is still suitable for gerepileupto). Besides T and p, arguments are either FpXQ or Fq depending on the function name. (All Fq routines accept FpXQs by definition, not the other way round.)

GEN Rg_to_FpXQ(GEN \mathbf{z}, GEN T, GEN \mathbf{p}), \mathbf{z} a GEN which can be mapped to $\mathbf{F}_{p}[X] /(T)$: anything Rg_to_Fp can be applied to, a t_POL to which RgX_to_FpX can be applied to, a t_POLMOD whose modulus is divisible by T (once mapped to a FpX), a suitable t_RFRAC. Returns z as an FpXQ, normalized.

GEN RgX_to_FpXQX (GEN z, GEN T, GEN p), z a t_POL, returns the FpXQ obtained by applying Rg_to_FpXQ coefficientwise.

GEN RgX_to_FqX (GEN z, GEN T, GEN p), z a t_POL, returns the FpXQ obtained by applying Rg_to_FpXQ coefficientwise and simplifying scalars to t_INTs.
GEN Fq_red (GEN x, GEN T, GEN p), x a $Z X$ or $t _I N T$, reduce it to an $F q(T=N U L L$ is allowed iff x is a $t_{-} I N T$).

GEN FqX_red (GEN x , GEN T, GEN p), x a t_POL whose coefficients are ZXs or t_INTs, reduce them to Fqs. (If $T=$ NULL, as FpXX_red (x, p).)
GEN $\mathbf{F q V}$ _red (GEN x, GEN T, GEN p), x a vector of $Z X$ s or $t_{_}$INTs, reduce them to Fqs. (If $T=$ NULL, only reduce components mod p to FpXs or Fps .)

```
GEN FpXQ_mul(GEN y, GEN x, GEN T,GEN p)
GEN FpXQ_sqr(GEN y, GEN T, GEN p)
GEN FpXQ_div(GEN x, GEN y, GEN T,GEN p)
GEN FpXQ_inv(GEN x, GEN T, GEN p) computes the inverse of x
GEN FpXQ_invsafe(GEN x,GEN T,GEN p), as FpXQ_inv, returning NULL if x is not invertible.
GEN FpXQ_pow(GEN x, GEN n, GEN T, GEN p) computes x}\textrm{n}\mathrm{ .
GEN Fq_add(GEN x, GEN y, GEN T/*unused*/, GEN p)
GEN Fq_sub(GEN x, GEN y, GEN T/*unused*/, GEN p)
GEN Fq_mul(GEN x, GEN y, GEN T, GEN p)
GEN Fq_neg(GEN x, GEN T, GEN p)
GEN Fq_neg_inv(GEN x, GEN T, GEN p) computes - x - 
```

GEN Fq_inv (GEN x, GEN pol, GEN p) computes x^{-1}, raising an error if x is not invertible. GEN Fq_invsafe(GEN x, GEN pol, GEN p) as Fq_inv, but returns NULL if x is not invertible. GEN Fq_pow (GEN x, GEN n, GEN pol, GEN p) returns x^{n}.

GEN FpXQ_charpoly (GEN x, GEN T, GEN p) returns the characteristic polynomial of x GEN FpXQ_minpoly (GEN x, GEN T, GEN p) returns the minimal polynomial of x GEN FpXQ_powers (GEN x , long n , GEN T , GEN p) returns $\left[\mathrm{x}^{0}, \ldots, \mathrm{x}^{\mathrm{n}}\right]$ as a t_VEC of FpXQs. GEN FpX_FpXQ_compo(GEN f, GEN x, GEN T, GEN p) returns $f(x)$.

GEN FpX_FpXQV_compo(GEN f,GEN V,GEN T,GEN p) returns $f(x)$, assuming that V was computed by FpXQ_powers(x, $n, \mathrm{~T}, \mathrm{p})$.
5.6.5 FpXX. Contrary to what the name implies, an FpXQX is a t_POL whose coefficients are either t_INTs or t_FpXs. This reduce memory overhead at the expense of consistency.

GEN FpXX_add (GEN x, GEN y, GEN p) adds x and y.
GEN FpXX_red(GEN z, GEN p), z a t_POL whose coefficients are either ZXs or t_INTs. Returns the t_POL equal to \mathbf{z} with all components reduced modulo p .
GEN FpXX_renormalize(GEN x, long l), as normalizepol, where $l=\lg (x)$, in place.
5.6.6 FpXQX, FqX. Contrary to what the name implies, an FpXQX is a t_POL whose coefficients are Fqs. So the only difference between FqX and FpXQX routines is that $\mathrm{T}=$ NULL is not allowed in the latter. (It was thought more useful to allow t_INT components than to enforce strict consistency, which would not imply any efficiency gain.)

5.6.6.1 Basic operations

GEN FqX_mul(GEN x, GEN y, GEN T, GEN p)
GEN FqX_Fq_mul (GEN P, GEN U, GEN T, GEN p) multiplies the FqX y by the Fq x.
GEN FqX_normalize (GEN z, GEN T, GEN p) divides the FqX z by its leading term.
GEN $\mathbf{F q X}$ _sqr (GEN x , GEN T , GEN p)
GEN FqX_divrem(GEN x, GEN y, GEN T, GEN p, GEN *z)
GEN FqX_div (GEN x, GEN y, GEN T, GEN p)
GEN FqX_rem(GEN x, GEN y, GEN T, GEN p)
GEN FqX_gcd (GEN P, GEN Q, GEN T, GEN p)
GEN FpXQX_red(GEN z, GEN T, GEN p) z a t_POL whose coefficients are ZXs or t_INTs, reduce them to FpXQs.

GEN FpXQX_mul(GEN x, GEN y, GEN T, GEN p)
GEN FpXQX_sqr (GEN x, GEN T, GEN p)
GEN FpXQX_divrem(GEN x, GEN y, GEN T, GEN p, GEN *pr)
GEN FpXQX_gcd(GEN x, GEN y, GEN T, GEN p)
GEN FpXQX_extgcd(GEN x, GEN y, GEN T, GEN p, GEN *ptu, GEN *ptv)

GEN FpXQYQ_pow (GEN x, GEN n, GEN S, GEN T, GEN p), x and T being FpXQXs, returns x^{n} modulo S .

GEN FpXQXV_prod (GEN V, GEN T, GEN p), V being a vector of FpXQX, returns their product.
GEN FqV_roots_to_pol(GEN V, GEN T, GEN p, long v), V being a vector of Fqs, returns the monic $\mathrm{FqX} \prod_{i}\left(\mathrm{pol} _\mathrm{x}[\mathrm{v}]-\mathrm{V}[\mathrm{i}]\right)$.

5.6.6.2 Miscellaneous operations

GEN init_Fq(GEN p , long n , long v) returns an irreducible polynomial of degree n over \mathbf{F}_{p}, in variable v .
long FqX_is_squarefree(GEN P, GEN T, GEN p)
GEN FqX_factor (GEN x, GEN T, GEN p) same output convention as FpX_factor. Assumes p is prime and T irreducible in $\mathbf{F}_{p}[X]$.

GEN FpX_factorff_irred (GEN P, GEN T, GEN p). Assumes p prime and T irreducible in $\mathbf{F}_{p}[X]$. P being an irreducible FpX , factors it over the finite field $\mathbf{F}_{p}[Y] /(T(Y))$ and returns the vector of irreducible FqXs factors (the exponents, being all equal to 1 , are not included).

GEN FpX_ffisom (GEN P, GEN Q, GEN p). Assumes p prime, P, Q are ZXs, both irreducible mod p, and $\operatorname{deg}(P) \mid \operatorname{deg} Q$. Outputs a monomorphism between $\mathbf{F}_{p}[X] /(P)$ and $\mathbf{F}_{p}[X] /(Q)$, as a polynomial R such that $\mathrm{Q} \mid \mathrm{P}(R)$ in $\mathbf{F}_{p}[X]$. If P and Q have the same degree, it is of course an isomorphism.
void FpX_ffintersect (GEN P, GEN Q, long n, GEN p, GEN *SP, GEN *SQ, GEN MA, GEN MB) Assumes p is prime, P, Q are ZXs , both irreducible $\bmod \mathrm{p}$, and n divides both the degree of P and Q. Compute SP and SQ such that the subfield of $\mathbf{F}_{p}[X] /(P)$ generated by SP and the subfield of $\mathbf{F}_{p}[X] /(Q)$ generated by SQ are isomorphic of degree n . The polynomials P and Q do not need to be of the same variable. If MA (resp. MB) is not NULL, it must be the matrix of the Frobenius map in $\mathbf{F}_{p}[X] /(P)\left(\operatorname{resp} . \mathbf{F}_{p}[X] /(Q)\right)$.

GEN FpXQ_ffisom_inv (GEN S, GEN T, GEN p). Assumes p is prime, T a ZX, which is irreducible modulo p , S a ZX representing an automorphism of $\mathbf{F}_{q}:=\mathbf{F}_{p}[X] /(\mathrm{T})$. ($\mathrm{S}(X)$ is the image of X by the automorphism.) Returns the inverse automorphism of S , in the same format, i.e. an $\mathrm{FpX} H$ such that $H(\mathrm{~S}) \equiv X$ modulo (T, p).
long $\mathbf{F q X}$ _nbfact (GEN u, GEN T, GEN p). Assumes p is prime and T irreducible in $\mathbf{F}_{p}[X]$.
long $\mathbf{F q X}$ _nbroots(GEN $\mathrm{f}, \mathrm{GEN} \mathrm{T}$, GEN p) Assumes p is prime and T irreducible in $\mathbf{F}_{p}[X]$.
5.6.7 FpV , FpM , FqM. A ZV (resp. a ZM) is a t_VEC or t_COL (resp. t_MAT) with t_INT coefficients. An FpV or FpM , with respect to a given t_INT p , is the same with Fp coordinates; operations are understood over $\mathbf{Z} / p \mathbf{Z}$. An FqM is a matrix with Fq coefficients (with respect to given T, p), not necessarily reduced (i.e arbitrary t_INTs and ZXs in the same variable as T).

5.6.7.1 Basic operations

GEN FpC_to_mod (GEN z, GEN p), z a ZC. Returns Col(z) * Mod(1,p), hence a t_COL with t_INTMOD coefficients.

GEN FpV_to_mod(GEN z, GEN p), z a ZV. Returns Vec (z) * Mod(1,p), hence a t_VEC with t_INTMOD coefficients.

GEN FpM_to_mod(GEN z, GEN p), z a ZM. Returns z * Mod(1,p), hence with t_INTMOD coefficients.

GEN FpC_red(GEN z, GEN p), z a ZC. Returns $\operatorname{lift}(\operatorname{Col}(z) * \operatorname{Mod}(1, p))$, hence a t_COL.
GEN FpV_red(GEN z, GEN p), z a ZV. Returns $\operatorname{lift}(\operatorname{Vec}(z) * \operatorname{Mod}(1, p))$, hence a t_VEC
GEN FpM_red (GEN z, GEN p), z a ZM. Returns lift $(z * \operatorname{Mod}(1, p))$, which is an FpM.
GEN FpC_Fp_mul(GEN x, GEN y, GEN p) multiplies the $Z C x$ (seen as a column vector) by the t_INT y and reduce modulo p to obtain an FpC.

GEN FpC_FpV_mul(GEN x, GEN y, GEN p) multiplies the ZC x (seen as a column vector) by the ZV y (seen as a row vector, assumed to have compatible dimensions), and reduce modulo p to obtain an FpM.

GEN FpM_mul(GEN x, GEN y, GEN p) multiplies the two ZMs x and y (assumed to have compatible dimensions), and reduce modulo p to obtain an FpM .

GEN FpM_FpC_mul(GEN x, GEN y, GEN p) multiplies the ZM x by the ZC y (seen as a column vector, assumed to have compatible dimensions), and reduce modulo p to obtain an FpC .

GEN FpV_FpC_mul(GEN x, GEN y, GEN p) multiplies the ZV x (seen as a row vector) by the $\mathrm{ZC} y$ (seen as a column vector, assumed to have compatible dimensions), and reduce modulo p to obtain an Fp.
5.6.7.2 Fp-linear algebra. The implementations are not asymptotically efficient ($O\left(n^{3}\right)$ standard algorithms).

GEN FpM_deplin(GEN x, GEN p) returns a non-trivial kernel vector, or NULL if none exist.
GEN FpM_gauss (GEN a, GEN b, GEN p) as gauss
GEN FpM_image(GEN x, GEN p) as image
GEN FpM_intersect (GEN x, GEN y, GEN p) as intersect
GEN FpM_inv (GEN x , GEN p) returns the inverse of x , or NULL if x is not invertible.
GEN FpM_invimage(GEN m, GEN v, GEN p) as inverseimage
GEN FpM_ker (GEN x, GEN p) as ker
long FpM_rank(GEN x, GEN p) as rank
GEN FpM_indexrank(GEN x, GEN p) as indexrank but returns a t_VECSMALL
GEN FpM_suppl(GEN x, GEN p) as suppl

5.6.7.3 Fq-linear algebra

GEN FqM_gauss (GEN a, GEN b, GEN T, GEN p) as gauss
GEN FqM_ker (GEN x, GEN T, GEN p) as ker
GEN FqM_suppl(GEN x, GEN T, GEN p) as suppl
5.6.8 Flx Let p an understood ulong, assumed to be prime, to be given the the function arguments; an Fl is an ulong belonging to $[0, \mathrm{p}-1]$, an Flx z is a t_VECSMALL representing a polynomial with small integer coefficients. Specifically $\mathbf{z}[0]$ is the usual codeword, $\mathbf{z}[1]=\operatorname{evalvarn}(v)$ for some variable v, then the coefficients by increasing degree. An FlxX is a t_POL whose coefficients are Flxs.

In the following, an argument called sv is of the form evalvarn (v) for some variable number v.

5.6.8.1 Basic operations

ulong Rg_to_Fl(GEN z, ulong p), z which can be mapped to $\mathbf{Z} / p \mathbf{Z}$: a t_INT, a t_INTMOD whose modulus is divisible by p, at_FRAC whose denominator is coprime to p, or a t_PADIC with underlying prime p. Returns $\operatorname{lift}(\mathrm{z} * \operatorname{Mod}(1, \mathrm{p}))$, normalized, as an Fl .
GEN Flx red (GEN z, ulong p) converts from $z x$ with non-negative coefficients to Flx (by reducing them $\bmod \mathrm{p}$).
GEN Flx_add (GEN x, GEN y, ulong p)
GEN Flx_neg (GEN x, ulong p)
GEN Flx_neg_inplace (GEN x , ulong p), same as Flx_neg, in place (x is destroyed).
GEN Flx_sub (GEN x, GEN y, ulong p)
GEN Flx_mul(GEN x, GEN y, ulong p)
GEN Flx_sqr (GEN x, ulong p)
GEN Flx_divrem (GEN x, GEN y, ulong p, GEN *pr)
GEN Flx_div (GEN x , GEN y, ulong p)
GEN Flx_rem (GEN x, GEN y, ulong p)
GEN Flx_deriv (GEN z, ulong p)
GEN Flx ged (GEN a, GEN b, ulong p) returns a (not necessarily monic) greatest common divisor of x and y.
GEN Flx_gcd_i(GEN a, GEN b, ulong p), same as Flx_gcd without collecting garbage.
GEN Flx_extgcd (GEN a, GEN b, ulong p, GEN *ptu, GEN *ptv)
GEN Flx_pow (GEN x, long n, ulong p)

5.6.8.2 Miscellaneous operations

GEN Flx_normalize(GEN z, ulong p), as FpX_normalize.
GEN Flx_Fl_mul(GEN y, ulong x, ulong p)
GEN Flx_recip (GEN x), returns the reciprocal polynomial
ulong Flx_resultant (GEN a, GEN b, ulong p), returns the resultant of a and b
ulong Flx_extresultant (GEN a, GEN b, ulong p, GEN *ptU, GEN *ptV) returns the resultant and sets Bezout coefficients (if the resultant is 0 , the latter are not set).

GEN Flx_invmontgomery (GEN T, ulong p), returns the Montgomery inverse of T, i.e. truncate (x / polrecip(T) $+0\left(x^{\wedge} n\right)$. Assumes $T(0) \neq 0$.

GEN Flx_rem_montgomery (GEN x, GEN mg, GEN T, ulong p), returns x modulo T, where mg is the Montgomery inverse of T .

GEN Flx_renormalize (GEN x, long l), as FpX_renormalize, where $1=1 g(x)$, in place.
GEN Flx_shift (GEN T, long n), returns T multiplied by x^{n}.
long Flx_valuation(GEN x) returns the valuation of x, i.e. the multiplicity of the 0 root.
GEN FlxYqQ_pow (GEN x, GEN n, GEN S, GEN T, ulong p), as FpXQYQ_pow.
GEN Flx_div_by_X_x (GEN A, ulong a, ulong p, ulong *rem), returns the Euclidean quotient of the Flx A by $X-\mathrm{a}$, and sets rem to the remainder $\mathrm{A}(\mathrm{a})$.
ulong Flx_eval(GEN x, ulong y, ulong p), as FpX_eval.
GEN FlxV_Flc_mul(GEN V, GEN W, ulong p), as FpXV_FpC_mul.
int Flx_is_squarefree(GEN z, ulong p)
long Flx_nbfact(GEN z, ulong p), as FpX_nbfact.
long Flx_nbroots(GEN f, ulong p), as FpX_nbroots.
GEN Flv_polint (GEN x, GEN y, ulong p, long sv) as FpV_polint, returning an Flx in variable v.

GEN Flv_roots_to_pol(GEN a, ulong p, long sv) as FpV_roots_to_pol returning an Flx in variable v.

5.6.9 Flxq. See FpXQ operations.

GEN Flxq_mul(GEN y, GEN x, GEN pol, ulong p)
GEN Flxq-sqr (GEN y, GEN pol, ulong p)
GEN Flxq_inv (GEN x, GEN T, ulong p)
GEN Flxq_invsafe(GEN x, GEN T, ulong p)
GEN Flxq_pow (GEN x, GEN n, GEN pol, ulong p)
GEN Flxq-powers (GEN x, long 1 , GEN T, ulong p)
GEN FlxqV_roots_to_pol(GEN V, GEN T, ulong p, long v) as FqV_roots_to_pol returning an FlxqX in variable v.
5.6.10 FlxX. See FpXX operations.

GEN FlxX_add(GEN P, GEN Q, ulong p)
GEN FlxX renormalize(GEN x, long 1), as normalizepol, where $1=1 \mathrm{~g}(\mathrm{x})$, in place.
GEN FlxX_shift (GEN a, long n)
5.6.11 FlxqX. See FpXQX operations.

GEN FlxqX_mul(GEN x, GEN y, GEN T, ulong p)
GEN FlxqX_Flxq_mul(GEN P, GEN U, GEN T, ulong p)
GEN FlxqX_normalize (GEN z, GEN T, ulong p)
GEN FlxqX_sqr (GEN x, GEN T, ulong p)
GEN FlxqX_divrem(GEN x, GEN y, GEN T, ulong p, GEN *pr)
GEN FlxqX_red (GEN z, GEN T, ulong p)
GEN FlxqXV_prod (GEN V, GEN T, ulong p)
GEN FlxqXQ_pow (GEN x, GEN n, GEN S, GEN T, ulong p)
5.6.12 Flv, Flm. See FpV, FpM operations.

GEN Flm_Flc_mul(GEN x, GEN y, ulong p)
GEN Flm_deplin (GEN x, ulong p)
GEN Flm_gauss (GEN a, GEN b, ulong p)
GEN Flm_indexrank (GEN x, ulong p)
GEN Flm_inv (GEN x, ulong p)
GEN Flm_ker (GEN x, ulong p)
GEN Flm_ker_sp (GEN x, ulong p, long deplin), as Flm_ker, in place (destroys x).
GEN Flm_mul(GEN x, GEN y, ulong p)
5.6.13 FlxqV, FlxqM. See FqV, FqM operations.

GEN FlxqM_ker (GEN x, GEN T, ulong p)
5.6.14 QX.

GEN QXQ_inv (GEN A, GEN B) returns the inverse of A modulo B where A and B are QXs.

5.6.15 RgX.

GEN RgX_add(GEN $\mathrm{x}, \mathrm{GEN} \mathrm{y}$) adds x and y .
GEN RgX_sub (GEN x,GEN y) subtracts x and y.
GEN RgX_neg(GEN $x, G E N$ p) returns -x .
The functions above are currently implemented through the generic routines, but it might change in the future.

GEN RgX_mul(GEN x, GEN y) multiplies the two t_POL (in the same variable) x and y . Uses Karatsuba algorithm.

GEN RgX_mulspec (GEN a, GEN b, long na, long nb). Internal routine: a and b are arrays of coefficients representing polynomials $\sum_{i=0}^{\mathrm{na}} \mathrm{a}[i] X^{i}$ and $\sum_{i=0}^{\mathrm{nb}} \mathrm{b}[i] X^{i}$. Returns their product (as a true GEN).

GEN $\mathbf{R g X}$ _sqr (GEN x) squares the t_POL x. Uses Karatsuba algorithm.
GEN RgX_sqrspec (GEN a, long na). Internal routine: a is an array of coefficients representing polynomial $\sum_{i=0}^{\mathrm{na}} \mathrm{a}[i] X^{i}$. Return its square (as a true GEN).
GEN RgX_divrem(GEN x, GEN y, GEN *r)
GEN RgX _div (GEN x, GEN y, GEN *r)
GEN RgX_div_by_X_x (GEN A, GEN a, GEN *r) returns the quotient of the RgX A by (X - a), and sets r to the remainder $A(a)$.

GEN RgX_rem(GEN x, GEN y, GEN *r)
GEN RgX_mulXn(GEN \mathbf{x}, long n) returns $\mathrm{x} * t^{n}$. This may be at_FRAC if $n<0$ and the valuation of x is not large enough.
GEN RgX shift (GEN \mathbf{x}, long n) returns $\mathbf{x} * t^{n}$ if $n \geq 0$, and $\mathbf{x} \backslash t^{-n}$ otherwise.
GEN RgX_shift_shallow (GEN x, long n) as RgX_shift, but shallow (coefficients are not copied). This is not suitable for gerepile or gerepileupto.

GEN RgX_extgcd (GEN x, GEN y, GEN $* \mathrm{u}$, GEN $* \mathrm{v}$) returns $d=\mathrm{GCD}(\mathrm{x}, \mathrm{y})$, and sets $* \mathrm{u}$, $* \mathrm{v}$ to the Bezout coefficients such that $* \mathrm{ux}+* \mathrm{vy}=d$.

GEN RgXQ_mul(GEN y, GEN x, GEN T)
GEN RgXQ norm (GEN x , GEN T) returns the norm $\operatorname{of} \operatorname{Mod}(\mathrm{x}, \mathrm{T})$.
GEN RgXQ_sqr(GEN x, GEN T)
GEN RgXQ_powers (GEN x , long n , GEN T , GEN p) returns $\left[\mathrm{x}^{0}, \ldots, \mathrm{x}^{\mathrm{n}}\right.$] as a t_{-}VEC of RgXQs.
GEN RgXQC red (GEN z, GEN T) z a vector whose coefficients are RgXs (arbitrary GENs in fact), reduce them to RgXQs (applying grem coefficientwise) in a t_COL.

GEN RgXQV_red(GEN z, GEN T) z a t_POL whose coefficients are RgXs (arbitrary GENs in fact), reduce them to RgXQs (applying grem coefficientwise) in a t_VEC.

GEN RgXQX_red(GEN z, GEN T) z a t_POL whose coefficients are RgXs (arbitrary GENs in fact), reduce them to RgXQs (applying grem coefficientwise).
GEN RgXQX_mul(GEN x, GEN y, GEN T)
GEN RgX_Rg_mul(GEN y, GEN x) multiplies the RgX y by the scalar x .
GEN RgX _Rg_div(GEN y, GEN x) divides the $\operatorname{RgX} \mathrm{y}$ by the scalar x .
GEN RgXQX_RgXQ_mul(GEN x, GEN y, GEN T) multiplies the RgXQX y by the scalar (RgXQ) x .

GEN RgXQX_sqr(GEN x, GEN T)
GEN RgXQX_divrem(GEN x, GEN y, GEN T, GEN *pr)
GEN RgXQX_div (GEN x, GEN y, GEN T, GEN $* r$)
GEN RgXQX_rem(GEN x, GEN y, GEN T, GEN *r)
GEN RgX_rescale(GEN P, GEN h) returns $h^{\operatorname{deg}(P)} P(x / h)$. P is an RgX and h is non-zero. (Leaves small objects on the stack. Suitable but inefficient for gerepileupto.)

GEN RgX_unscale(GEN P, GEN h) returns $P(h x)$. (Leaves small objects on the stack. Suitable but inefficient for gerepileupto.)

GEN RgXV_unscale(GEN v, GEN h)

5.6.16 Conversions involving single precision objects

5.6.16.1 To single precision

GEN ZX_to_Flx (GEN x , ulong p) reduce $\mathrm{ZX} x$ modulo p (yielding an Flx).
GEN ZV_to_Flv (GEN x , ulong p) reduce $\mathrm{ZV} \times$ modulo p (yielding an Flv).
GEN ZXV_to_FlxV (GEN v, ulong p), as ZX_to_Flx, repeatedly called on the vector's coefficients.
GEN ZXX_to_FlxX (GEN B, ulong p, long v), as ZX_to_Flx, repeatedly called on the polynomial's coefficients.

GEN ZXXV_to_FlxXV (GEN V, ulong p, long v), as ZXX_to_FlxX, repeatedly called on the vector's coefficients.

GEN ZM_to_Flm(GEN x , ulong p) reduce $\mathrm{ZM} \times$ modulo p (yielding an Flm).
GEN ZV_to_zv (GEN z), converts coefficients using itos
GEN ZV_to_nv (GEN z), converts coefficients using itou
GEN ZM_to_zm (GEN z), converts coefficients using itos
GEN FqC_to_FlxC (GEN x, GEN T, GEN p), converts coefficients in Fq to coefficient in Flx, result being a column vector.

GEN FqV_to_FlxV (GEN x, GEN T, GEN p), converts coefficients in Fq to coefficient in Flx, result being a line vector.

GEN FqM_to_FlxM(GEN x, GEN T, GEN p), converts coefficients in Fq to coefficient in Flx.
5.6.16.2 From single precision

GEN Flx_to_ZX (GEN z), converts to ZX (t_POL of non-negative t_INTs in this case)
GEN Flx_to_ZX_inplace (GEN z), same as Flx_to_ZX, in place (\mathbf{z} is destroyed).
GEN FlxX_to_ZXX (GEN B), converts an FlxX to a polynomial with ZX or t_INT coefficients (repeated calls to Flx_to_ZX).

GEN FlxC_to_ZXC (GEN x), converts a vector of Flx to a column vector of polynomials with t_INT coefficients (repeated calls to Flx_to_ZX).

GEN FlxM_to_ZXM (GEN z), converts a matrix of Flx to a matrix of polynomials with t_INT coefficients (repeated calls to Flx_to_ZX).
GEN zx_to_ZX (GEN z), as Flx_to_ZX, without assuming coefficients are non-negative.
GEN Flc_to_ZC (GEN z), converts to ZC (t_{-}COL of non-negative t_INTs in this case)
GEN Flv_to_ZV (GEN z), converts to ZV (t_VEC of non-negative t_INTs in this case)
GEN Flm_to_ZM (GEN z), converts to ZM (t_MAT with non-negative t_INTs coefficients in this case)
GEN zc_to_ZC(GEN z) as Flc_to_ZC, without assuming coefficients are non-negative.
GEN zv_to_ZV (GEN z) as Flv_to_ZV, without assuming coefficients are non-negative.
GEN zm_to_ZM(GEN z) as Flm_to_ZM, without assuming coefficients are non-negative.
5.6.16.3 Mixed precision linear algebra Assumes dimensions are compatible. Multiply a multiprecision object by a single-precision one.

GEN RgM_zc_mul(GEN x, GEN y)
GEN RgM_zm_mul(GEN x, GEN y)
GEN RgV _zc_mul(GEN x, GEN y)
GEN RgV_zm_mul(GEN x, GEN y)
GEN ZM_zc_mul(GEN x, GEN y)
GEN ZM_zm_mul(GEN x , GEN y)

5.6.16.4 Miscellaneous

GEN zero_Flx (long sv) returns a zero Flx in variable v.
GEN zero_zx (long sv) as zero_Flx
GEN polx_Flx(long sv) returns the variable v as degree 1 Flx.
GEN polx zx (long sv) as polx-Flx
GEN Fl_to_Flx (ulong x, long sv) converts a unsigned long to a scalar Flx in shifted variable $s v$.

GEN Z_to_Flx (GEN x , ulong p , long v) converts a t_INT to a scalar polynomial in variable v.
GEN Flx_to_Flv(GEN x, long n) converts from Flx to Flv with n components (assumed larger than the number of coefficients of x).

GEN zx_to_zv(GEN x, long n) as Flx_to_Flv.
GEN Flv_to_Flx (GEN x, long sv) converts from vector (coefficient array) to (normalized) polynomial in variable v.

GEN zv_to_zx (GEN x, long n) as Flv_to_Flx.
GEN matid_Flm(long n) returns an Flm which is an $n \times n$ identity matrix.
GEN Flm_to_FlxV (GEN x, long sv) converts the colums of Flm x to an array of Flx (repeated calls to Flv_to_Flx).

GEN zm_to_zxV (GEN x, long n) as Flm_to_FlxV.
GEN Flm_to_FlxX (GEN x, long sv,long w) converts the colums of Flm x to the coefficient of an FlxX, and normalize the result.

GEN FlxV_to_Flm(GEN v, long n) reverse Flm_to_FlxV, to obtain an Flm with n rows (repeated calls to Flx_to_Flv).

GEN FlxX_to_Flm(GEN v, long n) reverse Flm_to_FlxX, to obtain an Flm with n rows (repeated calls to Flx_to_Flv).

5.7 Operations on general PARI objects.

5.7.1 Assignment

void gaffsg(long s, GEN x) assigns the long s into the object x .
void gaffect (GEN x, GEN y) assigns the object x into the object y .

5.7.2 Conversions

5.7.2.1 Scalars

double rtodbl (GEN x) applied to a t_REAL x, converts x into a double if possible.
GEN dbltor (double x) converts the double x into a t_REAL.
double gtodouble (GEN x) if x is a real number (n ot necessarily a t_{Z} REAL), converts x into a double if possible.
long gtolong (GEN x) if x is an integer (not necessarily at_INT), converts x into a long if possible.
GEN fractor (GEN x, long l) applied to a t_FRAC x, converts x into a t_REAL of length prec.
GEN quadtoc (GEN x, long 1) applied to a t_QUAD x, converts x into a t_REAL or t_COMPLEX depending on the sign of the discriminant of x, to precision 1 BIL-bit words.line brk at hyphen here [GN]

GEN ctof (GEN x, long prec) converts the t_COMPLEX x to a a complex whose real and imaginary parts are t_REAL of length prec, using gtofp;

GEN gtofp (GEN x, long prec) converts the complex number x (t_INT, t_REAL, t_FRAC, t_QUAD or $\left.t_{_} C O M P L E X\right)$ to either a $t _R E A L$ or $t _C O M P L E X ~ w h o s e ~ c o m p o n e n t s ~ a r e ~ t _R E A L ~ o f ~ l e n g t h ~ p r e c . ~$

GEN gcvtop (GEN x, GEN p, long 1) converts x into a t_PADIC p-adic number of precision 1.
GEN gprec (GEN x , long l) returns a copy of x whose precision is changed to l digits. The precision change is done recursively on all components of x. Digits means decimal, p-adic and X-adic digits for t_REAL, t_SER, t_PADIC components, respectively.

GEN gprec_w (GEN x , long l) returns a shallow copy of x whose $\mathrm{t}_{\mathrm{\prime}}$ REAL components have their precision changed to l words. This is often more useful than gprec. Shallow copy means that unaffected components are not copied; in particular, this funciton is not suitable for gerepileupto.

GEN gprec_wtrunc (GEN x , long l) returns a shallow copy of x whose t_REAL components have their precision truncated to l words. Contrary to gprec_w, this function may never increase the precision of x. Shallow copy means that unaffected components are not copied; in particular, this funciton is not suitable for gerepileupto.

5.7.2.2 Modular objects

GEN gmodulo (GEN x, GEN y) creates the object $\operatorname{Mod}(x, y)$ on the PARI stack, where x and y are either both $t_{_}$INTs, and the result is a $t_{_}$INTMOD, or x is a scalar or a $t_{-} P O L$ and y a $t _P O L$, and the result is a t_POLMOD.

GEN gmodulgs (GEN x , long y) same as gmodulo except y is a long.
GEN gmodulss (long x , long y) same as gmodulo except both x and y are longs.

5.7.2.3 Between polynomials and coefficient arrays

GEN gtopoly (GEN x, long v) converts or truncates the object x into a t_POL with main variable number v . A common application would be the conversion of coefficient vectors (coefficients are given by decreasing degree). E.g. [2,3] goes to $2 * \mathrm{v}+3$

GEN gtopolyrev (GEN x , long v) converts or truncates the object x into a t_POL with main variable number v , but vectors are converted in reverse order compared to gtopoly (coefficients are given by increasing degree). E.g. $[2,3]$ goes to $3 * v+2$. In other words the vector represents a polynomial in the basis $\left(1, v, v^{2}, v^{3}, \ldots\right)$.

GEN normalizepol (GEN x) applied to an unnormalized t_POL x (with all coefficients correctly set except that leading_term (x) might be zero), normalizes x correctly in place and returns x . For internal use.

The following routines do not copy coefficients on the stack (they only move pointers around), hence are very fast but not suitable for gerepile calls. Recall that an RgV (resp. an RgX, resp. an RgM) is a t_VEC or t_COL (resp. a t_POL, resp. a t_MAT) with arbitrary components. Similarly, an RgXV is a $t_{-} V E C$ or $t_{-} C O L$ with RgX components, etc.

GEN RgV_to_RgX (GEN x, long v) converts the RgV x to a (normalized) polynomial in variable v (as gtopolyrev, without copy).

GEN RgX_to_RgV (GEN x, long N) converts the t_POL x to at_COL v with N components. Other types than t_{-}POL are allowed for x , which is then considered as a constant polynomial. Coefficients of x are listed by increasing degree, so that $\mathrm{y}[\mathrm{i}]$ is the coefficient of the term of degree $i-1$ in x .

GEN RgM_to_RgXV (GEN x, long v) converts the RgM x to a t_VEC of RgX, by repeated calls to RgV_to_RgX.

GEN RgXV_to_RgM(GEN v, long N) converts the vector of RgX v to a t_MAT with N rows, by repeated calls to RgX _to_RgV.

GEN RgM_to_RgXX (GEN x, long v,long w) converts the RgM x into a t_POL in variable v, whose coefficients are t_POLs in variable w. This is a shortcut for

```
RgV_to_RgX( RgM_to_RgXV(x, w), v );
```

There are no consistency checks with respect to variable priorities: the above is an invalid object if $\operatorname{varncmp}(\mathrm{v}, \mathrm{w}) \geq 0$.

GEN RgXX_to_RgM(GEN x, long N) converts the t_POL x with RgX (or constant) coefficients to a matrix with N rows.

GEN RgXY_swap (GEN P, long n , long w) converts the bivariate polynomial $\mathrm{P}(u, v)$ (a t_POL with t_POL coefficients) to $P($ pol_x $[\mathrm{w}], u)$, assuming n is an upper bound for $\operatorname{deg}_{v}(\mathrm{P})$.

GEN greffe(GEN x, long l, int use_stack) applied to a t_POL x, creates a t_SER of length 1 starting with x , but without actually copying the coefficients, just the pointers. If use_stack is 0 , this is created through malloc, and must be freed after use. Intended for internal use only.

GEN gtoser (GEN x , long v) converts the object x into a t_{l} SER with main variable number v.
GEN gtocol(GEN x) converts the object x into a $\mathrm{t}_{\mathbf{\prime}}$ COL
GEN gtomat (GEN x) converts the object x into a t_MAT.
GEN gtovec (GEN x) converts the object x into a $\mathrm{t}_{\mathbf{\prime}}$ VEC.

GEN gtovecsmall (GEN x) converts the object x into a t _VECSMALL.
GEN normalize (GEN x) applied to an unnormalized t_SER x (i.e. type t_{-}SER with all coefficients correctly set except that $\mathrm{x}[2]$ might be zero), normalizes x correctly in place. Returns x . For internal use.

5.7.3 Clean Constructors

GEN zeropadic (GEN p, long n) creates a 0 t_PADIC equal to $O\left(\mathrm{p}^{\mathrm{n}}\right)$.
GEN zeroser (long v, long n) creates a 0 t_SER in variable v equal to $O\left(X^{\mathrm{n}}\right)$.
GEN scalarser (GEN x, long v, long prec) creates a constant t_SER in variable v and precision prec, whose constant coefficient is (a copy of) x , in other words $\mathrm{x}+O\left(\mathrm{v}^{\mathrm{prec}}\right)$. Assumes that x is non-zero.
GEN zeropol(long v) creates a 0 t_POL in variable v.
GEN scalarpol (GEN x, long v) creates a constant t_POL in variable v, whose constant coefficient is (a copy of) x.
GEN zerocol (long n) creates a $t_{-} C O L$ with n components set to gen_0.
GEN zerovec (long n) creates a t_VEC with n components set to gen_0.
GEN col_ei(long n, long i) creates a t_COL with n components set to gen_0, but the i-th one which us set to gen_1 (i-th vector in the canonical basis).

GEN vec_ei (long n, long i) creates a t_VEC with n components set to gen_0, but the i-th one which us set to gen_1 (i-th vector in the canonical basis).

GEN zeromat (long m, long n) creates a t_MAT with $m \mathrm{x} n$ components set to gen_0. Note that the result allocates a single column, so modifying an entry in one column modifies it in all columns. To fully allocate a matrix initialized with zero entries, use zeromatcopy.

GEN zeromatcopy (long m, long n) creates a t_MAT with $m \times n$ components set to gen_0. Note that

See also next section for analogs of the following functions:
GEN mkcolcopy (GEN x) creates a 1-dimensional t_COL containing x .
GEN mkmatcopy (GEN x) creates a 1-by-1 t_MAT containing x.
GEN mkveccopy (GEN x) creates a 1-dimensional t_VEC containing x .
GEN mkvec2copy (GEN x, GEN y) creates a 2-dimensional t_VEC equal to [x, y].
GEN mkvecs (long x) creates a 1-dimensional t_VEC containing stoi (x).
GEN mkvec2s(long x, long y) creates a 2-dimensional t_VEC containing [stoi(x), stoi (y)]. GEN mkvec3s(long x, long y, long z) creates a 3-dimensional t_VEC containing [stoi(x), stoi(y), stoi(z)].

GEN mkvecsmall(long x) creates a 1-dimensional t_VECSMALL containing x .
GEN mkvecsmall2 (long x, long y) creates a 2-dimensional t_VECSMALL containing [x, y].
GEN mkvecsmall3(long x, long y, long z) creates a 3-dimensional t_VECSMALL containing [$\mathrm{x}, \mathrm{y}, \mathrm{z}$].

5.7.4 Unclean Constructors

Contrary to the policy of general PARI functions, the functions in this subsection do not copy their arguments, nor do they produce an object a priori suitable for gerepileupto. In particular, they are faster than their clean equivalent (which may not exist). If you restrict their arguments to universal objects (e.g gen_0), then the above warning does not apply.

GEN mkcomplex (GEN x , GEN y) creates the t_COMPLEX $x+i y$.
GEN mkfrac (GEN \mathbf{x}, GEN y) creates the t_FRAC x / y. Assumes that $y>1$ and $(x, y)=1$.
GEN mkrfrac (GEN \mathbf{x}, GEN y) creates the t_RFRAC x / y. Assumes that y is at_POL, x a compatible type whose variable has lower or same priority, with $(x, y)=1$.

GEN mkcol(GEN x) creates a 1 -dimensional t_COL containing x .
GEN mkintmod(GEN x , GEN y) creates the t_INTMOD $\operatorname{Mod}(\mathrm{x}, \mathrm{y})$. The input must be t_INTs satisfying $0 \leq x<y$.

GEN mkpolmod (GEN x, GEN y) creates the t_POLMOD Mod (x, y). The input must satisfy $\operatorname{deg} x<$ $\operatorname{deg} y$ with respect to the main variable of the t_POL $y . x$ may be a scalar.

GEN mkmat(GEN x) creates a 1 -by- 1 t_MAT containing x .
GEN mkvec (GEN x) creates a 1 -dimensional t_VEC containing x .
GEN mkvec2(GEN x , GEN y) creates a 2 -dimensional t_{-}VEC equal to $[\mathrm{x}, \mathrm{y}$].
GEN mkvec3(GEN x , GEN y , GEN z) creates a 3-dimensional t_VEC equal to $[\mathrm{x}, \mathrm{y}, \mathrm{z}$].
GEN mkvec4(GEN x , GEN y , GEN z , GEN t) creates a 4-dimensional t _VEC equal to $[\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t}$].
GEN mkintn(long n, \ldots) returns the non-negative t_INT whose development in base 2^{32} is given by the following n words (unsigned long). It is assumed that all such arguments are less than 2^{32} (the actual sizeof (long) is irrelevant, the behaviour is also as above on 64 -bit machines).

```
mkintn(3, a2, a1, a0);
```

returns $a_{2} 2^{64}+a_{1} 2^{32}+a_{0}$.
GEN mkpoln(long n, ...) Returns the t_POL whose n coefficients (GEN) follow, in order of decreasing degree.

```
mkpoln(3, gen_1, gen_2, gen_0);
```

returns the polynomial $X^{2}+2 X$ (in variable 0 , use setvarn if you want other variable numbers). Beware that n is the number of coefficients, hence one more than the degree.

GEN mkvecn(long n, \ldots) returns the $\mathrm{t}_{\text {_ }}$ VEC whose n coefficients (GEN) follow.
GEN mkcoln (long n, ...) returns the t_COL whose n coefficients (GEN) follow.

5.7.5 Integer parts

GEN gfloor (GEN x) creates the floor of x, i.e. the (true) integral part.
GEN $\operatorname{gfrac}(G E N \mathrm{x}$) creates the fractional part of x , i.e. x minus the floor of x .
GEN gceil(GEN x) creates the ceiling of x .
GEN ground (GEN x) rounds towards $+\infty$ the components of x to the nearest integers.
GEN grndtoi (GEN x , long *e) same as ground, but in addition sets *e to the binary exponent of $x-\operatorname{ground}(x)$. If this is positive, all significant bits are lost. This kind of situation raises an error message in ground but not in grndtoi.

GEN gtrunc (GEN x) truncates x. This is the false integer part if x is a real number (i.e. the unique integer closest to x among those between 0 and x). If x is a $t_{-} S E R$, it is truncated to a t_POL; if x is a t_RFRAC, this takes the polynomial part.

GEN gcvtoi(GEN x, long $* e$) same as grndtoi except that rounding is replaced by truncation.

5.7.6 Valuation and shift

GEN gshift[z](GEN x, long $n[$, GEN $z]$) yields the result of shifting (the components of) x left by n (if n is non-negative) or right by -n (if n is negative). Applies only to t_{-}INT and vectors/matrices of such. For other types, it is simply multiplication by 2^{n}.

GEN gmul2n[z] (GEN x, long $n[, G E N z]$) yields the product of x and 2^{n}. This is different from gshift when n is negative and x is a t_INT: gshift truncates, while gmul2n creates a fraction if necessary.
long ggval(GEN x, GEN p) returns the greatest exponent e such that p^{e} divides x , when this makes sense.
long gval(GEN x, long v) returns the highest power of the variable number v dividing the t_POL x.
long polvaluation (GEN $\mathrm{P}, \mathrm{GEN} * \mathrm{z}$) returns the valuation v of the t_POL P with respect to its main variable X. Check whether coefficients are 0 using gcmp0. If z is non-NULL, set it to P / X^{v}.
long polvaluation_inexact (GEN P, GEN *z) as polvaluation but use isexactzero instead of gcmp0.
long ZX_valuation(GEN P, GEN *z) as polvaluation, but assumes P has t_INT coefficients.

5.7.7 Comparison operators

int isexactzero (GEN x) returns 1 (true) if x is exactly equal to 0,0 (false) otherwise. Note that many PARI functions return a pointer to gen_0 when they are aware that the result they return is an exact zero, so it is almost always faster to test for pointer equality first, and call isexactzero (or gcmp0) only when the first test fails.
int isinexact (GEN x) returns 0 (false) if x has an inexact component, and 1 (true) otherwise.
int isint (GEN $x, G E N * n$) returns 0 (false) if x does not round to an integer. Otherwise, returns 1 (true) and set n to the rounded value.
int issmall (GEN x , long $* \mathrm{n}$) returns 0 (false) if x does not round to a small integer (suitable for itos). Otherwise, returns 1 (true) and set n to the rounded value.
int $\operatorname{gcmp} 0(G E N \mathrm{x})$ returns 1 (true) if x is equal to 0,0 (false) otherwise.
int $\operatorname{gcmp} 1$ (GEN x) returns 1 (true) if x is equal to 1,0 (false) otherwise.
int gcmp_1 $^{\prime}(\operatorname{GEN} \mathrm{x})$ returns 1 (true) if x is equal to $-1,0$ (false) otherwise.
long $\operatorname{gcmp}(G E N \mathrm{x}$, GEN y) comparison of x with $\mathrm{y}($ returns the sign of $\mathrm{x}-\mathrm{y}$).
long gcmpsg (long s, GEN x) comparison of the long s with x.
long gcmpgs(GEN x , long s) comparison of x with the long s .
long lexcmp(GEN $\mathrm{x}, \mathrm{GEN} \mathrm{y}$) comparison of x with y for the lexicographic ordering.
long gequal(GEN x , GEN y) returns 1 (true) if x is equal to $\mathrm{y}, 0$ otherwise. A priori, this makes sense only if x and y have the same type. When the types are different, a true result means that x - y was successfully computed and found equal to 0 (by gcmp0). In particular

```
gequal(cgetg(1, t_VEC), gen_0)
```

is true, and the relation is not transitive. E.g. an empty $t _C O L$ and an empty $t _V E C$ are not equal but are both equal to gen_0.
long gequalsg(long s, GEN x) returns 1 (true) if the long s is equal to $\mathrm{x}, 0$ otherwise.
long gequalgs (GEN x , long s) returns 1 (true) if x is equal to the long $\mathrm{s}, 0$ otherwise.
long iscomplex (GEN x) returns 1 (true) if x is a complex number (of component types embeddable into the reals) but is not itself real, 0 if x is a real (not necessarily of type t_REAL), or raises an error if x is not embeddable into the complex numbers.
long ismonome (GEN x) returns 1 (true) if x is a non-zero monomial in its main variable, 0 otherwise.

5.7.8 Generic unary operators

GEN gneg[z](GEN $x[$, GEN $z])$ yields -x .
GEN gabs[z](GEN $\mathrm{x}[$, GEN z$]$) yields $|\mathrm{x}|$.
GEN $\operatorname{gsqr}($ GEN x$)$ creates the square of x .
GEN $\operatorname{ginv}(G E N \quad x)$ creates the inverse of x.

5.7.9 Divisibility, Euclidean division

GEN gdivexact (GEN x , GEN y) returns the quotient x / y, assuming y divides x .
int $\operatorname{gdvd}(G E N \mathrm{x}, \mathrm{GEN} \mathrm{y})$ returns 1 (true) if y divides $\mathrm{x}, 0$ otherwise.
GEN gdiventres (GEN x , GEN y) creates a 2-component vertical vector whose components are the true Euclidean quotient and remainder of x and y.

GEN gdivent[z](GEN x, GEN $y[, G E N z]$) yields the true Euclidean quotient of x and the t_INT or t_POL y.

GEN gdiventsg[z](long s, GEN y[, GEN z]), as gdivent except that x is a long.
GEN gdiventgs[z](GEN x, long $s[, G E N z]$), as gdivent except that y is a long.

GEN $\operatorname{gmod}[\mathbf{z}]$ (GEN x, GEN $y[, G E N z])$ yields the true remainder of x modulo the $t_{\text {_ }}$ INT or t_POL y. A t_REAL or t_FRAC y is also allowed, in which case the remainder is the unique real r such that $0 \leq r<|\mathrm{y}|$ and $\mathrm{y}=q \mathrm{x}+r$ for some (in fact unique) integer q.

GEN gmodsg[z](long s, GEN y[, GEN z]) as gmod, except x is a long.
GEN gmodgs[z](GEN x, long $s[, G E N z]$) as gmod, except y is a long.
GEN gdivmod (GEN x, GEN y, GEN $* r$) If r is not equal to NULL or ONLY_REM, creates the (false) Euclidean quotient of x and y , and puts (the address of) the remainder into $* \mathrm{r}$. If r is equal to NULL, do not create the remainder, and if r is equal to ONLY_REM, create and output only the remainder. The remainder is created after the quotient and can be disposed of individually with a $\operatorname{cgiv}(r)$.

GEN poldivrem (GEN x , GEN y , GEN $* r$) same as gdivmod but specifically for t_{-}POLS x and y , not necessarily in the same variable. Either of x and y may also be scalars (treated as polynomials of degree 0)
GEN gdeuc (GEN x, GEN y) creates the Euclidean quotient of the t_POLs x and y. Either of x and y may also be scalars (treated as polynomials of degree 0)
GEN grem (GEN x, GEN y) creates the Euclidean remainder of the t_POL x divided by the t_POL y.
GEN gdivround (GEN x, GEN y) if x and y are $t _I N T$, as diviiround. Operate componentwise if x is a $\mathrm{t}_{_} \mathrm{COL}, \mathrm{t}_{-} \mathrm{VEC}$ or t _MAT. Otherwise as gdivent.

GEN centermod_i(GEN x, GEN y, GEN y2), as centermodii, componentwise.
GEN centermod (GEN x, GEN y), as centermod_i, except that $y 2$ is computed (and left on the stack for efficiency).

GEN ginvmod (GEN x, GEN y) creates the inverse of x modulo y when it exists. y must be of type $t_{\text {_INT (}}$ in which case x is of type t_{-}INT) or $\mathrm{t}_{-} \mathrm{POL}$ (in which case x is either a scalar type or a t_POL).

5.7.10 GCD, content and primitive part

GEN subres (GEN x, GEN y) creates the resultant of the t_POLs x and y computed using the subresultant algorithm. Either of x and y may also be scalars (treated as polynomials of degree 0)

GEN $\operatorname{ggcd}(G E N x, G E N y)$ creates the GCD of x and y.
GEN $\operatorname{glcm}(G E N \quad x, G E N y)$ creates the LCM of x and y.
GEN gbezout (GEN $x, G E N y, G E N * u, G E N * v$) creates the GCD of x and y, and puts (the addresses of) objects u and v such that $u \mathrm{x}+v \mathrm{y}=\operatorname{gcd}(\mathrm{x}, \mathrm{y})$ into $* \mathrm{u}$ and $* \mathrm{v}$.
GEN bezoutpol (GEN a, GEN b, GEN *u, GEN *v), returns the GCD d of t _INTs a and b and sets u, v to the Bezout coefficients such that $\mathrm{au}+\mathrm{bv}=d$.

GEN content (GEN x) creates the GCD of all the components of x .
GEN primitive_part (GEN $\mathrm{x}, \mathrm{GEN} * \mathrm{c}$), sets c to content (x) and returns the primitive part x / c.
GEN primpart (GEN x) as primitive_part but the content is lost. (For efficiency, the content remains on the stack.)
5.7.11 Generic binary operators. Let " $o p$ " be a binary operation among
$o p=$ add: addition $(\mathrm{x}+\mathrm{y})$.
$o p=$ sub: subtraction $(\mathrm{x}-\mathrm{y})$.
$o p=$ mul: multiplication ($\mathrm{x} * \mathrm{y}$).
$o p=\operatorname{div}: \operatorname{division}(\mathrm{x} / \mathrm{y})$.
$o p=\max : \operatorname{maximum}(\max (\mathrm{x}, \mathrm{y}))$
$o p=\min : \operatorname{minimum}(\min (\mathrm{x}, \mathrm{y}))$
The names and prototypes of the functions corresponding to op are as follows:
GEN $\mathbf{g o p}[\mathbf{z}]($ GEN x, GEN $\mathrm{y}[$, GEN z$])$
GEN g opgs[z](GEN x, long $\mathrm{s}[$, GEN z$])$
GEN gopsg[z](long s, GEN y[, GEN z])
GEN gpow (GEN x , GEN y , long l) creates x^{y}. If y is a t_INT, return powgi (x, y) (the precision l is not taken into account). Otherwise, the result is $\exp (\mathrm{y} * \log (\mathrm{x}))$ computed to precision 1 .

GEN gpowgs(GEN x , long n) creates x^{n} using binary powering.
GEN powgi (GEN x , GEN y) creates x^{y}, where y is a t_INT, using left-shift binary powering.
GEN gsubst (GEN x , long v , GEN y) substitutes the object y into x for the variable number v .

5.7.12 Miscellaneous functions

const char* type_name (long t) given a type number this routine returns a string containing its symbolic name. E.g type_name (t_INT) returns "t_INT". The return value is read-only.

5.8 Further type specific functions.

5.8.1 Vectors and Matrices See Section 5.7.3 and Section 5.7.4 for various useful constructors. Coefficients are accessed and set using gel, gcoeff, see Section 5.2.6. There are many internal functions to extract or manipulate subvectors or submatrices but, like the accessors above, none of them are suitable for gerepileupto. Worse, there are no type verification, nor bound checking, so use at your own risk.

Note. In the function names below, i stands for interval and p for permutation.
GEN shallowcopy (GEN x) returns a t_GEN whose components are the components of x (no copy is made). The result may now be used to compute in place without destroying x. This is essentially equivalent to

```
GEN y = cgetg(lg(x), typ(x));
for (i = 1; i < lg(x); i++) y[i] = x[i];
return y;
```

except that t_POLMOD (resp. t_MAT) are treated specially since a dummy copy of the representative (resp. all columns) is also made.
GEN shallowtrans (GEN x) returns the transpose of x, without copying its components, i. e., it returns a GEN whose components are (physically) the components of x. This is the internal function underlying gtrans.
GEN shallowconcat(GEN x , GEN y) concatenate x and y, without copying compoents, i. e., it returns a GEN whose components are (physically) the comonents of x and y.

GEN vconcat (GEN A, GEN B) concatenate vertically the two t_MAT A and B of compatible dimensions. A NULL pointer is accepted for an empty matrix. See shallowconcat.
GEN row (GEN A, long i) return $A[i$,$] , the i$-th row of the t_MAT A.
GEN row_i(GEN A, long i, long $j 1$, long $j 2$) return part of the i-th row of tMAT $A: A\left[i, j_{1}\right]$, $A\left[i, j_{1}+1\right] \ldots, A\left[i, j_{2}\right]$. Assume $j_{1} \leq j_{2}$.
GEN rowslice (GEN A, long i1, long i2) return the t_MAT formed by the i_{1}-th through i_{2}-th rows of t_MAT A. Assume $i_{1} \leq i_{2}$.
GEN rowpermute(GEN A, GEN p), p being a t_{-}VECSMALL representing a list $\left[p_{1}, \ldots, p_{n}\right]$ of rows of t _MAT A, returns the matrix whose rows are $A\left[p_{1},\right], \ldots, A\left[p_{n},\right]$.
GEN rowslicepermute(GEN A, GEN p , long x1, long x2), short for

```
rowslice(rowpermute(A,p), x1, x2)
```

(more efficient).
GEN vecslice(GEN A, long $j 1$, long $j 2$), return $A\left[j_{1}\right], \ldots, A\left[j_{2}\right]$. If A is a t_MAT, these correspond to columns of A. The object returned has the same type as A (t_VEC, t_COL or t_MAT). Assume $j_{1} \leq j_{2}$.
GEN vecpermute (GEN A, GEN p) p is a t_{-}VECSMALL representing a list $\left[p_{1}, \ldots, p_{n}\right]$ of indices. Returns a GEN which has the same type as A (t _VEC, $\mathrm{t}_{-} \mathrm{COL}$ or t _MAT), and whose components are $A\left[p_{1}\right], \ldots, A\left[p_{n}\right]$. If A is a t_MAT, these are the columns of A.

GEN vecslicepermute(GEN A, GEN p, long y1, long y2) short for

```
vecslice(vecpermute(A,p), y1, y2)
```

(more efficient).

5.8.2 Low-level vectors and columns functions

Theses functions handle t_VEC as an abstract container type of GENs. No specific meaning is attached to the content.

They accept both $\mathrm{t}_{\text {_ }}$ VEC and $\mathrm{t}_{-} \mathrm{COL}$ as input, but col functions always return t _ COL and vec functions alway return t_VEC.

Note. All the functions below are shallow.
GEN const_col(long n, long c) returns a $t_{-} C O L$ of n components equal to c.
GEN const_vec (long n, long c) returns a t_VEC of n components equal to c.
int vec_isconst (GEN v) Returns 1 if all the components of v are equal, else returns 0 .
int vec_is1to1 (GEN v) Returns 1 if the components of vare pair-wise distinct, i.e. if $i \mapsto v[i]$ is a 1-to-1 mapping, else returns 0 .

GEN vec_shorten(GEN v, long n) shortens the vector v to n components.
GEN vec_lengthen (GEN v , long n) lengthens the vector v to n components. The extra components are not initialised.

5.8.3 Function to handle t_VECSMALL

Theses functions handle t_VECSMALL as an abstract container type of small signed integers. No specific meaning is attached to the content.

GEN const_vecsmall(long n, long c) returns a $t_{_}$VECSMALL of n components equal to c.
GEN vec_to_vecsmall(GEN z) identical to ZV_to_zv (z).
GEN vecsmall_to_vec(GEN z) identical to zv_to_ZV (z).
GEN vecsmall_to_col(GEN z) identical to zv_to_ZC(z).
GEN vecsmall_copy (GEN x) makes a copy of x on the stack.
GEN vecsmall_shorten (GEN v, long n) shortens the t_{L} VECSMALL v to n components.
 extra components are not initialised.

GEN vecsmall_indexsort (GEN x) performs an indirect sort of the components of the t_VECSMALL x and return a permutation stored in a $t_{\text {_ VECSMALL }}$
void vecsmall_sort (GEN v) sorts the t_VECSMALL v in place.
GEN vecsmall_uniq (GEN v) given a sorted t_VECSMALL v, return the vector of unique occurences.
int vecsmall_lexcmp(GEN x, GEN y) compares two t_VECSMALL lexically
int vecsmall_prefixcmp (GEN x, GEN y) truncate the longest t_VECSMALL to the length of the shortest and compares them lexicographically.

GEN vecsmall_prepend (GEN V, long s) prepend s to the t_VECSMALL V.
GEN vecsmall_append (GEN V, long s) append s to the t_VECSMALL V.
GEN vecsmall_concat (GEN u, GEN v) concat the t_VECSMALL u and v.
long vecsmall_coincidence(GEN u, GEN v) returns the numbers of indices where u and v agree.
long vecsmall_pack(GEN v, long base, long mod) handles the t_VECSMALL v as the digit of a number in base base and return this number modulo mod. This can be used as an hash function.
5.8.4 Functions to handle bits-vectors Theses functions manipulate vectors of bits (stored in t_VECSMALL). Bits are numbered from 0.

GEN bitvec_alloc (long n) allocates a bits-vector suitable for n bits.
GEN bitvec_shorten(GEN bitvec, long n) shortens a bits-vector bitvec to n bits.
long bitvec_test (GEN bitvec, long b) returns the bit of index b of bitvec.
void bitvec_set (GEN bitvec, long b) (in place) sets the bit of index b of bitvec.
void bitvec_clear (GEN bitvec, long b) (in place) clears the bit of index b of bitvec.
5.8.5 Functions to handle vectors of $t _V E C S M A L L ~ T h e s e s ~ f u n c t i o n s ~ m a n i p u l a t e ~ v e c t o r s ~ o f ~$ t_VECSMALL (vecvecsmall).

GEN vecvecsmall_sort (GEN x) sorts lexicographically the components of the vector x .
GEN vecvecsmall_indexsort (GEN x) performs an indirect lexicographic sorting of the components of the vector x and return a permutation stored in a t_VECSMALL.
long vecvecsmall_search (GEN x, GEN y, long flag) x being a sorted vecvecsmall and y a t_VECSMALL, search y inside x . fla has the same meaning as for setsearch.

Appendix A:
 A Sample program and Makefile

We assume that you have installed the PARI library and include files as explained in Appendix A or in the installation guide. If you chose differently any of the directory names, change them accordingly in the Makefiles.

If the program example that we have given is in the file extgcd.c, then a sample Makefile might look as follows. Note that the actual file examples/Makefile is more elaborate and you should have a look at it if you intend to use install() on custom made functions, see Section 3.11.2.14.

```
CC = cc
INCDIR = /home/kb/PARI/pari/../GP/include
LIBDIR = /home/kb/PARI/pari/../GP/lib
CFLAGS = -0 -I$(INCDIR) -L$(LIBDIR)
all: extgcd
extgcd: extgcd.c
    $(CC) $(CFLAGS) -o extgcd extgcd.c -lpari -lm
```

We then give the listing of the program examples/extgcd.c seen in detail in Section 4.8.

```
#include <pari/pari.h>
/*
GP;install("extgcd", "GG&&", "gcdex", "./libextgcd.so");
*/
/* return d = gcd(a,b), sets u, v such that au + bv = gcd(a,b) */
GEN
extgcd(GEN A, GEN B, GEN *U, GEN *V)
{
    pari_sp av = avma;
    GEN ux = gen_1, vx = gen_0, a = A, b = B;
    if (typ(a) != t_INT || typ(b) != t_INT) pari_err(typeer, "extgcd");
    if (signe(a) < 0) { a = negi(a); ux = negi(ux); }
    while (!gcmp0(b))
    {
        GEN r, q = dvmdii(a, b, &r), v = vx;
        vx = subii(ux, mulii(q, vx));
        ux = v;
        a = b; b = r;
    }
    *U = ux;
    *V = diviiexact( subii(a, mulii(A,ux)), B );
    gerepileall(av, 3, &a, U, V); return a;
}
int
```

```
main()
{
    GEN x, y, d, u, v;
    pari_init(1000000,2);
    printf("x = "); x = gp_read_stream(stdin);
    printf("y = "); y = gp_read_stream(stdin);
    d = extgcd(x, y, &u, &v);
    pariprintf("gcd = %Z\nu = %Z\nv = %Z\n", d,u,v);
    return 0;
}
```


Appendix B:
 Summary of Available Constants

In this appendix we give the list of predefined constants available in the PARI library. All of them are in the heap and not on the PARI stack. We start by recalling the universal objects introduced in Section 4.1:

```
t_INT: gen_0, gen_1, gen_m1, gen_2
t_FRAC: ghalf
t_COMPLEX: gi
t_POL: pol_1[..], pol_x[..]
```

Only polynomials in the variables 0 and MAXVARN are defined initially. Use fetch_var() (see Section 4.6.2.2) to create new ones.

The other objects are not initialized by default:
bern(i). This is the $2 i$-th Bernoulli number ($B_{0}=1, B_{2}=1 / 6, B_{4}=-1 / 30$, etc...). To initialize them, use the function:
void mpbern(long n, long prec)
This creates the even numbered Bernoulli numbers up to $B_{2 n-2}$ as real numbers of precision prec. They can then be used with the macro bern(i). Note that this is not a function but simply an abbreviation, hence care must be taken that i is inside the right bounds (i.e. $0 \leq i \leq n-1$) before using it, since no checking is done by PARI itself.
geuler. This is Euler's constant. It is initialized by the first call to mpeuler (see Section 3.3.6).
gpi. This is the number π. It is initialized by the first call to mppi (see Section 3.3.6).
The use of both geuler and gpi is deprecated since it is always possible that some library function increases the precision of the constant after you've computed it, hence modifying the computation accuracy without your asking for it and increasing your running times for no good reason. You should always use mpeuler and mppi (note that only the first call will actually compute the constant, unless a higher precision is required).

In addition, some single or double-precision real numbers (like PI) are predefined, and their list is in the file paricom.h.

Finally, one has access to a table of (differences of) primes through the pointer diffptr. This is used as follows: when
void pari_init(size_t size, ulong maxprime)
is called, this table is initialized with the successive differences of primes up to (just a little beyond) maxprime (see Section 4.1). The prime table will occupy roughly maxprime/ \log (maxprime) bytes in memory, so be sensible when choosing maxprime (it is 500000 by default under gp). In any case, the implementation requires that maxprime $<2^{\mathrm{BIL}}-2048$, whatever memory is available.

The largest prime computable using this table is available as the output of ulong maxprime()

After the following initializations (the names p and $p t r$ are arbitrary of course)

```
byteptr ptr = diffptr;
ulong p = 0;
```

calling the macro NEXT_PRIME_VIADIFF_CHECK (p, ptr) repeatedly will assign the successive prime numbers to p. Overrunning the prime table boundary will raise the error primer1, which will just print the error message:

```
*** not enough precomputed primes
```

and then abort the computations. The alternative macro NEXT_PRIME_VIADIFF operates in the same way, but will omit that check, and is slightly faster. It should be used in the following way:

```
byteptr ptr = diffptr;
ulong p = 0;
if (maxprime() < goal) pari_err(primer1); /* not enough primes */
while (p <= goal) /* run through all primes up to goal */
{
    NEXT_PRIME_VIADIFF(p, ptr);
}
```

Here, we use the general error handling function pari_err (see Section 4.7.3), with the codeword primer1, raising the "not enough primes" error.

You can use the function initprimes from the file arith2.c to compute a new table on the fly and assign it to diffptr or to a similar variable of your own. Beware that before changing diffptr, you should really free the (malloced) precomputed table first, and then all pointers into the old table will become invalid.

PARI currently guarantees that the first 6547 primes, up to and including 65557, are present in the table, even if you set maxprime to zero. in the pari_init call.

Index

Some Word refers to PARI-GP concepts
SomeWord is a PARI-GP keyword.
SomeWord is a generic index entry.
A
absi_cmp 53
absi_equal 53
absr_cmp 53
addhelp 36
addii 9
addir 9
addis 9
addll 47
addllx 47
addmul 48
addri 9
addrr 9
addumului 57
affii 49
affir 49
affiz 49
affrr 50
affsi 49
affsr 49
affsz 49
affui 50
affur 50
assignment 18
avma 10, 19
B
bern 87
bezout 32, 57
bezoutpol 79
bfffo 47
BIGDEFAULTPREC 9
BIGINT 24, 26
BIL 39
BITS_IN_LONG 9, 10, 39
bitvec_alloc 82
bitvec_clear 83
bitvec_set 82
bitvec_shorten 82
bitvec_test 82
bit_accuracy 10, 41
bit_accuracy_mul(x,y) 41
brute 29, 31

C

cbezout 57
ceilr 51
ceil_safe 51
centermod 79
centermodii 54
centermod_i 79
cgcd 57
cgetc $17,44,49$
cgetg $16,17,44$
cgeti $17,44,49$
cgetp 44
cgetr 17, 44, 49
cgiv 11, 45
character string 26
clone , 19
cmpii 52
cmpir 52
cmpis 52
cmpri 52
cmprr 53
cmprs 53
cmpsi 52
cmpsr 52
column vector 25
col_ei 75
complex number 23
compo 43
constant_term 24, 44
const_col 81
const_vec 82
const_vecsmall 82
content 79
conversions 20
copy 19
copyifstack 47
creation 16
ctofp 73
D
dbltor 20, 73
debug 31
debugging 31
DEBUGLEVEL 31, 32
DEBUGMEM 31
debugmem 31
DEFAULTPREC 9
definite binary quadratic form 25
degpol 24, 42
fetch_named_var 27
degree 24
fetch_user_var 27
delete_var 28
fetch_var 27
destruction 11
diffptr 8, 87
Flm_deplin 69Flc_to_ZC71
diviiexact 55 69
diviiround 51
Flm_gauss 69
divis_rem 56
Flm_indexrank 69
diviuexact 55
Flm_inv
diviu_rem 56
Flm_ker 69
divll 48

Flm_ker_sp 69
divsi_rem 56
divss_rem 56
dvdii 55
dvdiiz 55
dvdisz 55
dvdiuz 55
dvmdii 55
dvmdiiz 55
dvmdis 55
dvmdsi 55
dvmdss 55
E
effective length 21
entree 35
equalii 53
equalis 53
equaliu 53
equalsi 53
equalui 53
errfile 30
error 30
evalexpo 42
evallg 42
evallgefint 42
evallgeflist 43
evalprecp 42
evalsigne 42
evaltyp 42
evalvalp 42
evalvarn 42
expi 41
expo 22, 25, 41
F
factoru 57
factoru_pow 57
Flm_mul 69
Flm_to_FlxV 72
Flm_to_FlxX 72
Flm_to_ZM 71
floorr 51
Flv_polint 68
Flv_roots_to_pol 68
Flv_to_Flx 72
Flv_to_ZV 71
FlxC_to_ZXC 71
FlxM_to_ZXM 71
FlxqM_ker 69
FlxqV_roots_to_pol 68
FlxqXQ_pow 69
FlxqXV_prod 68
FlxqX_divrem 68
FlxqX_Flxq_mul 68
FlxqX_mul 68
FlxqX_normalize 68
FlxqX_red 68
FlxqX_sqr 68
Flxq_inv 68
Flxq_invsafe 68
Flxq_mul 68
Flxq_pow 68
Flxq_powers 68
Flxq_sqr 68
FlxV_Flc_mul 68
FlxV_to_Flm 72
FlxX_add 68
FlxX_renormalize 68
FlxX_shift 68
FlxX_to_Flm 72
FlxX_to_ZXX 71
FlxYqQ_pow 68
Flx_add 67
Flx_deriv 67
Flx_div 67
Flx_divrem 67
FpM_indexrank 66
Flx_div_by_X_x 68
Flx_eval 68
Flx_extgcd 67
Flx_extresultant 67
Flx_Fl_mul 67
Flx_gcd 67
Flx_gcd_i 67
Flx_invmontgomery 67
Flx_is_squarefree 68
Flx_mul 67
Flx_nbfact 68
Flx_nbroots 68
Flx_neg 67
Flx_neg_inplace 67
Flx_normalize 67
Flx_pow 67
Flx_recip 67
Flx_red 67
Flx_rem 67
Flx_rem_montgomery 67
Flx_renormalize 67
Flx_resultant 67
Flx_shift 67
Flx_sqr 67
Flx_sub 67
Flx_to_Flv 72
Flx_to_ZX 71
Flx_to_ZX_inplace 71
Flx_valuation 67
Fl_add 48
Fl_center 48
Fl_div 48
Fl_inv 48
Fl_mul 48
Fl_neg 48
Fl_pow 48
Fl_sqrt 48
Fl_sub 48
Fl_to_Flx 72
format 29, 31
FpC_FpV_mul 66
FpC_Fp_mul 66
FpC_red 65
FpC_to_mod 65
FpM_deplin 66
FpM_FpC_mul 66
FpM_gauss 66
FpM_image 66
FpM_intersect 66
FpM_inv 66
FpM_invimage 66
FpM_ker 66
FpM_mul 66
FpM_rank 66
FpM_red 65
FpM_suppl 66
FpM_to_mod 65
fprintferr 31, 36
FpV_FpC_mul 66
FpV_polint 62
FpV_red 65
FpV_roots_to_pol 62
FpV_to_mod 65
FpXQXV_prod 64
FpXQX_divrem 64
FpXQX_extgcd 64
FpXQX_gcd 64
FpXQX_mul 64
FpXQX_red 64
FpXQX_sqr 64
FpXQYQ_pow 64
FpXQ_charpoly 64
FpXQ_div 63
FpXQ_ffisom_inv 65
FpXQ_inv 63
FpXQ_invsafe 63
FpXQ_minpoly 64
FpXQ_mul 63
FpXQ_pow 63
FpXQ_powers 64
FpXQ_sqr 63
FpXV_FpC_mul 62
FpXV_prod 62
FpXV_red 61
FpXX_add 64
FpXX_red 64
FpXX_renormalize 64
FpX_add 61
FpX_center 61
FpX_chinese_coprime 62
FpX_degfact 62
FpX_div 61
FpX_divrem 61
FpX_div_by_X_x 61
FpX_eval 62
FpX_extgcd 61
FpX_factor 62
FqX_nbfact 65
FpX_factorff_irred 65
FpX_ffintersect 65
FpX_ffisom 65
FpX_FpXQV_compo 64
FpX_FpXQ_compo 64
FpX_Fp_add 61
FpX_Fp_mul 62
FpX_gcd 61
FpX_is_irred 62
FpX_is_squarefree 62
FpX_is_totally_split 62
FpX_mul 61
FpX_nbfact 62
FpX_nbroots 62
FpX_neg 61
FpX_normalize 61
FpX_rand 62
FpX_red 61
FpX_rem 61
FpX_renormalize 61
FpX_rescale 62
FpX_resultant 62
FpX_roots 62
FpX_sqr 61
FpX_sub 61
FpX_to_mod 61
FpY_FpXY_resultant 62
Fp_inv 56
Fp_invsafe 56
Fp_pow 56
Fp_powu 56
Fp_sqrt 57
Fp_sqrtn 57
FqC_to_FlxC 71
FqM_gauss 66
FqM_ker 66
FqM_suppl 66
FqM_to_FlxM 71
FqV_red 63
FqV_roots_to_pol 64
FqV_to_FlxV 71
FqX_div 64
FqX_divrem 64
FqX_factor 65
FqX_Fq_mul 64
FqX_gcd 64
FqX_is_squarefree 65
FqX_mul 64
FqX_nbroots 65
FqX_normalize 64
FqX_red 63
FqX_rem 64
FqX_sqr 64
Fq_add 63
Fq_inv 63
Fq_invsafe 63
Fq_mul 63
Fq_neg 63
Fq_neg_inv 63
Fq_pow 63
Fq_red 63
Fq_sub 63
fractor 73
functions_basic 40
functions_fp 40
functions_highlevel 40
G
gaddgs 9
gaddgsz 9
gaddsg 9
gaddsgz 9
gaddz 9, 19
gadd[z] 49
gaffect 18, 19, 72
gaffsg 19, 72
garbage collecting 10
gbezout 79
gcdii 57
gceil 76
gclone 19, 46
gcmp 77
gcmp0 77
gcmp1 77
gcmpgs 78
gcmpsg 78
gcmp_1 77
gcoeff 8, 44, 80
gcopy 19, 46
gcvtoi 77
gcvtop 73
gdeuc 79
gdiventgs[z] 78
gdiventres 78
gdiventsg[z] 78
gdivent[z] 78
gdivexact 78
gdivmod 78
gdivround 79
gdvd 78
gel 8, 44, 80
GEN 7
gener_Fl 48
gener_Fl_local 48
gener_Fp 57
gener_Fp_local 57
GENtostr 30
gen_0 7
gen_1 7
gen_2 7
gen_m1 7
gequal 78
gequalgs 78
gequalsg 78
gerepile $11,13,18,19,45$
gerepileall 15
gerepileall $12,13,16,45$
gerepileallsp 45
gerepilecoeffs 45
gerepilecoeffssp 45
gerepilecopy $12,16,45$
gerepilemany 13, 45
gerepilemanysp 13, 45
gerepileupto $12,13,18,19,45,75,80$
gerepileuptoint 45
gerepileuptoleaf 45
getheap 47
geuler 87
gexpo 23, 41
gfloor 76
gfrac 76
ggcd 79
ggval 77
ghalf 7
gi 7
ginv 78
ginvmod 79
glcm 79
gmael 8, 44
gmael1 8
gmael2 44
gmael3 44
gmael4 44
gmael5 44
gmodgs [z] 78
gmodsg [z] 78
gmodulgs 73
gmodulo 73
gmodulss 73
$\operatorname{gmod}[z]$ 78
gmul2n[z] 77
gpi 87
gpow 80
gpowgs 80
gprec 73
gprecision 42
gprec_w 73
gprec_wtrunc 73
gp_read_file 29
gp_read_str 27, 28
gp_read_stream 28
gred_frac2 23
gred_rfac2 25
greffe 74
grem 79
grndtoi 76
ground 76
gshift[z] 77
gsigne 23, 41
gsqr 78
GSTR 26
gsubst 80
gtocol 74
gtodouble 20, 73
gtofp 19, 73
gtolong 20, 73
gtomat 74
gtopoly 73
gtopolyrev 73
gtoser 74
gtovec 74
gtovecsmall 74
gtrans 80
gtrunc 76
gunclone 20, 46
gval 77
gvar 24, 26, 42

H

heap 8
heap 87
hexadecimal tree 30
icopy 50
lcmii 57
icopyifstack 47indefinite binary quadratic form25
infile30
init_Fq 65input28
install 29, 31, 36int2n49
int2u 49integer21
int_LSW 21
int_MSW 21
int_nextW 22
int_normalize 22
int_precW 21
int_W 21
invmod 56
isclone 20
iscomplex 78
isexactzero 77
isinexact 77
isint 77
ismonome 78
isonstack 46
isprime 52
issmall 77
is_const_t 43
is_extscalar_t 43
is_intreal_t 43
is_matvec_t 43
is_rational_t 43
is_recursive_t 43
is_scalar_t 43
is_vec_t 43
itor 50
itos 20, 50
itos_or_0 50
itou 50
itou_or_0 50
K
krois 57
Kronecker symbol 48, 57
kronecker 57
krosi 57
kross 57
krouu 48
leading_term 24, 44
Legendre symbol 48, 57
lexcmp 78
lg 20, 41
lgefint 21, 41
lgeflist 25
library mode 7
Linux 36
list 25
LONG_IS_64BIT 9
M
matbrute 29
matid_Flm 72
matrix 25
maxprime 7, 87
maxss 57
MAXVARN 7, 27
MEDDEFAULTPREC 9
minss 58
mkcol 76
mkcolcopy 75
mkcoln 18, 76
mkcomplex 76
mkfrac 76
mkintmod 76
mkintn $17,18,50,76$
mkmat 76
mkmatcopy 75
mkpolmod 76
mkpoln 18, 76
mkrfrac 76
mkvec 76
mkvec2 76
mkvec2copy 75
mkvec2s 75
mkvec3 76
mkvec3s 75
mkvec4 76
mkveccopy 75
mkvecn 18, 76
mkvecs 75
mkvecsmall 75
mkvecsmall2 75
mkvecsmall3 75
mod2 22
$\bmod 4$ 22
mod64 22
mpadd 9
mpaff 49
mpbern 87
mpceil[z] 51
mpcmp 52
mpcopy 50
mpeuler 87
mpfloor[z] 51
mpodd 22
mppi 87
mpround [z] 51
mpshift[z] 51
mptrunc[z] 51
msgtimer 31
msgTIMER 32
muliu 54
mulll 48
mului 54
muluu 54
N
name_var 27
nbits2nlong 41
nbits2prec 41
nchar2nlong 41
ndec2nlong 40
ndec2prec 40
new_chunk 44
NEXT_PRIME_VIADIFF 88
NEXT_PRIME_VIADIFF_CHECK (p, ptr) 88
normalize 74
normalizepol 24, 74
O
outbeaut 30
outbrute 29
outfile 30
outmat 29
output 29
output 29, 31
P
p-adic number 23
pariErr 30
pariflush 36
pariOut 30
pariputc 36
pariputs 36
pari_add_function 40
pari_add_module 40
pari_close 39
pari_close_opts 39
pari_err 30, 31
pari_init $7,8,39,87$
pari_init_opts 39
pari_rand31 56
pari_sig_init 39
pari_sp 10
pari_timer 32
pari_warn 31
parser code 34, 36
poldivrem 79
polmod 24
polvaluation 77
polvaluation_inexact 77
polvar 26
polx_Flx 72
polx_zx 72
polynomial 24
pol_1 7, 26
pol_x 7, 26
power series 25
powgi 80
powiu 58
powuu 58
prec2ndec 40
precision 42
precp 23, 41
preferences file 36
primer1 88
primitive root 48
primitive_part 79
primpart 79
printf 30
Q
QM_inv 60
quadpoly 24
quadratic number 24
quadtoc 73
QXQ_inv 69
R
randomi 56
random_bits 56
RgX_neg 69
rational function 25
rational number 23
rcopy 50
rdivii 58
rdivis 58
rdivsi 58
rdivss 58
read 29
real number 22
real2n 49
real_0 49
real_0_bit 49
real_1 49
real_m1 49
RgC_to_FpC 60
RgM_to_RgXV 74
RgM_to_RgXX 74
RgM_zc_mul 71
RgM_zm_mul 72
RgV_to_FpV 60
RgV_to_RgX 74
RgV_zc_mul 72
RgV_zm_mul 72
RgXQC_red 70
RgXQV_red 70
RgXQX_div 70
RgXQX_divrem 70
RgXQX_mul 70
RgXQX_red 70
RgXQX_rem 70
RgXQX_RgXQ_mul 70
RgXQX_sqr 70
RgXQ_mul 70
RgXQ_norm 70
RgXQ_powers 70
RgXQ_sqr 70
RgXV_to_RgM 74
RgXV_unscale 70
RgXX_to_RgM 74
RgXY_swap 74
RgX_add 69
RgX_div 69
RgX_divrem 69
RgX_div_by_X_x 70
RgX_extgcd 70
RgX_mul 69
RgX_mulspec 69
RgX_mulXn 70
RgX_rem 70
RgX_rescale 70
RgX_Rg_div 70
RgX_Rg_mul 70
RgX_shift 70
RgX_shift_shallow 70
RgX_sqr 69
RgX_sqrspec 69
RgX_sub 69
RgX_to_FpX 60
RgX_to_FpXQX 63
RgX_to_FqX 63
RgX_to_RgV 74
RgX_unscale 70
Rg_to_Fl 66
Rg_to_Fp 60
Rg_to_FpXQ 63
roundr 51
row vector 25
row 81
rowpermute 81
rowslice 81
rowslicepermute 81
row_i 81
rtodbl 20, 72
rtor 50
S
scalarpol 75
scalarser 75
sdivsi 56
sdivsi_rem 56
sdivss_rem 55
setexpo 23, 25, 43
setisclone 20
setlg 20, 43
setlgefint 21, 43
setlgeflist 25
setprecp 23, 43
setsigne 21, 24, 25, 43
settyp 20, 43
setvalp 23, 25, 43
setvarn $18,24,25,43,76$
shallowconcat 80, 81
shallowcopy 19, 80
shallowtrans 80
shifti 51
shiftr 51
t_COMPLEX 23
$21,24,25,41$41
42
sizedigit
smodis 54
smodsi 54
smodss 54
sor 29
sqri 54
sqrti 56
sqrtremi 56
stack 7, 10
stack 87
stackdummy 46
stackmalloc 44
stack_lim 16
stderr 30
stdout 30
stoi 20, 50
stor 50
string context 34
stroi 49
stror 49
subll 47
subllx 47
subres 79
switchin 30
switchout 30
T
taille 47
talker 30
texe 30
texprint 30
timer 31
TIMER 32
timer2 31
TIMERstart 32
traverseheap 47
truecoeff 43
truedivii 54
truedivis 54
truedvmdii 56
truncr 51
typ 20, 41
type number 20
type 8
type_name 80
t_COL 25
t_FRAC 23
t_INT 21
t_INTMOD 23
t_LIST 25
t_MAT 25
t_PADIC 23
t_POL 24
t_POLMOD 24
t_QFI 25
t_QFR 25
t_QUAD 24
t_REAL 22
t_RFRAC 25
t_SER 25
t_STR 26
t_VEC 25
t_VECSMALL 25
U
u2toi 18, 50
uisprime 52
uissquarerem 52
ulong 39
umodiu 54
umodui 54
universal object 87
unsetisclone 21
upowuu 58
utoi 50
utoineg 50
utoipos 50
utor 50
u_lval 52
u_lvalrem 51
u_pvalrem 51
V
vali 51
valp 23, 25, 41
vals 51
varargs 17
varentries 26
variable (priority) 26
variable (temporary) 27
variable (user) 27
variable number 24, 26, 34
variable 7
varn $24,25,26,41$
zero_zx 72
26
varncmp
80
vconcat
vecpermute 81
vecslice 81
vecslicepermute 81
vecsmall_append 82
vecsmall_coincidence 82
vecsmall_concat 82
vecsmall_copy 82
vecsmall_indexsort 82
vecsmall_lengthen 82
vecsmall_lexcmp 82
vecsmall_pack 82
vecsmall_prefixcmp 82
vecsmall_prepend 82
vecsmall_shorten 82
vecsmall_sort 82
vecsmall_to_col 82
vecsmall_to_vec 82
vecsmall_uniq 82
vecvecsmall_indexsort 83
vecvecsmall_search 83
vecvecsmall_sort 83
vec_ei 75
vec_is1to1 82
vec_isconst 82
vec_lengthen 82
vec_shorten 82
vec_to_vecsmall 82
voir 30
W
warner 31
warnfile 31
warnmem 31
warnprec 31
Z
zc_to_ZC 71
zerocol 75
zeromat 75
zeromatcopy 75
zeropadic 75
zeropol 75
zeroser 75
ZM_inv 60
ZM_to_Flm 71
ZM_to_zm 71
zm_to_ZM 71
zm_to_zxV 72
ZM_zc_mul 72
ZM_zm_mul 72
ZV_add 59
ZV_sub 59
ZV_to_Flv 71
ZV_to_nv 71
ZV_to_zv 71
zv_to_ZV 71
zv_to_zx 72
ZXV_to_FlxV 71
ZXXV_to_FlxXV 71
ZXX_to_FlxX 71
ZX_add 59
ZX_caract 60
ZX_disc 60
ZX_is_squarefree 60
ZX_mul 60
ZX_neg 59
ZX_QX_resultant 60
ZX_renormalize 59
ZX_resultant 60
ZX_sqr 60
ZX_sub 59
ZX_to_Flx 71
zx_to_zv 72
zx_to_ZX 71
ZX_valuation 77
ZX_Z_add 59
ZX_Z_mul 60
ZY_ZXY_resultant 60
ZY_ZXY_rnfequation 60
Z_factor 52
Z_issquare 52
Z_issquarefree 52
Z_issquarerem 52
Z_lval 51
Z_lvalrem 51
Z_pval 51
Z_pvalrem 51
Z_to_Flx 72
zerovec 75
zero_Flx 72
_evalexpo 42
_evallg 42
_evalvalp 42

[^0]: * The first time a given identifier is read by the GP parser (and is not immediately interpreted as a function) a new variable is created, and it is assigned a strictly lower priority than any variable in use at this point. On startup, before any user input has taken place, ' x ' is defined in this way and has initially maximal priority (and variable number 0).

