Watson Ladd on Tue, 26 Aug 2025 12:55:44 +0200 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: OT Conjecture about harmonic numbers and Riemann hypothesis |
Apologies for offtopic.
With latex formatting: https://mathoverflow.net/q/499603/12481
We found conjecture about harmonic numbers related to RH.
Slightly rephrasing [wikipedia on
RH](https://en.wikipedia.org/wiki/Riemann_hypothesis#Growth_of_arithmetic_functions):
Let $\sigma(n)$ denote the sum of divisors on $n$ and $H_n$ denote the
harmonic numbers.
Define $\Delta(n)= H_n+\log{(H_n)} e^{H_n}-\sigma(n)$.
$\lfloor \Delta(n) \rfloor$[is OEIS A057641](https://oeis.org/A057641)
RH is equivalent to $\Delta(n)>0$ for all integers $n>1$ proved by by
Jeffrey Lagarias in 2002.
**joro's conjecture about harmonic numbers** Let $a_1,a_2$ be integers
satsifying $a_1>1,a_2>1,(a_1,a_2) \ne (3,4), (a_1,a_2) \ne (4,3)$.
We have $\Delta(a_1 a_2) > \Delta(a_1)$ or $\Delta(a_1 a_2)>\Delta(a_2)$
>Q1 Is the conjecture true?
>Q2 In case Q1 is hopeless, can we get lower bound for the smallest counterexamples by fixing $a_1$ and let $a_2$ vary?
It holds for $ 1 < a_1,a_2 < 10^4$, but computation is slow.
We compute $H_n$ as `mpmath.polygamma(0,n+1)+mpmath.euler`
```
import mpmath
def delta2(n):
h=mpmath.polygamma(0,n+1)+mpmath.euler #harmonic number H_n
T=h+mpmath.log(h)*mpmath.exp(h)-sigma(n)
return T
def delta1main(L=10**2,pre=20):
"""
Author: Georgi Guninski Mon Aug 25 02:38:30 PM UTC 2025
L=10^3 Wall time: 1min 32s
L=10^4 Wall time: 2h 30min
"""
import mpmath
mpmath.mp.dps=pre
mpmath.mp.pretty=True
for a1 in range(2,L):
for a2 in range(2,L):
a3=a1*a2
d1,d2,d3=[delta2(i) for i in (a1,a2,a3)]
if not (d3>d1 or d3>d2): print(a1,a2)
```