Developer’s Guide

to

the PARI library

(version 2.5.5)
The PARI Group

Institut de Mathématiques de Bordeaux, UMR 5251 du CNRS.
Université Bordeaux 1, 351 Cours de la Libération
F-33405 TALENCE Cedex, FRANCE

e-mail: pari@math.u-bordeaux.fr

Home Page:
http://pari.math.u-bordeaux.fr/

Copyright (© 2000-2011 The PARI Group

Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions, or translations, of this manual
under the conditions for verbatim copying, provided also that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

PARI/GP is Copyright © 2000-2011 The PARI Group

PARI/GP is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation. It is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY WHATSOEVER.

Table of Contents

Chapter 1: Work in Progress« v v v v v v i v v i v e o et o e oo s ot s ot e oo o 5
1.1 The type t_CLOSURE et e e e e e e e e e e 5
1.1.1 Debugging information in closure L 0L 0L oL 0L L oL 6

1.2 The type t_LIST o o e e e e e e 6
1.3 Otherwise undocumented global variables 7
1.4 Finite fields and black-box groups L 7
1.5 Public functions useless outside of GP context 8
1.5.1 Output oo oo e e e s s s 9

1.5.2 Input L Lo Lo s e s e s 9

1.5.3 Control flow statements L L L e e e 9

1.5.4 Tterators L. L e e e e e e e e 9

1.5.5 Function related to the GP parser L. 0L e e 10

1.5.6 Miscellaneous L L e e e e s e s s e 10
Chapter 2: Regression tests, benches., 11

Index . . o L 12

Chapter 1:
Work in progress

This draft documents private internal functions and structures for hard-core PARI developers.
Anything in here is liable to change on short notice. Don’t use anything in the present document,
unless you are implementing new features for the PARI library. Try to fix the interfaces before
using them, or document them in a better way. If you find an undocumented hack somewhere, add
it here.

Hopefully, this will eventually document everything that we buried in paripriv.h or even
more private header files like anal.h. Possibly, even implementation choices ! Way to go.

1.1 The type t_CLOSURE.

This type holds closures and functions in compiled form, so is deeply linked to the internals
of the GP compiler and evaluator. The length of this type can be 6, 7 or 8 depending whether the
object is an “inline closure”, a “function” or a “true closure”.

A function is a regular GP function. The GP input line is treated as a function of arity 0.
A true closure is a GP function defined in a non-empty lexical context.

An inline closure is a closure that appears in the code without the preceding -> token. They
are generally associated to the prototype code ’E’ and 'I’. Inline closures can only exist as data of
other closures, see below.

In the following example,

f (a=Euler)=x->sin(x+a);
g=f (Pi/2);
plot(x=0,2%Pi,g(x))

f is a function, g is a true closure and both Euler and g(x) are inline closures.

This type has a second codeword z[1], which is the arity of the function or closure. This is
zero for inline closures.

e z[2] points to a t_STR which hold the opcodes.
e z[3] points to a t_VECSMALL which hold the operands of the opcodes.

e z[4] points to a t_VEC which hold the data referenced by the pushgen opcodes, which can
be t_CLOSURE, and in particular inline closures.

e z[5] points to a t_VEC which hold extra data needed for error-reporting and debugging. See
Section 1.1.1 for details.

Additionally, for functions and true closures,

e z[6] usually points to a t_VEC with two components which are t_STR. The first one displays
the list of arguments of the closure without the enclosing parentheses, the second one the GP code
of the function at the right of the -> token. They are used to display the closure, either in implicit

5

or explicit form. However for closures that were not generated from GP code, z[6] can point to a
t_STR instead.

Additionally, for true closure,

e z[7] points to a t_VEC which holds the values of all lexical variables defined in the scope
the closure was defined.

1.1.1 Debugging information in closure.

Every t_CLOSURE object z has a component dbg=z[5] which which hold extra data needed for
error-reporting and debugging. The object dbg is a t_VEC with 3 components:

dbg[1] is a t_VECSMALL of the same length than z[3]. For each opcode, it holds the position
of the corresponding GP source code in the strings stored in z[6] for function or true closures,
positive indices referring to the second strings, and negative indices referring to the first strings,
the last element being indexed as —1. For inline closures, the string of the parent function or true
closure is used instead.

dbg[2] is a t_VECSMALL that lists opcodes index where new lexical local variables are created.
The value 0 denotes the position before the first offset and variables created by the prototype code
7V7.

dbg[3] is a t_VEC of t_VECSMALLs that give the list of entreex* of the lexical local variables
created at a given index in dbg[2].

1.2 The type t_LIST.

This type needs to go through various hoops to support GP’s inconvenient memory model.
Don’t use t_LISTs in pure library mode, reimplement ordinary lists! This dynamic type is imple-
mented by a GEN of length 3: two codewords and a vector containing the actual entries. In a normal
setup (a finished list, ready to be used),

e the vector is malloc’ed, so that it can be realloc’ated without moving the parent GEN.

e all the entries are clones, possibly with cloned subcomponents; they must be deleted with
gunclone_deep, not gunclone.

The following macros are proper lvalues and access the components
long list_nmax(GEN L): current maximal number of elements. This grows as needed.

GEN list_data(GEN L): the elements. If v = list _data(L), then either v is NULL (empty list) or
1 = 1g(v) is defined, and the elements are v[1], ..., v[1-1].

In most gerepile scenarios, the list components are not inspected and a shallow copy of the
malloc’ed vector is made. The functions gclone, copy_bin_canon are exceptions, and make a full
copy of the list.

The main problem with lists is to avoid memory leaks; in the above setup, a statement like a
= List (1) would already leak memory, since List (1) allocates memory, which is cloned (second
allocation) when assigned to a; and the original list is lost. The solution we implemented is

e to create anonymous lists (from List, gtolist, concat or vecsort) entirely on the stack,
not as described above, and to set 1list_nmax to 0. Such a list is not yet proper and trying to
append elements to it fails:

? listput(List(),1)
*** variable name expected: listput(List(),1)
Kook N

If we had been malloc’ing memory for the List ([1,2,3]), it would have leaked already.

e as soon as a list is assigned to a variable (or a component thereof) by the GP evaluator, the
assigned list is converted to the proper format (with 1ist nmax set) previously described.

GEN listcopy(GEN L) return a full copy of the t_LIST L, allocated on the stack (hence 1ist_nmax
is 0). Shortcut for gcopy.

GEN mklistcopy(GEN x) returns a list with a single element z, allocated on the stack. Used to
implement most cases of gtolist (except vectors and lists).

A typical low-level construct:

long 1;
/* assume L is a t_LIST */

L = list_data(L); /* discard t_LIST wrapper */

1 =17 1g(): 1;

for (i = 1; i < 1; i++) output(gel(L, i));

for (i = 1; i < 1; i++) gel(L, i) = gclone(...);

1.3 Otherwise undocumented global variables.

PARI_SIGINT _block: set this to a non-zero value if you want to block the SIGINT signal in
a critical part of your code. We use it before calling malloc, free and such. (Because SIGINT is
non-fatal for us, and we don’t want to leave the system stack in an inconsistent state.)

PARI_SIGINT pending: if this is non-zero, then a SIGINT was blocked. Take action as appro-
priate.

1.4 Finite fields and black-box groups.

A black box group is defined by a bb_group struct, describing methods available to handle
group elements:

struct bb_group

{
GEN (*mul) (void*, GEN, GEN);
GEN (*pow) (void*, GEN, GEN);
GEN (*rand) (voidx*);
int (*cmp) (GEN, GEN);
int (*equall) (GEN);

};

mul (E,x,y) returns the product zy.
pow(E,x,n) returns =" (n integer, possibly negative or zero).

rand (E) returns a random element in the group.

7

cmp (x,y) implements a total ordering on the group elements (return value —1, 0 or 1).
equall(x) returns one if x is the neutral element in the group, and zero otherwise.

A group is thus described by a const bb_struct as above and auxiliary data typecast to
void*. The following functions operate on black-box groups:

GEN gen_Shanks_log(GEN x, GEN g, GEN N, void *E, const struct bb_group *grp)
Generic baby-step/giant-step algorithm (Shanks’s method). Assuming that g has order N,
compute an integer k such that g®* = 2. This requires O(v/N) group operations and uses an
auxiliary table containing O(v/N) group elements.

GEN gen_Pollard_log(GEN x, GEN g, GEN N, void *E, const struct bb_group *grp)
Generic Pollard rho algorithm. Assuming that g has order N, compute an integer k such that
g* = x. This requires O(v/N) group operations in average and O(1) storage.

GEN gen_plog(GEN x, GEN g, GEN N, void *E, const struct bb_group, GEN easy(voidx,
GEN, GEN, GEN)) Assuming that g has prime order N, compute an integer k such that ¢* = z,
using either gen_Shanks_log or gen Pollard_log.

If easy is not NULL, call easy(E,a,g,N) first and if the return value is not NULL, return it. For
instance this is used over F} to compute the discrete log of elements belonging to the prime field.

FIXME. More generally, one should compute the minimal polynomial of x and restrict to its field
of definition.

GEN gen_Shanks_sqrtn(GEN a, GEN n, GEN N, GEN *zetan, void *E, const struct
bb_group *grp) returns one solution of ™ = a in a black-box cyclic group of order N.
Return NULL if no solution exists. If zetan is not NULL it is set to an element of exact order n.

This function uses gen_plog for all prime divisors of ged(n, V).

GEN gen_PH_log(GEN a, GEN g, GEN N, void *E, const struct bb_group *grp, GEN

easy(void *E, GEN, GEN, GEN)) Generic Pohlig-Hellman algorithm. Assuming that ¢ has
order N, compute an integer k such that g* = x. This requires O(p'/?*¢) group operations, where
p is the largest prime divisor of N, and uses an auxiliary table containing O(,/p) group elements.

easy is as in gen_plog.

GEN gen_eltorder(GEN x, GEN N, void *E, const struct bb_group *grp) computes the or-
der of z. If NV is not NULL it is a multiple of the order, as a t_INT or a factorization matrix.

1.5 Public functions useless outside of GP context.

These functions implement GP functionality for which the C language or other libpari routines
provide a better equivalent; or which are so tied to the gp interpreter as to be virtually useless in
libpari. Some may be generated by gp2c. We document them here for completeness.

1.5.1 Output.

void printO(GEN g, long flag) internal function underlying the print GP function. Prints
the entries of the t_VEC g, one by one, without any separator; entries of type t_STR are printed
without enclosing quotes. flagis one of £_RAW, £_PRETTYMAT or f_TEX, using the current default
output context.

void out_printO(PariOUT *out, GEN g, long flag) as printO0, using output context out.
void print(GEN g) equivalent to printO(g, f_RAW), followed by a \n then an fflush.
void print1(GEN g) as above, without the \n. Use pari_printf or output instead.

void printtex(GEN g) equivalent to printO(g, t_TEX), followed by a \n then an fflush. Use
GENtoTeXstr and pari_printf instead.

void writeO(const char *s, GEN g)

void writel(const char *s, GEN g) use fprintf

void writetex(const char *s, GEN g) use GENtoTeXstr and fprintf.
void printfO(GEN fmt, GEN args) use pari_printf.

GEN Strprintf(GEN fmt, GEN args) use pari_sprintf.

1.5.2 Input.
gp’s input is read from the stream pari_infile, which is changed using
FILEx switchin(const char *name)
Note that this function is quite complicated, maintaining stacks of files to allow smooth error
recovery and gp interaction. You will be better off using gp_read_file.
1.5.3 Control flow statements.

GEN breakO(long n). Use the C control statement break. Since break(2) is invalid in C, either
rework your code or use goto.

GEN nextO(long n). Use the C control statement continue. Since continue(2) is invalid in C,
either rework your code or use goto.

GEN returnO(GEN x). Use return!

void errorO(GEN g). Use pari_err(user,)

void warningO(GEN g). Use pari_warn(user,)

1.5.4 Iterators. GEN applyO(GEN f, GEN A) gp wrapper calling genapply, where f is a
t_CLOSURE, applied to A. Use genapply latter or a standard C loop.

GEN selectO(GEN f, GEN A) gp wrapper calling genselect, where f is a t_CLOSURE selecting
from A. Use genselect or a standard C loop.

1.5.5 Function related to the GP parser.

The GP parser can generate an opcode saving the current lexical context (pairs made of a
lexical variable name and its value) in a GEN, called pack in the sequel. These can be used from
debuggers (e.g. gp’s break loop) to track values of lexical variable. Indeed, lexical variables have
disappeared from the compiled code, only their values in a given scope exist (on some value stack).
Provided the parser generated the proper opcode, there remains a trace of lexical variable names
and everything can still be unravelled.

GEN localvars_read_str(const char *s, GEN pack) evaluate the string s in the lexical context
given by pack. Used by geval_gp in GP.

long localvars_find(GEN pack, entree *ep) does pack contain a pair whose variable corre-
sponds to ep ? If so, where is the corresponding value ? (returns an offset on the value stack).
1.5.6 Miscellaneous.

char* os_getenv(const char *s) either calls getenv, or directly return NULL if the 1ibc does
not provide it. Use getenv.

sighandler_t os_signal(int sig, pari_sighandler_t fun) after a
typedef void (*pari_sighandler_t) (int);

(private type, not exported). Installs signal handler fun for signal sig, using sigaction with flag
SA_NODEFER. If sigaction is not available use signal. If even the latter is not available, just return
SIG_IGN. Use sigaction.

10

Chapter 2:
Regression tests, benches

This chapter documents how to write an automated test module, say fun, so that make test-fun
executes the statements in the fun module and times them, compares the output to a template,
and prints an error message if they do not match.

e Pick a new name for your test, say fun, and write down a GP script named fun. Make sure
it produces some useful output and tests adequately a set of routines.

e The script should not be too long: one minute runs should be enough. Try to break your
script into independent easily reproducible tests, this way regressions are easier to debug; e.g.
include setrand(1) statement before a randomized computation. The expected output may be
different on 32-bit and 64-bit machines but should otherwise be platform-independent. If possible,
the output shouldn’t even depend on sizeof (long); using a realprecision that exists on both
32-bit and 64-bit architectures, e.g. \p 38 is a good first step.

e Dump your script into src/test/in/ and run Configure.

e make test-fun now runs the new test, producing a [BUG] error message and a .dif file in
the relevant object directory Oxxx. In fact, we compared the output to a non-existing template, so
this must fail.

e Go to the relevant Oxxx directory, then
patch -p0 < fun.dif
generates a template output in the right place src/test/32/fun, for instance on a 32-bit machine.

o If different output is expected on 32-bit and 64-bit machines, run the test on a 64-bit machine
and patch again, thereby producing src/test/64/fun. If, on the contrary, the output must be the
same, make sure the output template land in the src/test/32/ directory (which provides a default
template when the 64-bit output file is missing); in particular move the file from src/test/64/ to
src/test/32/ if the test was run on a 64-bit machine.

e You can now re-run the test to check for regressions: no [BUG] is expected this time ! Of
course you can at any time add some checks, and iterate the test / patch phases. In particular,
each time a bug in the fun module is fixed, it is a good idea to add a minimal test case to the test
suite.

e By default, your new test is now included in make test-all. If it is particularly annoying,
e.g. opens tons of graphical windows as make test-ploth or just much longer than the recom-
mended minute, you may edit config/get_tests and add the fun test to the list of excluded tests,
in the test_extra_out variable.

e The get_tests script also defines the recipe for make bench timings, via the variable
test_basic. A test is included as fun or fun_n, where n is an integer < 1000; the latter means
that the timing is weighted by a factor n/1000. (This was introduced a long time ago, when the
nfields bench was so much slower than the others that it hid slowdowns elsewhere.)

11

SomeWord refers to PARI-GP concepts.
SomeWord is a PARI-GP keyword.
SomeWord is a generic index entry.

bb_group
break0

closure

errorQ

f_RAW

genapply
genselect
GENtoTeXstr
gen_eltorder
gen_PH_log
gen_plog
gen_Pollard_log
gen_Shanks_log
gen_Shanks_sqrtn
getenv
geval_gp
gp_read_file
gunclone
gunclone_deep

list
listcopy

list_data
list_nmax
localvars_find
localvars_read_str

Index

12

M
mklistcopy 7
N
nextO 9
(0)
os_getenv 10
os_signal 10
outputo 8
out_printO 8
P
pari_infile 9
pari_printf 8,9
PARI_SIGINT_block 7
PARI_SIGINT_pending 7
pari_sprintf 9
print 8
print0 8
printlo 8
printfOo 9
printtex 8
R
returnO 9
S
SA_NODEFER 10
selectO 9
sigaction 10
signal 10
SIG_IGN 10
Strprintfo 9
switchin 0. 9
T
t_CLOSURE)
t_LIST 6
%%
warningO 9
writeO 9
writel 9
writetexo 9

	1 Work in progress
	1.1 The type {�am 	tfam 	entt t_CLOSURE}
	1.2 The type {�am 	tfam 	entt t_LIST}
	1.3 Otherwise undocumented global variables
	1.4 Finite fields and black-box groups
	1.5 Public functions useless outside of GP context

	2 Regression tests, benches
	Index

