Georgi Guninski on Tue, 26 Aug 2025 12:39:33 +0200 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
OT Conjecture about harmonic numbers and Riemann hypothesis |
Apologies for offtopic. With latex formatting: https://mathoverflow.net/q/499603/12481 We found conjecture about harmonic numbers related to RH. Slightly rephrasing [wikipedia on RH](https://en.wikipedia.org/wiki/Riemann_hypothesis#Growth_of_arithmetic_functions): Let $\sigma(n)$ denote the sum of divisors on $n$ and $H_n$ denote the harmonic numbers. Define $\Delta(n)= H_n+\log{(H_n)} e^{H_n}-\sigma(n)$. $\lfloor \Delta(n) \rfloor$[is OEIS A057641](https://oeis.org/A057641) RH is equivalent to $\Delta(n)>0$ for all integers $n>1$ proved by by Jeffrey Lagarias in 2002. **joro's conjecture about harmonic numbers** Let $a_1,a_2$ be integers satsifying $a_1>1,a_2>1,(a_1,a_2) \ne (3,4), (a_1,a_2) \ne (4,3)$. We have $\Delta(a_1 a_2) > \Delta(a_1)$ or $\Delta(a_1 a_2)>\Delta(a_2)$ >Q1 Is the conjecture true? >Q2 In case Q1 is hopeless, can we get lower bound for the smallest counterexamples by fixing $a_1$ and let $a_2$ vary? It holds for $ 1 < a_1,a_2 < 10^4$, but computation is slow. We compute $H_n$ as `mpmath.polygamma(0,n+1)+mpmath.euler` ``` import mpmath def delta2(n): h=mpmath.polygamma(0,n+1)+mpmath.euler #harmonic number H_n T=h+mpmath.log(h)*mpmath.exp(h)-sigma(n) return T def delta1main(L=10**2,pre=20): """ Author: Georgi Guninski Mon Aug 25 02:38:30 PM UTC 2025 L=10^3 Wall time: 1min 32s L=10^4 Wall time: 2h 30min """ import mpmath mpmath.mp.dps=pre mpmath.mp.pretty=True for a1 in range(2,L): for a2 in range(2,L): a3=a1*a2 d1,d2,d3=[delta2(i) for i in (a1,a2,a3)] if not (d3>d1 or d3>d2): print(a1,a2) ```