Bill Allombert on Wed, 04 Jun 2025 20:20:07 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: finding primes modulo which x^m mod f(x) has a prescribed result
|
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Re: finding primes modulo which x^m mod f(x) has a prescribed result
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Wed, 4 Jun 2025 20:19:59 +0200
- Delivery-date: Wed, 04 Jun 2025 20:20:08 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/simple; d=math.u-bordeaux.fr; s=2022; t=1749061204; bh=+h4x3CIbYp8Od66Ggq4p8kR8GXUQIeNpG5f0QvbA+8A=; h=Date:From:To:Subject:References:In-Reply-To:From; b=YOzilQKouffXuQDiFZUsBoJpllPeEseJP/kxo0B6bIajFHubkhHvq7R5Ngs3hUvoH 3EPLEze4SlYfCrDYEsfpP30Wi68GJGSSCocEyaSf0grhsXgCTb+8lQigrHttZ5EYKy WiQ/jAPA7bmBJIZ3TBS/kSccYFX1NwcWHE5lnpeKu07AZiUXBoCPnbFz127blvtfPc aOZOJ2NoH/cmeGR/kj4+BMcSikcmsC3yNtHka8DT9J+3OuqQrmixOOBt3RrpJ59ioh hveVGqGaFff69qmkEOIXiGQc4TZrgDQHS+jIWQbJqAmdAZAv5uYde6vWcngdlUE70U itzwMe75pvWoUoA0vkXExtAIC7b77HEaf15nPjWWmGkS3Kpr3h+HSL2sVas0wJtGX3 K+N9q7dQ9lnZvhSqv5nO7o7se0latRddRL8eW5BhNzosAOlQjsmIdwI39vuG+yMaTt AKR0AWj+Ot3gci4ZLbXVt9NKyxZVygxXgpjMnEgPAhhLHFhYtA6w60Pyse2zeKr8Gl u/bWwFlXXGuyqQVrXffowOiSnmJofx19i8AwPuZ/cUEW879eY9Gxj7vuyXA3xtpGC/ BMaVXL845qnvOBSgRRo3zuIwUFj+P9U1TIy9EmRxZeLPB1NFiUNTMElyt4fnDQKkNz 4QhBAb321ZMJRGp9JUR7iNsY=
- In-reply-to: <CAJkPp5PV1yCoEDU-PrmHeaQqjq-tRkAq2n-15w0DzYND3TD2Lg@mail.gmail.com>
- Mail-followup-to: pari-users@pari.math.u-bordeaux.fr
- References: <CAJkPp5MJ5G9y=pGAjnas3-=KsYQKAfoo+-rVPqeS6yX1K-2auA@mail.gmail.com> <aEAZMhKUuuMMso94@seventeen> <CAJkPp5PV1yCoEDU-PrmHeaQqjq-tRkAq2n-15w0DzYND3TD2Lg@mail.gmail.com>
On Wed, Jun 04, 2025 at 12:30:46PM -0400, Max Alekseyev wrote:
> Hi Bill,
>
> This would be my approach for small m, but it's impractical for m about
> 10^10. Another approach is to try testing small primes, that is, for a
> candidate p to compute the power x^m in GF(p)[x]/<f(x)>. It'll be fast for
> any chosen p, but it's impossible to guess/find a large prime solution p
> when one exists.
>
> All in all, I'm hoping for an algorithm that works in O(log(m)) time and
> space.
> I do not expect many primes to be produced this way, but my goal is to
> systematically search for non-trivial cases when such primes do exist and
> may be large.
You will not find a computational algorithm with this complexity,
because the result you seek is not of size O(log(m)) in general.
Exercise: Let p a prime number such that kronecker(21,p)==-1.
Let m be an integer such that m = p-1 (mod p^2-1)
Show that p divides the content of
Mod(x,x^2 - 3*x - 3)^m-(x - 4)
Cheers,
Bill.